Umwelt (Australia) Pty Ltd

Proposed Lynwood Quarry Marulan

Report on
Soil Survey

0689-1D
11 May 2005

Umwelt (Australia) Pty Ltd
PO Box 838
TORONTO NSW 2283
PO Box 3385
15 Sandlewood Close
ROUSE HILL NSW 2155
Ph 0298362144
Fax 0298360225
assetgeo@callaustralia.net.au

Attention: Mr John Merrell

Dear Sir,

PROPOSED LYNWOOD QUARRY, MARULAN REPORT ON SOIL SURVEY

We are pleased to present our report on a soil survey carried out for the above project.

This report documents field and laboratory investigations and provides discussion and recommendations for land capability with respect to existing site conditions and with respect to rehabilitation of areas after quarrying.

Please contact us if you have any questions regarding this report or if you require further assistance.

For and on behalf of

Asset Geotechnical Engineering Pty Ltd

Mask Baith

Mark Bartel

BE MEngSc MIEAust CPEng
Principal Geotechnical Engineer

TABLE OF CONTENTS

1.0 INTRODUCTION 2
2.0 SCOPE OF WORK 2
3.0 PROJECT AREA DESCRIPTION \& REGIONAL GEOLOGY 3
4.0 SOIL LANDSCAPES 3
5.0 SUBSURFACE PROFILE FROM TEST PITTING 4
6.0 LABORATORY TEST RESULTS 5
7.0 REHABILITATION 6
INFORMATION SHEETS
APPENDICES
A Field Investigation ResultsB Laboratory Test Results
FIGURES
1 Site Locality
2 Test Locations and Soil Landscape

1.0 INTRODUCTION

This report presents the results of a soil survey for the proposed Lynwood hard rock quarry near Marulan. The investigation was commissioned by Mr John Merrell of Umwelt (Australia) Pty Ltd. The work was carried out in accordance with a proposal by Asset Geotechnical Engineering Pty Ltd dated 7 July 2004, reference P0673.

The objective of the survey is to provide information on the surface and subsurface soil conditions as part of an Environmental Impact Statement (EIS) for the proposed quarry. Specifically, the report describes the properties of the soils present in the project area and outlines measures required to achieve a suitable rehabilitation outcome.

This report should be read in conjunction with the attached Information Sheets.

2.0 SCOPE OF WORK

The scope of work for the soil survey comprised:

- A review of existing regional maps and reports relevant to the project area, held within our files.
- Review of Soil Landscape Maps prepared by the Department of Infrastructure, Planning and Natural Resources (DIPNR).
- Visual observations of surface features.
- Logging of 22 test pits (TP1 to TP22), to sample and assess the nature and consistency of soils at accessible areas of the project area.
- Carrying out laboratory tests on the recovered soil samples to provide data on chemical and physical properties.
- Engineering assessment and reporting.

The test pits were excavated on $3^{\text {rd }}$ and $4^{\text {th }}$ November 2004 using a rubber-tyred backhoe. The test locations are shown on the attached Figure 2.

The test pits were excavated to depths ranging from 0.35 metres to 1.3 metres depth and were terminated in weathered bedrock. On completion of logging and sampling, each test pit was backfilled with the excavation spoil and lightly tamped using the backhoe bucket before rolling with the backhoe tyre. Remaining spoil was left and trimmed neatly flush or slightly mounded to the adjacent ground surface.

The test pit locations were set out by our engineer and were located by hand-held GPS measurements. The subsurface conditions encountered were recorded during the progress of the excavations. Soil samples were retained for laboratory testing. Surface levels at the test locations were not determined.

Engineering logs are provided in Appendix A to this report. The results of the laboratory testing are summarised in Section 5 and are provided in Appendix B.

3.0 PROJECT AREA DESCRIPTION \& REGIONAL GEOLOGY

The project area is located approximately 3 km west of Marulan as shown in the attached Figure 1. The project area occupies approximately 1000 hectares adjacent to the Hume Highway, and is dissected by the Main Southern Railway.

The regional topography includes gently undulating plains, undulating rises, and rolling low hills to steep hills. The overall relief is about 80 m , from about RL 710 m AHD to about RL 630m AHD. The terrain is incised by numerous open depressions and watercourses that generally flow towards Joarimin Creek near the centre of the project area, Marulan Creek in the south, or Lakyersleigh Creek in the northwest. The Main Southern Railway cuts through the project area near the centre running in a roughly westerly direction before crossing Joarimin Creek and heading northwest.

Vegetation includes open forest and woodland that has been cleared over much of the lower areas. Current land use comprises predominantly open grazing.

The 1:250,000 Goulburn Geological Map indicates the project area is underlain predominantly by Bindook Porphyry (quartz feldspar porphyry, dacite, felsite, and tuff) with the southeastern corner underlain by Marulan Granite (granite and granodiorite).

Numerous rocky outcrops and rock covered areas were observed over the elevated hilly parts of the project area.

4.0 SOIL LANDSCAPES

The DIPNR soil landscape mapping identifies four landscape units within the project area. The units are summarised below.

Bindook Road

Undulating low hills on Devonian Bindook Porphyry. This unit is identified by the sub-angular porphyry rock outcrop on upper slopes and crests.

Bindook Road variant A

This variant features steeper hills and stony ridgelines with more rock outcrop than the Bindook Road landscape.

Jaqua

This unit is characterised by long foot-slopes and undulating low rises on Devonian Granite and Permian sediments.

Marulan

Comprising gently undulating rises to undulating low hills formed on Devonian Granite. Distinct surface expression of outcropping well rounded spheroidal Granite tors is common.

The soil landscape boundaries have been transposed from the SCA maps onto the Towrang 1:25,000 Topographic Map as shown in the attached Figure 2.

5.0 SUBSURFACE PROFILE FROM TEST PITTING

The generalised subsurface profile as per the test pitting is summarised below:

Layer	Description	Depth to Base (m)
Topsoil	SILT / Sandy SILT / Silty SAND, low plasticity fines, fine to medium sand	$0.05 / 0.20$
Slopewash	Clayey SAND / Sandy SILT / Gravelly SILT, fine to medium grained, low plasticity fines	$0.15 / 0.4$
Residual	SAND / Clayey SAND, fine to medium grained	$0.4 / 1.15$
Residual	CLAY / Sandy CLAY, medium plasticity	$0.4 / 1.0$
Bedrock	PORPHYRY or GRANITE, medium to coarse grained	--

6.0 LABORATORY TEST RESULTS

Results from the laboratory testing undertaken on selected soil samples are included in Appendix B and are summarised in Table 1 below.

