Strength. Performance. Passion

ANNUAL REVIEW 1 January 2018 – 31 December 2018

Dunloe Sand Quarry

TABLE OF CONTENTS

1	\$	STAT	EMENT OF COMPLIANCE	7
2	I	INTR	ODUCTION	9
	2.1	1	Name and Contact Details	.13
3		APPF	ROVALS	.14
4	(OPEF	RATIONS SUMMARY	.15
	4.1	I	Exploration	.15
	4.2	2	Land Preparation	.15
	4.3	3	Construction Activities	.15
	4.4	1	Quarry Operations	. 15
	То	tal pr	oduct tonnes in 2018 were well below the approved limit	. 15
	4.5	5	Next Reporting Period	. 15
5			ONS REQUIRED FROM PREVIOUS ANNUAL REVIEW	.16
6	I	ENVI	RONMENTAL PERFORMANCE	.17
	6.1	I	Meteorological Monitoring	. 17
	Th	ere w	vas a total of 1,649.2 mm of rain at the Ballina Airport Weather Station in 2018	. 17
	6.2	2	Noise	. 17
	6	6.2.1	EIS Predictions	. 17
	(6.2.2	Approved Criteria	. 17
	6	6.2.3	Key Environmental Performance	.18
	6	6.2.4	Management Measures	.18
	6	6.2.5	Proposed Improvements	.19
	6.3	3	Air Quality	.21
	6	6.3.1	EIS Predictions	.21
	6	6.3.2	Approved Criteria	.21
	6	6.3.3	Key Environmental Performance	.21
		6.3	.3.1 Depositional Dust	.21
		6.3	.3.2 PM ₁₀ Monitoring	.23
	(6.3.4	Management Measures	.25
	(6.3.5	Proposed Improvements	.25
	6.4	1	Traffic Management	.26
	6	6.4.1	EIS Predictions	.26
	(6.4.2	Approved Criteria	.26
	6	6.4.3	Key Environmental Performance	.26
	(6.4.4	Management Measures	.27
	6	6.4.5	Proposed Improvements	.27
	6.5	5	Biodiversity	.27
	6	6.5.1	EIS Predictions	.27

	6.5	.2 Approved Criteria	27
	6.5	.3 Key Environmental Performance	27
	6.5	.4 Management Measures	28
	6.5	.5 Proposed Improvements	28
(6.6	Heritage	29
	6.6	.1 EIS Predictions	29
	6.6	.2 Approved Criteria	29
	6.6	.3 Key Environmental Performance	29
	6.6	.4 Management Measures	29
	6.6	.5 Proposed Improvements	29
(6.7	Acid Sulphate Soils Management and Management of Fines	29
	6.7	.1 Acid Sulphate Soils Sampling	
	6.7	.2 Extraction	
	6.7	.3 Stockpiling & Sales	31
(6.8	Summary of Environmental Performance	32
7	WA	TER MANAGEMENT	34
-	7.1	EIS Predictions	34
-	7.2	Approved Criteria	34
-	7.3	Surface Water	34
-	7.4	Surface Water Monitoring – Extraction Pond	37
-	7.5	Groundwater Results	
-	7.6	Water Take	41
8	RE	HABILITATION AND LANDSCAPE MANAGEMENT	42
ł	8.1	Rehabilitation Performance during the Reporting Period	42
ł	8.2	Summary of Current Rehabilitation and Performance	43
I	Rehal	bilitation monitoring of established rehabilitation has shown:	44
ł	8.3	Actions for the Next Reporting Period	46
9	со	MMUNITY	47
ļ	9.1	Community Engagement Activities	47
ļ	9.2	Community Contributions	47
ļ	9.3	Complaints	47
10	I	NDEPENDENT AUDIT	48
11	I	NCIDENTS AND NON-COMPLIANCE	49
12	A	CTIVITIES TO BE COMPLETED IN THE NEXT REPORTING PERIOD	50
13	R	REFERENCES	51
14	A	APPENDICES	52