Sample	Engineering Description	픈			$\stackrel{E}{\sim}$	은 읃 ㅇ		$\begin{aligned} & \text { y } \\ & \text { © } \\ & \text { © } \\ & \text { ㄷ } \\ & \frac{H}{\omega} \\ & \text { E } \end{aligned}$			$\begin{aligned} & \text { O } \\ & \text { O } \\ & \hline \text { O } \\ & \hline \end{aligned}$			
TP1 / 0-0.1	Sandy SILT (Topsoil)	5.5	0.090	10	0.9	15								
TP1 / 0.05-0.15	Gravelly Clayey SAND (Slopewash)	6.0	0.090	14	1.3	33	3.1	6	0.3	>100	43			
TP1 / 0.5-0.6	Sandy CLAY (Residual)	5.1	0.080	8	0.6	62	6.2	5	3.8	63	35			
TP2 / 0-0.1	Sandy SILT (Topsoil)	4.7	0.240	10	2.4	38								
TP2 / 0.2-0.3	Silty SAND (Slopewash)	5.3	0.080	14	1.1	25								
TP2 / 0.4-0.5	Sandy CLAY (Residual)	5.0	0.110	8	0.9	47								
TP3 / 0.05-0.15	Sandy SILT (Topsoil)	7.1	0.210	10	2.1	35	7.1	6	0.4	51	19			
TP3 / 0.25-0.35	Clayey SAND (Slopewash)	7.1	0.070	14	1.0	22	3.0	5	0.6	75	17			
TP4 / 0-0.1	Silty SAND (Topsoil)	5.2	0.030	14	0.4	5	3.1	8				68	135	0.021
TP4 / 0.3-0.4	Clayey SAND (Residual)	5.4	0.015	14	0.2	<5	2.5	6				42	78	0.007
TP5 / 0.05-0.15	Sandy SILT (Topsoil)	4.5	0.075	10	0.8	60								
TP6 / 0-0.15	SILT (Topsoil)	4.8	0.070	10	0.7	15								
TP7 / 0-0.15	Sandy SILT (Topsoil)	4.8	0.100	10	1.0	30								
TP8 / 0-0.1	Silty SAND (Topsoil)	5.4	0.100	14	1.4	8	5.8	8				260	180	0.029
TP8 / 0.4-0.6	SAND (Residual)	5.4	0.030	17	0.5	8								
TP9 / 0-0.1	SILT (Topsoil)	4.5	0.230	10	2.3	49								
TP10 / 0-0.05	SILT (Topsoil)	4.5	0.100	10	1.0	14	5.6	6				390	86	0.038
TP10 / 0.05-0.15	Sandy SILT (Slopewash)	4.5	0.090	10	0.9	7								
TP10 / 0.5-0.6	Sandy CLAY (Residual)	5.2	0.070	8	0.6	64	6.9	5				200	27	0.02
TP11 / 0-0.1	Sandy SILT (Topsoil)	4.6	0.330	10	3.3	45								
TP13/0-0.05	SILT (Topsoil)	4.7	0.180	10	1.8	8								
TP13/0.1-0.2	Sandy SILT (Residual)	4.6	0.070	10	0.7	32								
TP14 / 0-0.1	Silty SAND (Topsoil)	5.8	0.080	14	1.1	12	8.3	6				260	135	0.032
TP14 / 0.1-0.2	Gravelly Silty SAND (Residual)	5.4	0.055	14	0.8	29								
TP14 / 0.4-0.6	Sandy CLAY (Residual)	5.3	0.045	8	0.4	26	10.4	5				67	82	0.009
TP16 / 0-0.1	Silty SAND (Topsoil)	5.0	0.050	14	0.7	10								
TP18/0.05-0.1	Silty SAND (Topsoil)	5.3	0.040	14	0.6	10	3.8	6				120	185	0.017
TP18/0.15-0.25	Clayey SAND (Slopewash)	4.8	0.040	14	0.6	18								
TP18/0.6-0.7	Sandy CLAY (Residual)	5.5	0.060	8	0.5	35								
TP19 / 0.05-0.1	SILT (Topsoil)	5.3	0.090	10	0.9	110	3.3	6				200	50	0.012
TP19 / 0.5-0.65	CLAY (Residual)	5.1	0.120	8	1.0	120	15.8	8				84	55	0.013
TP21 / 0.05-0.1	Silty SAND (Topsoil)	5.0	0.095	14	1.3	79								
TP22 / 0-0.1	SILT (Topsoil)	4.8	0.150	10	1.5	150								

The laboratory testing indicates that the soils are not dispersive by nature, are assessed to be slightly to moderately acidic and non-saline to slightly saline. The soils generally have a low Cation Exchange Capacity (CEC), which will limit the soil's ability to retain nutrients. The soil phosphorous levels are generally sufficient for grazing / open pasture use. However, the potassium and sulphur levels are relatively low and should be improved during rehabilitation to facilitate plant growth should it be desired to establish permanent pasture.

7.0 REHABILITATION

Topsoil from areas to be quarried should be stripped and stockpiled separately from lower subsoils. During rehabilitation after quarrying, the topsoil should be spread and amended as follows, based on the proposed land use:

Areas to be used for Native Vegetation (i.e. not grazing or cultivation)

- No amendment is considered necessary.

Areas to be used for Permanent Grazing Land:

- Increase pH to a target value of between 6 and 8.5. To raise the pH by 1, lime should be spread at the rate of $2500 \mathrm{~kg} / \mathrm{ha}$ and thoroughly mixed to 100 mm depth.
- Potassium should be raised to a target minimum value of $125 \mathrm{mg} / \mathrm{kg}$. A dosage rate of $200 \mathrm{~kg} / \mathrm{ha}$ is recommended for initial treatment.
- Organic materials (e.g. manure), ammonium sulphur, or gypsum should be added to improve sulphur levels. A dosage rate of 10 to 20 kg of sulphur per hectare should be applied.

* * * *

SCOPE OF SERVICES

The geotechnical report ("the report") has been prepared in accordance with the scope of services as set out in the contract, or as otherwise agreed, between the Client and Asset Geotechnical Engineering Pty Ltd ("Asset"). The scope of work may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

RELIANCE ON DATA

Asset has relied on data provided by the Client and other individuals and organizations, to prepare the report. Such data may include surveys, analyses, designs, maps and plans. Asset has not verified the accuracy or completeness of the data except as stated in the report. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations ("conclusions") are based in whole or part on the data, Asset will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to Asset.

GEOTECHNICAL ENGINEERING

Geotechnical engineering is based extensively on judgment and opinion. It is far less exact than other engineering disciplines. Geotechnical engineering reports are prepared for a specific client, for a specific project and to meet specific needs, and may not be adequate for other clients or other purposes (e.g. a report prepared for a consulting civil engineer may not be adequate for a construction contractor). The report should not be used for other than its intended purpose without seeking additional geotechnical advice. Also, unless further geotechnical advice is obtained, the report cannot be used where the nature and/or details of the proposed development are changed.

LIMITATIONS OF SITE INVESTIGATION

The investigation programme undertaken is a professional estimate of the scope of investigation required to provide a general profile of subsurface conditions. The data derived from the site investigation programme and subsequent laboratory testing are extrapolated across the site to form an inferred geological model, and an engineering opinion is rendered about overall subsurface conditions and their likely behaviour with regard to the proposed development. Despite investigation, the actual conditions at the site might differ from those inferred to exist, since no subsurface exploration program, no matter how comprehensive, can reveal all subsurface details and anomalies.
The engineering logs are the subjective interpretation of subsurface conditions at a particular location and time, made by trained personnel. The actual interface between materials may be more gradual or abrupt than a report indicates.

SUBSURFACE CONDITIONS ARE TIME DEPENDENT

Subsurface conditions can be modified by changing natural forces or man-made influences. The report is based on conditions that existed at the time of subsurface exploration. Construction operations adjacent to the site, and natural events such as floods, or ground water fluctuations, may also affect subsurface conditions, and thus the continuing adequacy of a geotechnical report. Asset should be kept appraised of any such events, and should be consulted to determine if any additional tests are necessary.

VERIFICATION OF SITE CONDITIONS

Where ground conditions encountered at the site differ significantly from those anticipated in the report, either due to natural variability of subsurface conditions or construction activities, it is a condition of the report that Asset be notified of any variations and be provided with an opportunity to review the recommendations of this report. Recognition of change of soil and rock conditions requires experience and it is recommended that a suitably experienced geotechnical engineer be engaged to visit the site with sufficient frequency to detect if conditions have changed significantly.

REPRODUCTION OF REPORTS

This report is the subject of copyright and shall not be reproduced either totally or in part without the express permission of this Company. Where information from the accompanying report is to be included in contract documents or engineering specification for the project, the entire report should be included in order to minimize the likelihood of misinterpretation from logs.

REPORT FOR BENEFIT OF CLIENT

The report has been prepared for the benefit of the Client and no other party. Asset assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of Asset or for any loss or damage suffered by any other party relying upon the matters dealt with or conclusions expressed in the report). Other parties should not rely upon the report or the accuracy or completeness of any conclusions and should make their own inquiries and obtain independent advice in relation to such matters.

OTHER LIMITATIONS

Asset will not be liable to update or revise the report to take into account any events or emergent circumstances or fact occurring or becoming apparent after the date of the report.

LOG ABBREVIATIONS AND NOTES

METHOD borehole logs		excavation logs	
AS	auger screw *	NE	natural excavation
AD	auger drill *	HE	hand excavation
RR	roller / tricone	BH	backhoe bucket
W	washbore	EX	excavator bucket
CT	cable tool	DZ	dozer blade
HA	hand auger	R	ripper tooth
D	diatube		
B	blade / blank bit		
V	\checkmark-bit		
T	TC-bit		
* bit shown by suffix e.g. ADV			
coring			
NMLC, NQ, PQ, HQ			
SUPPORT			
bore	le logs	exc	ion logs
N	nil		nil
	mud		shoring
	casing	B	benched
NQ	NQ rods		
CORE-LIFT			
	casing installed		
barrel withdrawn			
NOTES, SAMPLES, TESTS			
	disturbed		
B	bulk disturbed		
U50	thin-walled sample, 50 mm diameter		
HP	hand penetrometer (kPa)		
SV	shear vane test (kPa)		
DCP	dynamic cone penetrometer (blows per 100 mm penetration)		
SPT	standard penetration test		
N*	SPT value (blows per 300mm)		
Nc	SPT with solid cone		
	refusal of DCP or SPT		

USCS SYMBOLS

GW Well graded gravels and gravel-sand mixtures, little or no fines.
GP Poorly graded gravels and gravel-sand mixtures, little or no fines.
GC Silty gravels, gravel-sand-silt mixtures.
GC Clayey gravels, gravel-sand-clay mixtures.
SW Well graded sands and gravelly sands, little or no fines.
Poorly graded sands and gravelly sands, little or no fines.
Silty sand, sand-silt mixtures.
Clayey sand, sand-clay mixtures
Inorganic silts of low plasticity, very fine sands, rock flour, silty or clayey fine sands.
CL Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays.
OL Organic silts and organic silty clays of low plasticity.
$\mathrm{MH} \quad$ Inorganic silts of high plasticity.
$\mathrm{CH} \quad$ Inorganic clays of high plasticity.
$\mathrm{OH} \quad$ Organic clays of medium to high plasticity.
PT Peat muck and other highly organic soils.

GRAPHIC LOG

Boundaries

- known _-_-_- probable possible

WEATHERING

STRENGTH	
EL	extremely low
VL	very low
L	low
M	medium
H	high
VH	very high
EH	extremely high

RQD (\%)
$=$ sum of intact core pieces $>2 \times$ diameter $\times 100$ total length of section being evaluated

DEFECTS

type		coating	
JT	joint	cl	clean
PT	parting	st	stained
SZ	shear zone	ve	veneer
SM	seam	co	coating
shape		roughness	
pl	planar	po	polished
cu	curved	sl	slickensided
un	undulating	sm	smooth
st	stepped	ro	rough
ir	irregular	vr	very rough

inclination
measured above axis and perpendicular to core

ASSET GEOTECHNICAL
geotechnical engineering consultants

AS1726-1993

Soils and rock are described in the following terms, which are broadly in accordance with AS1726-1993.

SOIL

MOISTURE CONDITION

Term Description

Dry Looks and feels dry. Cohesive and cemented soils are hard, friable or powdery. Uncemented granular soils run freely through the hand.
Moist Feels cool and darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.
Wet As for moist, but with free water forming on hands when handled. Moisture content of cohesive soils may also be described in relation to plastic limit $\left(W_{P}\right)$ or liquid limit $\left(W_{L}\right)$ [>> much greater than, > greater than, < less than, \ll much less than].