TABLES

Table 1: Statement of Commitments	7
Table 2: DPE Compliance Status Key	7
Table 3: Non-Compliances of PA 06-0030 for 2018	8
Table 4: Annual Review Requirements	.12
Table 5: Approvals for the Dunloe Sand Quarry Operations	.14
Table 6: EPL Fee-Based Activity at the Dunloe Sand Quarry	.14
Table 7: Total Product Distributed (Dunloe Sand Quarry)	. 15
Table 8: Actions required from Annual Review – Holcim Proposed Actions	.16
Table 9: Monthly Weather Observations at the Dunloe Sand Quarry for 2018 (Ballina Airport A) 058198)	WS .17
Table 10: Noise Criteria for the Dunloe Sand Quarry (PA 06_0030)	.18
Table 11: Noise Monitoring Assessment for the Dunloe Sand Quarry (MAC, 2018)	.20
Table 12: Long Term Impact Assessment Criteria for Deposited Dust	.21
Table 13: Short Term Impact Assessment Criteria for Particulate Matter	.21
Table 14: Long Term Impact Assessment Criteria for Particulate Matter	.21
Table 15: 2018 Dust Monitoring (Depositional Dust) at Dunloe Sand Quarry	.22
Table 16: Depositional Dust Monitoring Summary (2016-2018)	.22
Table 17: Particulate Matter (PM10) 2018 Dust Monitoring at Dunloe Sand Quarry	.24
Table 18 PM ₁₀ Monitoring Trends	.25
Table 19: Estimated Operational Times, Periods and Truck Movements (EIS 2007)	.26
Table 20: Operational Times, Periods and Truck Movements	.26
Table 21: Environmental Performance at the Dunloe Sand Quarry in 2018	. 32
Table 22: Discharge Criteria – LDP001 and LDP002	.34
Table 23: Quarterly Surface Water Quality Criteria – Extraction Pond	. 35
Table 24: Monthly Monitoring Criteria – Blue Green Algae	. 35
Table 25: Quarterly Surface Water Quality Criteria – Surrounding Environment	. 35
Table 26: Monthly Groundwater Quality Criteria – Surrounding Environment	. 36
Table 27: Quarterly Groundwater Quality Criteria – Surrounding Environment	.36
Table 28: Monthly Extraction Pond (Dam 1) Water Quality Monitoring 2018 Results	. 37
Table 29: Quarterly Extraction Pond (Dam 1) Chemical Analysis Monitoring 2018 Results	. 37
Table 30: Surface Water Quality Monitoring 2018 Results for Extraction Pond (Dam 1) – Blue Gre Algae	een . 38
Table 31: Monthly Groundwater Quality Monitoring 2018 Results	. 39
Table 32: Quarterly Groundwater Quality Monitoring 2018 Results	.40
Table 33: Rehabilitation Performance in 2018	.42
Table 34: Rehabilitation and Disturbance Status	.43
Table 35: Rehabilitation and Closure Actions for the Next Reporting Period (2019)	.46
Table 36: Summary of Incidents and Non-Compliances	.49
Table 37: Improvement Actions for 2018	.50

FIGURES

Figure 1: A	∖erial view November	[,] of the 2018)	Dunloe	Sand	Quarry	located	at	Dunloe	Park,	Pottsville	(Source:
Figure 2: Si	ite Locatior	ו and La	yout (Sou	Irce GH	HD: 2017	́)					10
Figure 3: Ei	igure 3: Environmental Monitoring Locations (Source: VGT)11										
Figure 4: R	ehabilitatio	n and Di	sturbanc	э							45

APPENDICES

Appendix 1	Dunloe Sand Quarry Noise Monitoring 2018
Appendix 2	Dunloe Sand Quarry Longterm Environmental Monitoring
Appendix 3	Dunloe Sand Quarry Rehabilitation and Ecological Monitoring
Appendix 4	Dunloe Sand Quarry Truck Movement Summary 2018
Appendix 5	Dunloe Sand Quarry Acid Sulphate Soil Monitoring Results

SITE DETAILS

Name of operation	Dunloe Sand Quarry
Name of operator	Holcim (Australia) Pty Ltd
Project Approval	Project Approval 06- 0030
Name of holder of Project Approval	Holcim (Australia) Pty Ltd
Annual review start date	January 1, 2018
Annual review end date	December 31, 2018

I, Garth Stacey, certify that this audit report is a true and accurate record of the compliance status of the DUNLOE SAND QUARRY for the period of 1 JANUARY 2018 - 31 DECEMBER 2018 and that I am authorised to make this statement on behalf of HOLCIM (AUSTRALIA) PTY LTD.

Note.

- a) The Annual Review is an 'environmental audit' for the purposes of section 122B(2) of the Environmental Planning and Assessment Act 1979. Section 122E provides that a person must not include false or misleading information (or provide information for inclusion in) an audit report produced to the Minister in connection with an environmental audit if the person knows that the information is false or misleading in a material respect. The maximum penalty is, in the case of a corporation, \$1 million and for an individual,\$250,000.
- b) The Crimes Act 1900 contains other offences relating to false and misleading information: section 192G (Intention to defraud by false or misleading statement—maximum penalty 5 years imprisonment); sections 307A, 307B and 307C (False or misleading applications/information/documents—maximum penalty 2 years imprisonment or \$22,000, or both).