CONSISTENCY OF COHESIVE SOILS

Term	Su (kPa)	Term	Su (kPa)
Very soft	<12	Very Stiff	$100-200$
Soft	$12-25$	Hard	>200
Firm	$25-50$	Friable	-
Stiff	$50-100$		
DENSITY OF GRANULAR SOILS			
Term	Density Index(\%)	Term	Density Index (\%)
Very Loose	<15	Dense	$65-85$
Loose	$15-35$	Very Dense	>85
Medium Dense	$35-65$		
PARTICLE SIZE		Size (mm)	
Name	Subdivision	>200	
Boulders		$63-200$	
Cobbles		$20-63$	
Gravel	coarse	$6-20$	
	medium	$2.36-6$	
Sand	fine	$0.6-2.36$	
	coarse	$0.2-0.6$	
Silt \& Clay	fine		$0.075-0.2$
		<0.075	

MINOR COMPONENTS

Term	Proportion by Mass coarse grained	fine grained
	$\leq 5 \%$	$\leq 15 \%$
Trace	$5-2 \%$	$15-30 \%$
Some		

SOIL ZONING

ROCK

SEDIMENTARY ROCK TYPE DEFINITIONS			
Rock Type D	Definition (more than 50\% of rock consists of)		
Conglomerate gravel sized ($>2 \mathrm{~mm}$) fragments.		
Sandstone sand sized (0.06 to 2mm) grains.		
Siltstone silt sized ($<0.06 \mathrm{~mm}$) particles, rock is not laminated.		
Claystone clay, rock is not laminated.		
Shale silt or clay sized particles, rock is laminated.		
LAYERING			
Term	Description		
Massive	No layering apparent.		
Poorly Developed	Layering just visible. Little effect on properties.		
Well Developed	Layering distinct. Rock breaks more easily parallel to layering.		
STRUCTURE			
Term	Spacing (mm)	Term	Spacing
Thinly laminated	<6	Medium bedded	200-600
Laminated	6-20	Thickly bedded	600-2,000
Very thinly bedded	d 20-60	Very thickly bedded	> 2,000
Thinly bedded	60-200		
STRENGTH			
Term Is	Is50 (MPa)	Term Is	0 (MPa)
Extremely Low <	<0.03	High 1.0	- 3.0
Very low 0	0.03-0.1	Very High 3.0	- 10.0
Low 0	0.1-0.3	Extremely High >	0.0
Medium 0	0.3-1.0		
	NOTE: Is50 = Point Load Strength Index		
WEATHERING			
Term D	Description		
Residual Soil S	Soil derived from weathering of rock; the mass structure and substance fabric are no longer evident.		
Extremely	Rock is weathered to the extent that it has soil properties (either disintegrates or can be remoulded). Fabric of original rock is still visible.		
Highly R	Rock strength usually highly changed by weathering; rock may be highly discoloured.		
Moderately R	Rock strength usually moderately changed by weathering; rock may be moderately discoloured.		
Slightly R	Rock is slightly discoloured but shows little or no change of strength from fresh rock.		
Fresh R	Rock shows no signs of decomposition or staining.		

DEFECT DESCRIPTION

Type
may be patchy
Coating \quad Visible coating $\leq 1 \mathrm{~mm}$ thick. Thicker soil material de-
No visible coating or discolouring scribed as seam.

Layers Continuous exposures.
Lenses Discontinuous layers of lenticular shape.
Pockets Irregular inclusions of different material.

SOIL CEMENTING

$\begin{array}{ll}\text { Weakly } & \text { Easily broken up by hand. } \\ \text { Moderately } & \text { Effort is required to break up the soil by hand. }\end{array}$

USCS SYMBOLS
 Symbol Description

GW Well graded gravels and gravel-sand mixtures, little or no fines.
GP Poorly graded gravels and gravel-sand mixtures, little or no fines.
GM Silty gravels, gravel-sand-silt mixtures.
GC Clayey gravels, gravel-sand-clay mixtures
SW Well graded sands and gravelly sands, little or no fines. SP Poorly graded sands and gravelly sands, little or no Poorly
fines.
SM Silty sand, sand-silt mixtures.
SC Clayey sand, sand-clay mixtures.
ML
Inorganic silts of low plasticity, very fine sands, rock flour, silty or clayey fine sands.
Inorganic clays of low to medium plasticity, gravelly
clays, sandy clays, silty clays.
Organic silts and organic silty clays of low plasticity. Inorganic silts of high plasticity.
Inorganic clays of high plasticity.
Organic clays of medium to high plasticity.
$\begin{array}{ll}\mathrm{CH} & \text { Inorganic clays of high plasticity. } \\ \text { OH } & \text { Organic clays of medium to high plasticity. } \\ \text { PT } & \text { Peat muck and other highly organic soils. }\end{array}$
Joint
Parting

Sheared Zone

Seam

Shape
Planar
Curved
Undulating
Stepped
Irregular
Roughness
Polished
Slickensided
Smooth
Rough
Very Rough \quad Many large surface irregularities, amplitude generally $>1 \mathrm{~mm}$. Feels like very coarse sandpaper.

Coating
Clean
A surface or crack across which the rock has little or no tensile strength. May be open or closed. A surface or crack across which the rock has little or no tensile strength. Parallel or sub-parallel to layering/ bedding. May be open or closed.
Zone of rock substance with roughly parallel, near planar, curved or undulating boundaries cut by closely spaced joints, sheared surfaces or other defects. Seam with deposited soil (infill), extremely weathered insitu rock (XW), or disoriented usually angular fragments of the host rock (crushed).

Consistent orientation.
Gradual change in orientation.
Wavy surface.
One or more well defined steps.
Many sharp changes in orientation.

Shiny smooth surface.
Grooved or striated surface, usually polished.
Smooth to touch. Few or no surface irregularities Many small surface irregularities (amplitude generally
$\mathrm{MH} \quad$ norganic silts of high plasticity

	Home	Previous	Next	TOC	11 May 2005
0689-1D					

APPENDIX A

Field Investigation Results

Excavation Log assetgeo@ callaustralia.net.au

EX no:	TP01
sheet:	1 of 1
job no.:	$0689-1$

client:	UMWELT (AUSTRALIA) PTY LTD	started:	3.11 .2004
principal:	READYMIX	finished:	3.11 .2004
project:	PROPOSED HARD ROCK QUARRY	logged:	MAB
location:	MARULAN	checked:	MAB
equipment:	4WD BACKHOE	RL surface:	
dimensions:	$0.45 m$ wide by 2.0m long	datum:	
excavation information	material information		

PO Box 3385Rouse Hill NSW 2155Ph: (022) 98362144Fax: (02) 98360225assetgeo@ callaustralia.net.au	EX no:	TP02
	sheet:	1 of 1
	job no.:	0689-1

Excavation Log assetgeo@ callaustralia.net.au

client:	UMWELT (AUSTRALIA) PTY LTD	started:	3.11 .2004
principal:	READYMIX	finished:	3.11 .2004
project:	PROPOSED HARD ROCK QUARRY	logged:	MAB
location:	MARULAN	checked:	MAB
equipment:	4WD BACKHOE	RL surface:	
dimensions:	$0.45 m$ wide by 2.0 m long	datum:	

Excavation Log

EX no:	TP03
sheet:	1 of 1
job no.:	$0689-1$

client:	UMWELT (AUSTRALIA) PTY LTD	started:	
principal:	READYMIX	finished:	3.11 .2004
project:	PROPOSED HARD ROCK QUARRY	logged:	MAB
location:	MARULAN	checked:	MAB
equipment:	4WD BACKHOE	RL surface:	
dimensions:	$0.45 m$ wide by 2.0 m long	datum:	

Excavation Log

client:	UMWELT (AUSTRALIA) PTY LTD	started:	3.11 .2004
principal:	READYMIX	finished:	3.11 .2004
project:	PROPOSED HARD ROCK QUARRY	logged:	MAB
location:	MARULAN	checked:	MAB
equipment:	4WD BACKHOE	RL surface:	
dimensions:	0.45 m wide by 2.0 m long	datum:	
excavation information	material information		

Excavation Log

Excavation Log

Excavation Log

Excavation Log

EX no:	TP08
sheet:	1 of 1
job no.:	$0689-1$

client:	UMWELT (AUSTRALIA) PTY LTD	started:	3.11 .2004
principal:	READYMIX	finished:	3.11 .2004
project:	PROPOSED HARD ROCK QUARRY	logged:	MAB
location:	MARULAN	checked:	MAB
equipment:	4WD BACKHOE	RL surface:	
dimensions:	$0.45 m$ wide by 2.0 m long	datum:	
excavation information	matial information		

Excavation Log

client:	UMWELT (AUSTRALIA) PTY LTD	started:	3.11 .2004
principal:	READYMIX	finished:	3.11 .2004
project:	PROPOSED HARD ROCK QUARRY	logged:	MAB
location:	MARULAN	checked:	MAB
equipment:	4WD BACKHOE	RL surface:	
dimensions:	0.45 m wide by 2.0 m long	datum:	
excavation information	material information		

Excavation Log

PO Box 3385	EX no:	TP 11
Rouse Hill NSW 2155		
Ph: (02) 98362144	sheet:	1 of 1
Fax: (02) 98360225		
geo@ callaustralia.net.au	job no.:	0689-1

Excavation Log

client:	UMWELT (AUSTRALIA) PTY LTD	started:	3.11 .2004
principal:	READYMIX	finished:	3.11 .2004
project:	PROPOSED HARD ROCK QUARRY	logged:	MAB
location:	MARULAN	checked:	MAB
equipment:	4WD BACKHOE	RL surface:	
dimensions:	0.45 m wide by 2.0 m long	datum:	
excavation information	material information		

Excavation Log

EX no:	TP 12
sheet:	1 of 1
job no.:	$0689-1$

client:	UMWELT (AUSTRALIA) PTY LTD	started:	3.11 .2004
principal:	READYMIX	finished:	3.11 .2004
project:	PROPOSED HARD ROCK QUARRY	logged:	MAB
location:	MARULAN	checked:	MAB
equipment:	4WD BACKHOE	RL surface:	
dimensions:	0.45 m wide by 2.0 m long	datum:	
excavation information	material information		

PO Box 3385	EX no:	TP 13
Rouse Hill NSW 2155		
Ph: (02) 98362144	sheet:	1 of 1
Fax: (02) 98360225 geo@callaustralia.net.au	job no.:	0689-1

Excavation Log

client:	UMWELT (AUSTRALIA) PTY LTD	started:	3.11 .2004
principal:	READYMIX	finished:	3.11 .2004
project:	PROPOSED HARD ROCK QUARRY	logged:	MAB
location:	MARULAN	checked:	MAB
equipment:	4WD BACKHOE	RL surface:	
dimensions:	0.45 m wide by 2.0 m long	datum:	
excavation information	material information		

PO Box 3385	EX no:	TP 14
Rouse Hill NSW 2155		
Ph: (02) 98362144	sheet:	1 of 1
Fax: (02) 98360225		
geo@ callaustralia.net.au	job no.:	0689-1

Excavation Log assetgeo@callaustralia.net.au

client:

UMWELT (AUSTRALIA) PTY LTD
started:
4.12.2004
$\begin{array}{ll}\text { principal: } & \text { READYMIX } \\ \text { project: } & \text { PROPOSED HARD ROCK QUARRY }\end{array}$
finished: 4.12.2004
project:
MARULAN
logged:
MAB

location:	MARULAN
equipment:	4WD BACKHOE

RL su
datum:

| excavation information | | material information | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

PO Box 3385	EX no:	TP 15
Rouse Hill NSW 2155		
Ph: (02) 98362144	sheet:	1 of 1
Fax: (02) 98360225		
geo@ callaustralia.net.au	job no.:	0689-1

Excavation Log assetgeo@callaustralia.net.au

client:
princt
proje

Excavation Log

EX no:	TP16
sheet:	1 of 1
job no.:	$0689-1$

client:	UMWELT (AUSTRALIA) PTY LTD	started:	4.12 .2004
principal:	READYMIX	finished:	4.12 .2004
project:	PROPOSED HARD ROCK QUARRY	logged:	MAB
location:	MARULAN	checked:	MAB
equipment:	4WD BACKHOE	RL surface:	
dimensions:	$0.45 m$ wide by 2.0m long	datum:	
excavation information	material information		

Excavation Log

EX no:	TP17
sheet:	1 of 1
job no.:	$0689-1$

client:	UMWELT (AUSTRALIA) PTY LTD	started:	4.12 .2004
principal:	READYMIX	finished:	4.12 .2004
project:	PROPOSED HARD ROCK QUARRY	logged:	MAB
location:	MARULAN	checked:	MAB
equipment:	4WD BACKHOE	RL surface:	
dimensions:	$0.45 m$ wide by 2.0m long	datum:	
excavation information	material information		

Excavation Log

PO Box 3385	EX no:	TP 19
Rouse Hill NSW 2155		
Ph: (02) 9836 2144	sheet:	1 of 1
Fax: (02) 9836 0225		
geo@ callaustralia.net.au	job no.:	$0689-1$

Excavation Log assetgeo@callaustralia.net.au

client:	UMWELT (AUSTRALIA) PTY LTD	started:	4.12 .2004
principal:	READYMIX	finished:	4.12 .2004
project:	PROPOSED HARD ROCK QUARRY	logged:	MAB
location:	MARULAN	checked:	MAB
equipment:	4WD BACKHOE	RL surface:	
dimensions:	0.45 m wide by 2.0 m long	datum:	
excavation information	material information		

Excavation Log

Excavation Log

EX no:	TP21
sheet:	1 of 1
job no.:	$0689-1$

client:	UMWELT (AUSTRALIA) PTY LTD	started:	4.12 .2004
principal:	READYMIX	finished:	4.12 .2004
project:	PROPOSED HARD ROCK QUARRY	logged:	MAB
location:	MARULAN	checked:	MAB
equipment:	4WD BACKHOE	RL surface:	
dimensions:	$0.45 m$ wide by 2.0 m long	datum:	
excavation information	matial information		