Name of authorised reporting officer	Garth Stacey
Title of authorised reporting officer	Quarry Manager
Signature of authorised reporting officer	John.
Date	27 March 2019

1 STATEMENT OF COMPLIANCE

The statement of commitments for the 2018 reporting period for the Dunloe Sand Quarry is provided in **Table 1. Table 3** details the non-compliances of Project Approval (PA) 06-0030 identified within the 2018 reporting period, with the compliance status key provided in **Table 2**.

Table 1: Statement of Commitments

Were all conditions of the relevant approval(s) complied with?					
PA 06_0030	NO - see Table 3 for further details.				
EPL 13077	Yes				

Table 2: DPE Compliance Status Key

Risk level	Colour code	Description
High	Non-compliant	Non-compliance with potential for significant environmental consequences, regardless of the likelihood of occurrence
Medium	Non-compliant Non-compliance with: • potential for serious environmental consequences, but is unli occur; or • potential for moderate environmental consequences, but is loccur	
Low	Non-compliant	 Non-compliance with: potential for moderate environmental consequences, but is unlikely to occur; or potential for low environmental consequences, but is likely to occur
Admin NC	Non-compliant	Only to be applied where the non-compliance does not result in any risk of environmental harm (e.g. submitting a report to government later than required under approval conditions)

Table 3: Non-Compliances of PA 06-0030 for 2018

Relevant approval	Condition	Condition Description	Compliance Status	Section addressed in Annual Review	
		The Proponent must ensure that particulate matter emissions generated by the project do not cause exceedances of the criteria in Table 3 at any residence on privately-owned land.			
PA 06_ 0030	Schedule 3, Condition 6	Pollutant Averaging Period Criterion Particulate matter < 10	Non- compliant	Relating to monitoring of PM ₁₀ during the period. Above the short term criteria on three occasions. Relating to missed depositional dust round of sampling in August 2018. There was a change over with monitoring contractors. Section 6.2 (Air Quality) and Section 11.	
PA 06_ 0030	Schedule 3, Condition 22	 Schedule 3 Condition 22 Blue Green Algae Management Plan (a) be prepared by a suitably qualified blue-green algae expert, whose appointment has been approved by the Secretary; (b) be consistent with extant guidelines for blue-green algae management including the NHMRC's <i>Guidelines for Managing Risks in Recreational Water</i>, (c) describe the measures that would be implemented to prevent and control the sources of algal blooms over the short, medium and long term; and (d) define procedures for the management and notification of identified algal blooms. 	Non- compliant	Non-compliance relating to missed monitoring of Blue Green Algae between September and December 2018. Holcim have discussed this requirement with the monitoring contractor. Section 7 (Water Management) Section 11	

2 INTRODUCTION

The Dunloe Sand Quarry was granted Project Approval (PA06_0030) on 24 November 2008, with a subsequent modification (Mod 1) to this approval granted on 28 August 2009. The Dunloe Sand Quarry operations are located approximately 4.5 km south-southwest of Pottsville on the Pottsville Mooball Road, New South Wales (NSW).

The site is located adjacent to Mooball Creek, and is approximately 4km upstream of the creek mouth. Surrounding properties are currently used for agricultural purposes including sugar cane farming and grazing.

Figure 1: Aerial view of the Dunloe Sand Quarry located at Dunloe Park, Pottsville (Source: Nearmaps November 2018).

N: AUGydney/Projects/22H 0029/GIS/MepsiDellvenbies/22-15823-2001_SiteLocation.mud

© 2017. Which every use has been search properties the map, GHO (and Borneys, LA) proce no specaritations or warranties about its sources, relative, completeness or watching for any personal suppose and search completeness in watching in the search of the neg network in the sources, relative in a search of the neg network in the sources, relative in a search of the neg network in the sources, relative in a search of the neg network in the sources, relative in a search of the neg network in the sources, relative in a search of the neg network in the sources, relative in a search of the neg network in the sources, relative in a search of the neg network in the sources, relative in a search of the neg network in the sources, relative in a search of the neg network in the sources, relative in a search of the neg network in the sources, relative in a search of the neg network in the neg network in the sources, relative in a search of the neg network in the sources, relative in a search of the neg network in th

Figure 2: Site Location and Layout (Source GHD: 2017)

VOT Phy LE: 4/30 Olenwood Drive, Thomhon NSW 2022 PO Box 2335, Green/Lifs NSW 2323 ph: (02) 4020 6412 email: meli@rel.com.eu even.ogl.com.eu ADM: 79 103 636 353

Figure 3: Environmental Monitoring Locations (Source: VGT)

Holcim commenced operations on the site on August 1, 2016 with all previous responsibilities falling under the management of Ramtech Pty Ltd (Ramtech). Ramtech have previously been responsible for the commencement and operation of the site since Project Approval was granted in 2007.