PO Box 3385	EX no:	TP22
Rouse Hill NSW 2155		
Ph: (02) 9836 2144		
Fax: (02) 9836 0225	sheet:	1 of 1
geo@ callaustralia.net.au	job no.:	$0689-1$

Excavation Log

client:	UMWELT (AUSTRALIA) PTY LTD	started:	4.12 .2004
principal:	READYMIX	finished:	4.12 .2004
project:	PROPOSED HARD ROCK QUARRY	logged:	MAB
location:	MARULAN	checked:	MAB
equipment:	4WD BACKHOE	RL surface:	
dimensions:	0.45 m wide by 2.0 m long	datum:	
excavation information	material information		

APPENDIX B

Laboratory Test Results

```
Office:
PO BOX 48
ERMINGTON NSW 2115
Laboratory:
1/4 ABBOTT ROAD
SEVEN HILLS NSW 2147
Telephone: (02) 98388903
Fax: (02) 98388919
A.C.N. 003614695
A.B.N. \(\quad 81829182852\)
```


ANALYTICAL REPORT for:

ASSET GEOTECHNICAL ENGINEERING PTY LTD
15 SANDLEWOOD CLOSE
ROUSE HILL 2155
ATTN: MARK BARTEL

JOB NO:
SAL15321
CLIENT ORDER: 0689-1
DATE RECEIVED: 15/11/04
DATE COMPLETED: 26/11/04
TYPE OF SAMPLES: SOILS
NO OF SAMPLES: 29

NATA Accredited Laboratory
Number: 1884

NATA ENDORSED TEST REPORT
This document shall not be reproduced,

	SAMPLES	$\begin{array}{r} \mathrm{pH} \\ 1: 5 \end{array}$	$\begin{array}{r} \text { COND } \\ \mathrm{dS} / \mathrm{m} \end{array}$	$\begin{array}{r} \mathrm{Cl} \\ \mathrm{mg} / \mathrm{kg} \end{array}$	$\begin{array}{r} \mathrm{CEC} \\ \mathrm{cmol}+/ \mathrm{kg} \end{array}$	* EMERS. Class
1	TP1/0-0.1	5.5	0.090	15		
2	TP2/0-0.1	4.7	0.24	38		
3	TP2/0.2-0.3	5.3	0.080	25		
4	TP2/0.4-0.5	5.0	0.11	47		
5	TP4/0-0.1	5.2	0.030	5	3.1	8
6	TP4/0.3-0.4	5.4	0.015	<5	2.5	6
7	TP5/0.05-0.15	4.5	0.075	60		
8	TP6/0-0.15	4.8	0.070	15		
9	TP7/0-0.05	4.8	0.10	30		
10	TP8/0-0.1	5.4	0.10	8	5.8	8
11	TP8/0.4-0.6	5.4	0.030	8		
12	TP9/0-0.1	4.5	0.23	49		
13	TP10/0-0.05	4.5	0.10	14	5.6	6
14	TP10/0.05-0.15	4.5	0.090	7		
15	TP10/0.5-0.6	5.2	0.070	64	6.9	5
16	TP11/0-0.1	4.6	0.33	45		
17	TP13/0-0.05	4.7	0.18	8		
18	TP13/0.1-0.2	4.6	0.070	32		
19	TP14/0-0.1	5.8	0.080	12	8.3	6
20	TP14/0.1-0.2	5.4	0.055	29		
21	TP14/0.4-0.6	5.3	0.045	26	10.4	5
22	TP16/0-0.1	5.0	0.050	10		
23	TP18/0.05-0.1	5.3	0.040	10	3.8	6
24	TP18/0.15-0.25	4.8	0.040	18		
25	TP18/0.6-0.7	5.5	0.060	35		
26	TP19/0.05-0.1	5.3	0.090	110	3.3	6
27	TP19/0.5-0.65	5.1	0.12	120	15.8	8
28	TP21/0.05-0.1	5.0	0.095	79		
29	TP22/0-0.1	4.8	0.15	150		
DUPLICATES:						
19	TP14/0-0.1	5.8	0.090	11	8.1	6
MDL		0.1	0.001	5	0.1	
Meth	od Code	WA1	WA2	WA 4	S7	C43
Prep	aration	P5	P5	P5	P5	P1

SYDNEY
 ANALYTICALIES

JOB NO: SAL15321
CLIENT ORDER: 0689-1

SAMPLES

Total P $\mathrm{mg} / \mathrm{kg}$
$\begin{array}{rr}* \text { Av.K } \\ \mathrm{mg} / \mathrm{kg} & * \text { Tot.S } \\ \%\end{array}$

5 TP4/0-0.1

6 TP4/0.3-0.4
10 TP8/0-0.1

135	0.021
78	0.007
180	0.029
86	0.038
27	0.020
135	0.032
82	0.009
185	0.017
50	0.012
55	0.013
130	0.029

MDL	5	1	0.002
Method Code	WA15	S4	HT3
Preparation	P5	P5	P5

LABORATORY DUPLICATE REPORT

JOB NO: SAL15321
CLIENT ORDER: 0689-1

Sample Number	Analyte	Units	MDL	Sample Result	Duplicate Result	\%RPD
TP14/0-0.1	pH		0.1	5.8	5.8	0
TP14/0-0.1	Conductivity	dS/m	0.001	0.080	0.090	12
TP14/0-0.1	Chloride	$\mathrm{mg} / \mathrm{kg}$	5	12	11	8
TP14/0-0.1	CEC	cmol+/kg	0.1	8.3	8.1	2
TP14/0-0.1	*Emerson Class	Class		6	6	0
TP14/0-0.1	Total P	$\mathrm{mg} / \mathrm{kg}$	5	260	230	12
TP14/0-0.1	Available K	$\mathrm{mg} / \mathrm{kg}$	1	135	130	4
TP14/0-0.1	*Total Sulphur	-	0.002	0.032	0.029	10

Acceptance criteria:
RPD <50\% for low level ($<20 x M D L$)
$\operatorname{RPD}<30 \%$ for medium level ($20-100 \times M D L$)
RPD <15\% for high level (>100xMDL)
No limit applies at <2xMDL
MDL $=$ Method Detection Limit
All results are within the acceptance criteria

S Y D N E Y
 ANALYTICAL
 LABORATORIES

Page 5 of 5

ANALYTICAL REPORT

JOB NO: SAL15321
CLIENT ORDER: 0689-1

METHODS OF PREPARATION AND ANALYSIS

The tests contained in this report have been carried out on the samples as received by the laboratory.