In accordance with Schedule 5, Condition 5 of the modified Project Approval the site is required to undertake an Annual Review of the site in accordance with the conditions provided in **Table 4**.

	Condition	Section Addressed in Annual Review					
5. A	5. ANNUAL REPORTING						
Wit Re	hin 12 months of the date of this approval, and annually thereafter, the Pr view to the Secretary and relevant agencies. This report must:	roponent shall submit an Annual					
a)	identify the standards and performance measures that apply to the project;	Section 4 and 6					
b)	describe the works carried out in the last 12 months;	Section 4 and 6					
c)	describe the works that will be carried out in the next 12 months;	Section 13					
d)	include a summary of the complaints received during the past year, and compare this to the complaints received in previous years;	Section 9.3					
e)	include a summary of the monitoring results for the project during the past year;	Section 6 and 7					
f)	include an analysis of these monitoring results against the relevant: • impact assessment criteria/limits; • monitoring results from previous years; and • predictions in the documents listed in condition 2 of Schedule 2.	Section 6 and 7					
a)	identify any trands in the monitoring results over the life of the project:	Section 6 and 7					
<i>y)</i>		Appendix 2					
h)	identify any non-compliance during the previous year; and	Section 6, 7 and 11					
i)	describe what actions were, or are being, taken to ensure compliance.	Section 6, 7 and 11					

Table 4: Annual Review Requirements

This Annual Review has also been prepared in accordance with the *Annual Review Guideline: Post-approval requirements for State significance mining developments* (October 2015). This report documents the environmental performance of the site from 1 January to December 2018.

2.1 Name and Contact Details

The key contact details for the site are outlined below:

Quarry Supervisor

Daniel Dwyer 0411 795 060 daniel.dwyer@lafargeholcim.com

North NSW Aggregates Manager

Chris Hamilton Work: +61 2 6656 8620 Mob: +61 429 790 213 chris.s.hamilton@lafargeholcim.com

Quarry Manager

Garth Stacey Work: +61 2 6687 8566 Mob: +61 429 790 217 garth.stacey@lafargeholcim.com

Planning & Environment Manager NSW

Luke Edminson Holcim (Australia) Pty Ltd Mob +61 429 790 756 Email: <u>luke.edminson@lafargeholcim.com</u>

Planning and Environment Coordinator NSW

Shilpa Shashi Mob: +61 (0)429 790 756 Email: <u>shilpa.shashi@lafargeholcim.com</u>

3 APPROVALS

The site operates under the approvals listed in Table 5.

Table 5: Approvals for the Dunloe Sand Quarry Operations

Approval	Regulatory Authority
PA 06_0300	NSW Department of Planning & Environment (DPE)
EPL No. 13077	NSW Environment Protection Authority (EPA)
Bore Licence 30BL183076, 30BL183077, 30BL183078, 30BL183079, 30BL183080, 30BL183081, 30BL183082, 30BL183084 and 30BL183086	NSW Department of Industry - Water

Holcim holds Environment Protection Licence **(EPL) 13077** which covers its activities at the Dunloe Sand Quarry. **Table 6** outlines these licensing limits.

EPL 13077 was varied by the EPA on 20 February 2018 to allow for increased production volume. The scale of activities was increased to 100,000 tonnes – 500,000 tonnes annual capacity. There were some other smaller variations to wording in this EPL variation. The February 2018 EPL variation included:

- Administrative conditions;
- Discharges to air and water applications to land;
- Limit conditions;
- Operating conditions.

Table 6: EPL Fee-Based Activity at the Dunloe Sand Quarry

Scheduled Activity	Fee Based Activity	Scale
Extractive Activities	Land-based extractive activity	>100,000 – 500,000 T annual capacity to extract, process or store

4 OPERATIONS SUMMARY

4.1 Exploration

There was no exploration undertaken at the Dunloe Sand Quarry during the 2018 reporting period.

4.2 Land Preparation

There was no land preparation (clearing) the Dunloe Sand Quarry in 2018.

4.3 Construction Activities

There were no construction activities undertaken at the Dunloe Sand Quarry during the 2018 reporting period.

4.4 Quarry Operations

The Dunloe Sand Quarry officially commenced operations under Holcim on August 1, 2016.

Activities undertaken in 2018 included:

- Stripping of topsoil and overburden within the existing extraction limit boundary;
- Load and haul activities;
- Washing, screening and stockpiling of product;
- Overburden removal and stockpiling;
- Maintenance of rehabilitation undertaken in the north and eastern areas of the site; and
- Load out and sales of topsoil, brickies loam and concrete sands to the local market.

Operating hours in 2018 were undertaken between 7am to 5pm, Monday to Friday and 7am-12pm on Saturdays. These timeframes were applied for all operations on-site with no works occurring outside the approved operating hours. All activities took place within the approved operating hours in 2018.

Table 7 includes a summary of the operations undertaken during the reporting period against the

 Project Approval conditions regarding product transported from the Dunloe Sand Quarry.

Table 7: Total Product Distributed (Dunloe Sand Quarry)

Material	Approval Limit	2017 Reporting Period	2018 Reporting Period
	(Tonnes)	(Tonnes)	(Tonnes)
Product Distributed- Total	300,000	150,339	174,583

Total product tonnes in 2018 were well below the approved limit.

4.5 Next Reporting Period

Development activities proposed at the Dunloe Sand Quarry in 2019, include:

- Stripping of topsoil and overburden within the existing extraction limit boundary;
- Load and haul activities;
- Washing, screening and stockpiling of product;
- Overburden removal and stockpiling;
- Maintenance of rehabilitation undertaken north eastern area; and
- Load out and sales of topsoil, brickies loam and concrete sands to the local market.

No exploration, land preparation or construction activities are proposed to occur in the 2019 reporting period.

5 ACTIONS REQUIRED FROM PREVIOUS ANNUAL REVIEW

The DPE reviewed the 2017 Annual Review and provided a letter to Holcim on 29 August 2018 requesting additional information. Holcim resubmitted to 2017 Annual Review with the document subsequently approved by the DPE.

The status of proposed actions from Holcim that were outlined in the 2017 Annual Review are shown in **Table 8**.

Commitment	Compliance Status
Progressive Rehabilitation - The site will continue to progressively rehabilitate available areas on the northern and eastern boundary lines.	This was not completed during 2018. No additional rehabilitation proposed during 2019.
Development Application (Truck Movements Modification) - Application to modify the current Project Approval condition limiting truck movement to 4 (in and out) per hour.	This is still in progress.
EMP Review - Development of a new <i>Environmental Management Plan</i> with alignment to Holcim Australia's Environmental Management System.	The EMP's were reviewed and resubmitted to the DPE. The <i>Dust</i> <i>Monitoring Program, Landscape</i> <i>Management Plan and Aboriginal</i> <i>Cultural Heritage Management Plan</i> were approved by the DPE on 27 July 2018.
Water Quality Monitoring - Ensure water quality monitoring is completed in accordance with the EMP.	There have been some issues with analysis of data in 2018 based on a changeover of monitoring contractor. Holcim is committed to ensuring data analysis is consistent for the rest of 2019. See Section 7 .
Dust Monitoring - Ensure dust monitoring is completed in accordance with the EMP.	Dust monitoring for depositional dust and PM ¹⁰ were completed at site. PM ¹⁰ monitoring is no longer required with the revision and approval of the <i>Dust Monitoring</i> <i>Program</i> .

Table 8: Actions required from Annual Review – Holcim Propos	sed Actions

6 ENVIRONMENTAL PERFORMANCE

6.1 Meteorological Monitoring

Monthly rainfall, wind and temperature data for 2018 has been provided in **Table 9.** The nearby Bureau of Meteorology Ballina Airport Weather Station (Station ID 058198) has been used for this Annual Review.

Table 9: Monthly	Weather	Observations	at the	Dunloe	Sand	Quarry	for	2018	(Ballina	Airport
AWS 058198)						-			-	-

Month	Temperature			Wind		
	Min Temp (°C)	Max Temp (°C)	Total (mm)	Max Daily (mm)	No rain days > 1 mm	Max Wind Gust (km/h)
Jan-18	12.5	33.3	91.2	34.2	7	102
Feb-18	15.1	31.8	233.8	41.4	19	59
Mar-18	16	32.6	121.8	38.2	12	59
Apr-18	13.4	31.9	222.8	46.8	12	72
May-18	7.7	26.6	109.0	30.4	11	56
Jun-18	5.4	23.9	139.6	56.8	8	63
Jul-18	3.2	26.6	43.0	12.2	6	59
Aug-18	1.7	26.5	46.0	19.4	4	65
Sep-18	7.3	27.5	281.0	100.0	10	52
Oct-17	9.3	29.8	218.4	73.6	15	70
Nov-18	11.7	32.7	106.0	96.8	4	57
Dec-18	13.5	34.2	36.6	20.2	5	74

There was a total of 1,649.2 mm of rain at the Ballina Airport Weather Station in 2018.