P5 Sample dried, split and crushed to -150um
P1 Analysis performed on sample as received
WA1 $\mathrm{pH}-1: 5$ soil/water extract
Determined by APHA 4500B
WA2 Conductivity - 1:5 soil/water extract
Determined by APHA 2510B
WA4 Chloride - 1:5 soil/water extract
Determined by APHA 4110B
S7 Cation Exchange Capacity \& Exchangeable/Soluble Cations Determined by Silver Thiourea Method CEC-1
*C43 Modified Emerson Crumb Test: Based on AS1547-1990 Appendix F
WA15 Total Phosphorus - H2SO4/HF Digestion Determined by APHA 4500BF
*S4 Available Phosphorus - Bray Extract (0.03 N NH4F) Determined by APHA 4500F
*HT3 Total Sulphur - Determined by High Temperature Furnace

The laboratory's NATA registration does not cover performance of this service
A preliminary report was faxed on 26/11/04

Laboratory:
1/4 ABBOTT ROAD
SEVEN HILLS NSW 2147
Telephone: (02) 98388903
Fax:
(02) 98388919
A.C.N. 003614695
A.B.N. $\quad 81829182852$

ANALYTICAL REPORT for:

ASSET GEOTECHNICAL ENGINEERING PTY LTD
15 SANDLEWOOD CLOSE
ROUSE HILL 2155
ATTN: MARK BARTEL

JOB NO:
CLIENT ORDER: 0698-1
DATE RECEIVED: 15/11/04
DATE COMPLETED: 26/11/04
TYPE OF SAMPLES: SOILS
NO OF SAMPLES: 4

S Y D N E Y

ANALYTICAL REPORT

JOB NO: SAL15321B CLIENT ORDER: 0698-1

	SAMPLES
1	$\mathrm{TP} 1 / 0.05-0.15$
2	$\mathrm{TP} 1 / 0.5-0.6$
3	$\mathrm{TP} 3 / 0.05-0.15$
4	$\mathrm{TP} 3 / 0.25-0.35$

MDL
Method Code Preparation

6.0
5.1
7.1
7.1
$\begin{array}{rr}0.1 & 0.001 \\ \text { C1 } & \text { WA2 } \\ \text { P5 } & \text { P5 }\end{array}$
COND.
dS / m

0.090
0.080
0.21
0.070

CEC
cmol $+/ \mathrm{kg}$
3.1
6.2
7.1
3.0
0.1

S7
P5

ESP
\%
0.3
3.8
0.4
0.6
0.1

C35
P5
*Resis. ohm.m
>100
63
51 75

SYDNEY
 ANALYTICAL
 LABORATORIES

JOB NO: SAL15321B CLIENT ORDER: 0698-1

SAMPLES

* EMERS.

Cl
SO4 $\mathrm{mg} / \mathrm{kg}$

43
1 TP1/0.05-0.15
2 TP1/0.5-0.6
6
5
33
35
3 TP3/0.05-0.15
6
62
4 TP3/0.25-0.35
5
22
17

MDL		5	5
Method Code	C43	WA4	WA6
Preparation	P1	P5	P5
RESULTS ON DRY BASIS			

ANALYTICAL REPORT

JOB NO: SAL15321B
CLIENT ORDER: 0698-1

METHODS OF PREPARATION AND ANALYSIS

The tests contained in this report have been carried out on the samples as received by the laboratory.

P5 Sample dried, split and crushed to -150um
P8 Sample dried and crushed to pass 6.7 mm sieve
P1 Analysis performed on sample as received
C1 pH - AS1289.4.3.1
WA2 Conductivity - 1:5 soil/water extract
Determined by APHA 2510B
S7 Cation Exchange Capacity \& Exchangeable/Soluble Cations Determined by Silver Thiourea Method CEC-1
C35 Exchangeable Sodium Percentage - Silver Thiourea Extract Determined by APHA 3500B
*C21 Electrical Resistivity - RTA T185
*C43 Modified Emerson Crumb Test: Based on AS1547-1990 Appendix F
WA4 Chloride - 1:5 soil/water extract Determined by APHA 4110B
WA6 Sulphate - 1:5 soil/water extract Determined by APHA 4110B

The laboratory's NATA registration does not cover performance of this service
A preliminary report was faxed on 26/11/04

```
Office:
PO BOX 48
ERMINGTON NSW 2115
Laboratory:
1/4 ABBOTT ROAD
SEVEN HILLS NSW 2147
Telephone: (02) 98388903
Fax:
(02) 98388919
A.C.N. 003614695
A.B.N. \(\quad 81829182852\)
```


ANALYTICAL REPORT for:

ASSET GEOTECHNICAL ENGINEERING PTY LTD
15 SANDLEWOOD CLOSE
ROUSE HILL 2155
ATTN: MARK BARTEL
JOB NO: SAL15321C
CLIENT ORDER: 0704-1
DATE RECEIVED: 18/11/04
DATE COMPLETED: 30/11/04
TYPE OF SAMPLES: SOIL
NO OF SAMPLES: 1

NATA Accredited Laboratory
Number 1884愙
NATA ENDORSED TEST REPORT This document shall not be reproduced. except in full.

Issued on 09/12/04
Lance Smith
(Chief Chemist)

SYDNEY
 ANALYTICAL
 LABORATORIES

ANALYTICAL REPORT

JOB NO: SAL15321C

 CLIENT ORDER: 0704-1| SAMPLES | $\begin{gathered} \mathrm{pH} \\ 1: 5 \end{gathered}$ | $\begin{gathered} \text { COND. } \\ \mathrm{dS} / \mathrm{m} \end{gathered}$ | $\begin{array}{r} \text { CEC } \\ \mathrm{cmol}+/ \mathrm{kg} \end{array}$ | $\begin{array}{r} \text { ESP } \\ \% \end{array}$ | $\begin{array}{r} \text { *P SORP } \\ \mathrm{mg} / \mathrm{kg} \end{array}$ | *EMERS. Class |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 \mathrm{Ex} 1 / 0.1-0.5$ | 4.7 | 0.025 | 4.6 | 1.1 | 580 | 6 |

0.1

C1
P5
0.001

WA2
P5
0.1

S7
P5
0.1

C35
P5

1
S9
P5

SYDNEY
 ANALYTICAL
 LABORATORIES

ANALYTICAL REPORT

JOB NO: SAL15321C CLIENT ORDER: 0704-1

METHODS OF PREPARATION AND ANALYSIS

The tests contained in this report have been carried out on the samples as received by the laboratory.