6.2 Noise

6.2.1 EIS Predictions

The EIS (2007) stated that based on noise modelling the operations within the south west corner of the southern extraction pond (stage 2) may generate levels which exceed the relevant noise impact requirements.

The EIS (2007) stated that to mitigate this minor impact, the dredge is to have acoustical treatment when operating within the southern extraction pond.

6.2.2 Approved Criteria

In accordance with Schedule 3, Condition 2 of PA 06_0030, the approved noise criteria for the Dunloe Sand Quarry are outlined in **Table 10**.

Table 10: Noise Criteria for the Dunloe Sand Quarry (PA 06_0030)

Receiver Location	Day L _{Aeq (15 min)} dB(A)	
Residences on privately-owned land	48	
 Noise from the site is to be measured at the m 	part offected point within the resi	idential boundary, or at the ma
 Noise from the site is to be measured at the meas	ost affected point within the resi	idential boundary, or at the mo
 Noise from the site is to be measured at the maffected point within 30 metres of the dwelling to determine compliance with the identified noise. Where it can be demonstrated that direct metrics and the statemetric of the statemetric o	ost affected point within the resi where the dwelling is more that ise limits, except where otherwis assurement of noise from the p	idential boundary, or at the mos n 30 metres from the boundary e specified below. roject is impractical alternativ
 Noise from the site is to be measured at the m affected point within 30 metres of the dwelling to determine compliance with the identified noi Where it can be demonstrated that direct me means of determining compliance may be acc 	ost affected point within the resi where the dwelling is more that ise limits, except where otherwis easurement of noise from the p eptable (see Chapter 11 of the N	idential boundary, or at the mos In 30 metres from the boundary se specified below. Iroject is impractical, alternativ VSW Industrial Noise Policy).
 Noise from the site is to be measured at the maffected point within 30 metres of the dwelling to determine compliance with the identified noi Where it can be demonstrated that direct means of determining compliance may be acc. The modification factors presented in Section measured noise level where applicable. 	ost affected point within the resi where the dwelling is more tha ise limits, except where otherwis easurement of noise from the p eptable (see Chapter 11 of the N 4 of the NSW Industrial Noise P	idential boundary, or at the mos n 30 metres from the boundary se specified below. roject is impractical, alternativ NSW Industrial Noise Policy). olicy shall also be applied to th

6.2.3 Key Environmental Performance

Attended noise monitoring was undertaken quarterly at the Dunloe Sand Quarry by Muller Acoustic Consulting on the following dates:

- 29 March 2018;
- 21 June 2018;
- 11 September 2018; and
- 21 November 2018.

The compliance assessments for each residential receiver (R1, R2, R3 and R4) are presented in **Table 11**.

The assessments identified that noise emissions generated by the Dunloe Sand Quarry were in compliance with relevant statutory noise criteria specified in the Project Approval on all occasion's at all assessed residential receivers. Copies of the quarterly noise monitoring reports for 2018 are attached as **Appendix 1**.

Longterm Trends:

Noise monitoring completed over a number of years for this project has generally been inaudible and within criteria. This trend continued for noise monitoring in 2018.

Comparison to EIS Predictions:

As noise levels were within criteria in 2018, results were within the EIS predictions.

6.2.4 Management Measures

Management measures relating to noise are outlined within the Dunloe Sand *Environmental Management Plan* and the *Noise Management and Monitoring Program*. These include:

- Restriction of operation hours of the Dunloe Sand Quarry to Monday to Friday 7.00 am to 5.00 pm and Saturday 7.00 to 12.00 pm;
- No work on Sundays or Public Holidays;
- All trucks to be well maintained and fitted with residential mufflers;
- Acoustic testing at commencement of quarry operations to ensure compliance with noise limit criteria;
- Dredge to be fitted with suitable mufflers if noise limit criteria is exceeded;
- Trucks to be limited to a speed of 25km/h on internal roads; and
- Prescribed buffer zones around the extraction ponds to be planted and maintained.

6.2.5 Proposed Improvements

There are no proposed improvements related to noise management.

		Quarrying	Q1		Q2		Q3		Q4	
Assessment Period	Receiver No.	Noise Criteria LAeq _(15min)	Quarry Noise Contribution LAeq _(15min)	Compliant						
	R1	48	Nil	\checkmark	Nil	\checkmark	Nil	\checkmark	Nil	\checkmark
	R2	48	Nil	\checkmark	Nil	\checkmark	Nil	\checkmark	Nil	\checkmark
Day	R3	48	Nil	\checkmark	Nil	\checkmark	Nil	\checkmark	Nil	\checkmark
	R4	48	Nil	\checkmark	Nil	\checkmark	Nil	\checkmark	Nil	\checkmark

6.3 Air Quality

6.3.1 EIS Predictions

The EIS (2017) Executive Summary states the following:

Airborne particulate matter concentrations and dust deposition from the proposed development have been predicted to exceed the relevant requirements prescribed by the Office of Environment and Heritage (OEH) at three of the eight monitoring locations.

In particular, exceedances are expected as a result of dust generated from the use of unsealed access roads by haul vehicles. In order to meet prescribed requirements, proposed dust controls include sealing of the entire internal roadway length, planting of a vegetated buffer along the southern boundary adjoining Warwick Park Road and the proposed outbound internal road.

6.3.2 Approved Criteria

Air Quality monitoring conducted at Dunloe Sand Quarry is compared to the monitoring criteria stipulated in PA 06-0030 and listed in **Table 12, Table 13** and **Table 14.**

Table 12: Long Term Impact Assessment Criteria for Deposited Dust

Pollutant	Averaging Period	Maximum increase in deposited dust level	Maximum total deposited dust level	
Deposited Dust	Annual	2 g/m ² /month	4 g/m ² /month	

Table 13: Short Term Impact Assessment Criteria for Particulate Matter

Pollutant	Averaging Period	Criterion
Particulate Matter 10 µm (PM ₁₀)	24 Hour	50 µg/m³

Table 14: Long Term Impact Assessment Criteria for Particulate Matter

Pollutant	Averaging Period	Criterion
Total suspended particulate (TSP) matter	Annual	90 μg/m³
Particulate Matter 10 µm (PM ₁₀)	Annual	30 µg/m³

6.3.3 Key Environmental Performance

6.3.3.1 Depositional Dust

Dust deposition monitoring was undertaken at 4 locations during the 2018 reporting period (see **Table 15**). All four monitoring points were found to be well below the annual average (4g/m²/month) and in compliance with the Project Approval. However it should be noted that there was no sampling completed in August 2018 when Holcim changed the monitoring contractor. This is a non - compliance with Schedule 3 Condition 6 of the Project Approval and has been reported in **Section 1** and **Section 11** of this Annual Review.

	Date & Time	DDG1	DDG2	DDG3	DDG4	
Date & Time On	Sampled	(g/m²/month)				
28-12-2017	24-01-2018	0.1	0.1	0.1	0.1	
24-01-2018	21-02-2018	2.7	0.7	1.6	0.6	
21-02-2018	21-03-2018	0.4	4.9c	11.8c	7.1c	
21-03-2018	18-04-2018	0.4	0.1	0.3	0.2	
18-04-2018	16-05-2018	0.2	0.4	0.6	0.3	
16-05-2018	13-06-2018	0.3	0.2	5.2c	0.4	
13-06-2018	11-07-2018	0.5	0.4	0.5	0.2	
11-07-2018	08-08-2018	0.4	0.5	0.3	0.2	
08-08-2018	05-09-2018	NS	NS	NS	NS	
05-09-2018	05-10-2018	0.1	0.4	0.3	0.7	
05-10-2018	06-11-2018	0.1	0.1	1.5	0.7	
06-11-2018	07-12-2018	1	0.2	1.6	0.3	
Minimum Insoluble Solids		0.1	0.1	0.1	0.1	
Maximum Insoluble Solids		2.7	0.7	1.6	0.7	
Annual Average (4g/m²/year)		0.56	0.31	0.76	0.37	
Result		Within Criteria	Within Criteria	Within Criteria	Within Criteria	

Table 15: 2018 Dust Monitoring (Depositional Dust) at Dunloe Sand Quarry

c contaminated with bird droppings and insects.

A comparison of results from 2016 - 2018 has been undertaken in **Table 16**. The monthly average at all gauges remained below the allowable maximum increase of 2 g/m²/month and below the annual average of 4 g/m²/month. The 2018 results for the annual average were very similar to the 2017 results. According to laboratory notes, one sample (21 March 2018 – DDG3) was contaminated with bird droppings and insects and this was removed from the annual average.