P5 Sample dried, split and crushed to -150um
P1 Analysis performed on sample as received
C1 pH - AS1289.4.3.1
WA2 Conductivity - 1:5 soil/water extract Determined by APHA 2510B
S7 Cation Exchange Capacity \& Exchangeable/Soluble Cations Determined by Silver Thiourea Method CEC-1
C35 Exchangeable Sodium Percentage - Silver Thiourea Extract Determined by APHA 3500B
*S9 Phosphorus Sorption - Dept of Agriculture Standard Method Determined by APHA 4500F
*C43 Modified Emerson Crumb Test: Based on AS1547-1990 Appendix F

The laboratory's NATA registration does not cover performance of this service
A preliminary report was faxed on 30/11/04
0689-10 Home Previous Next TOC 11 May 2005

FIGURES

APPENDIX 4B

Soil Landscape Description

Appendix 4B-Soil Landscape Description

Soil landscape descriptions are adapted from DIPNR (2003)

Bindook Road Variation A

Bindook Road variation A is the predominate soil landscape unit in the area north of the Main Southern Railway. The crests and upper slopes of Bindook Road variation A soils are characterised by Paralithic Bleached Leptic Tenosols (Lithosols) with the mid and upper slopes being characterised by Brown Kurosols (Red and Yellow Podzolic Soils). Lower slopes of the soil landscape unit are characterised by Grey Sodosols (Solodic Soils).

The Bindook Road variant A soil landscape typically contains three horizons. The topsoil consists of two horizons (A1 and A2), with the materials comprising the A1 horizon ranging from a weak sandy loam to a silty/fine granular clay loam. pH for the A1 horizon range from 4.5 to 5.5 . The A2 horizon is comprised of bleached dilatant sandy clay loam. The pH of the A2 horizon ranges from 4.5 to 5.5 with the texture of the material ranging from sandy clay loam to silty clay loam.

The A1 and A2 horizons of the Bindook Road variant A soil landscape overly a sub-angular medium clay subsoil being reddish brown to yellowish brown in colour. The pH of the subsoil ranges from 5 to 6 with the structure ranging from moderate to strong pedality.

Bindook Road

Bindook Road is the predominate soil landscape unit to the south of the Main Southern Railway. This soil landscape unit also runs along the western edge of the project area, with patches also found in the northeast of the project area as shown on Figure 5.2 of the main text of the Environmental Impact Statement (EIS).

The Bindook Road soil landscape typically has four horizons, being the A1 and A2 horizons as well as the B2 and B3 horizons. The A1 horizon ranges from a weak sandy loam to a silty/fine sandy granular clay loam. Field pH ranges from 4.5 to 5.5 . The structure of the A 1 horizon ranges from massive to moderate pedality for the silty/fine sandy loam and from massive to weak pedal for the weak sandy loam. Fragment sizes range from coarse gravel to cobbles with the peds being $2-5 \mathrm{~mm}$ and angular in shape.

The A2 horizon is comprised of a bleached dilatant sandy clay loam with a pH range of 4.5 to 5.5 . The fragment sizes of coarse gravel to cobbles overlies the strong brown sub angular blocky medium clay of the subsoil B2 horizon. The B2 horizon has a pH range of 5 to 6 with fragment sizes ranging from coarse gravel to cobbles. Ped sizes for the B2 horizon are in the order of $20-50 \mathrm{~mm}$. The B2 horizon is characterised by moderate to strong pedality with fragment sizes ranging from coarse gravel to cobbles.

The greyish brown medium heavy sandy clay of the $\mathrm{B} 2 / 3$ horizon underlies the A 2 horizon. The sandy clay material is characterised by angular to sub-angular blocky ped shapes ranging from gravel to cobbles. This horizon is highly erodible, dispersive and sodic in nature.

Jaqua

The Jaqua soil landscape unit is found in the project area along the main channel of Joarimin Creek. The Jaqua soil landscape unit is also located in the southeastern corner of the project area. The rises of the Jaqua soil landscape unit are characterised by Yellow Kurosols (yellow podsolic soils) with the foot slopes being characterised by yellow and brown Sodosols (Soloths, Solidic Soils and Solodized Solonetz). The channels are characterised by Stratic Rudosols comprising alluvial soils.

The Jaqua soil landscape unit is generally composed of A1, A2 and B2 horizons. The A1 and A2 horizon is comprised of a number of materials typically being poorly structured loamy sand to sandy clay loam and a bleached dilatent silty clay loam. The loamy sand to sandy clay loam is brown to dark greyish brown in colour with ped sizes ranging from $<2 \mathrm{~mm}$ up to 5 mm . Ped shapes are granular and polyhedral with ped structure ranging from single grained to weak pedal. The pH of the poorly structured loamy sand to sandy clay loam is highly variable, ranging from 4.5 to 10 with all materials having a high concentrated flow erodibility. The bleached dilatant silty clay loam displays characteristics similar to the other materials comprising the A1 and A2 horizon.

The subsoils of the Jaqua soil landscape unit are of a clayey nature and include a sodic mottled well structured medium clay, a moderately structured clay and a moderately structured dispersive clay. The pH ranges for the moderately structured clay range from 5 to 6 with the ped structure ranging from moderate to strong pedality. Fragment sizes range from fine gravel to coarse gravel with ped shape being sub-angular blocky to angular blocky.

The moderately structured dispersive clay is greyish yellow in colour and has a pH range of 6 to 9 . Fragment sizes are fine gravel to coarse gravel and ped size and shape are consistent with the other materials which comprise the Jaqua sub soil horizon. The concentrated flow erodibility of the dispersive subsoil is high as is the non-concentrated flow erodibility.

Marulan

The Marulan Soil Landscape unit is found in a small band in southeastern corner of the project area. The upper slopes of the Marulan Soil Landscape Unit contain Paralithic Leptic Rudosols (Lithosols) and Chemic Tenosols (Earthy Sands) with Shallow Red Kandosols (Red Earths) also being present. The mid slopes of the soil landscape unit contain Red Kurosols (Red Podzolic Soils) with the lowers slopes containing Brown Sodosols (Solodic Soils).

The Marulan soil landscape unit typically contains an A1 horizon which consists of a brown coarse sandy loam/sandy clay loam. The fragment sizes range from fine gravel to stones with ped shapes being sub-angular blocky to polyhedral. The structure is massive to weak pedal. The A2 horizon consists of a reddish brown, massive sandy clay loam and a bleached hardsetting sandy loam/clay loam. pH of the A 2 horizon ranges from 5 to 6.5 with fragment sizes ranging from fine gravel to gravel. The concentrated flow erodibility and the non-concentrated flow erodibility potential of both the A1 and A2 horizons is considered to be high.

The subsoil of the Marulan soil landscape unit contains two horizons, the B and B2 horizon. The B horizon is composed of an earthy sandy loam with fragment size ranging from fine gravel to gravel. The pH of the B horizon ranges from 5.5 to 7 with the flow erodibility of the horizon being high.

The B2 horizon consists of red subangular blocky clay and a sodic yellow subangular blocky clay. The red subangular blocky clay has a pH range of 4 to 6.5 , while the sodic yellow subangular blocky clay has a pH range of 5.5 to 7 . Both material are characterised by a high concentrated flow erodibility and a moderate non-concentrated flow erodibility.