Table 16: Depositional Dust Monitoring Summary (2016-2018)

Dust		Monitoring Period			
Depositional	Monitoring Summary for Annual Review Period	2018	2017	2016	
Gauge			(g/m²/month)	l.	
	Min. Insoluble Solids	0.1	0.1	0.13	
DDG1	Max. Insoluble Solids	2.7	0.8	0.8	
	Insoluble Solids Reporting Period Average	0.56	0.35	0.41	
DDG2	Min. Insoluble Solids	0.1	<0.1	0.4	
	Max. Insoluble Solids	0.7	0.9	4.7	
	Insoluble Solids Reporting Period Average	0.31	0.32	1.23	
	Min. Insoluble Solids	0.1	0.2	0.2	
DDG3	Max. Insoluble Solids	1.6	2.4	1.6	
	Insoluble Solids Reporting Period Average	0.76	0.79	0.48	
	Min. Insoluble Solids	0.1	<0.1	0.3	
DDG4	Max. Insoluble Solids	0.7	0.9	1.6	
	Insoluble Solids Reporting Period Average	0.37	0.39	0.57	

Long term Trends:

The annual average depositional dust levels recorded in the 2018 reporting period at all monitoring locations are generally consistent with those recorded in 2016 and 2017. Annual averages for depositional dust were well below the Project Approval criteria.

Comparison to EIS Predictions:

The results for depositional dust were below the predicted limits of the EIS predictions (see **Section 6.3.1**).

6.3.3.2 PM₁₀ Monitoring

PM₁₀ monitoring is required to be undertaken in accordance with the criteria provided in **Table 13** and **Table 14**.

During 2016, the DPE advised Holcim of the requirement to undertake monitoring at the Dunloe Sand Quarry, unless changes were made to the site *Air Quality Management Plan*.

The updated *Dust Monitoring Program*, proposing PM_{10} monitoring only be required once extraction on the site exceeded 200,000 tonnes per annum, was submitted to the DPE for approval on 23 October 2016. During this time, Holcim worked to procure a mobile PM_{10} monitor whilst an updated management plan was under review by DPE.

On 15 November 2016, Holcim received what was mistakenly understood by the former Holcim Planning & Environment Coordinator, to be approval of the *Dust Monitoring Program*, subject to the comment from DPE being noted and complied with. This happened prior obtaining the mobile PM₁₀ monitor arriving on site.

Holcim provided DPE a letter on 22 September 2017 detailing the reasons behind the site's failure to monitor PM₁₀. Holcim were issued with an Official Caution from DPE on 4 October 2017.

In 2018, PM₁₀ monitoring was completed from 1 January 2018 until 18 July 2018. During this period there were three occasions where the PM¹⁰ levels were above the short term impact assessment criteria of 50 μ g/m³. These have been recorded as non–compliances in this Annual Review. Being a sand quarry operation the site has traditionally produced low levels of dust, with the three exceedances likely to be influenced by external sources.

It should be noted that with the revision and approval of the *Dust Monitoring Program* by the DPE on 27 July 2018, Holcim is no longer required to monitor for PM_{10} unless the annual production rates increase to 200,000 tonnes or above. There are no plans in 2019 to produce above 200,000 tonnes, therefore no PM_{10} monitoring is proposed.

Results of PM₁₀ monitoring during 2018 are provided in **Table 17**.

Date of Operation	μg/m³	Criteria
01-01-2018	24	Below Criteria
07-01-2018	4	Below Criteria
13-01-2018	23	Below Criteria
19-01-2018	125	Above Criteria
25-01-2018	17	Below Criteria
31-01-2018	22	Below Criteria
06-02-2018	27	Below Criteria
12-02-2018	79	Above Criteria
18-02-2018	2	Below Criteria
24-02-2018	14	Below Criteria
02-03-2018	25	Below Criteria
08-03-2018	67	Above Criteria
14-03-2018	25	Below Criteria
20-03-2018	31	Below Criteria
26-03-18	8	Below Criteria
1-04-18	18	Below Criteria
7-04-18	28	Below Criteria
13/04/18	20	Below Criteria
19-04-2018	24	Below Criteria
25-04-2018	9	Below Criteria
01-05-2018	20	Below Criteria
07-05-2018	21	Below Criteria
13-05-2018	11	Below Criteria
19-05-2018	17	Below Criteria
25-05-2018	32	Below Criteria
31-05-2018	35	Below Criteria
06-06-2018	5	Below Criteria
12-06-2018	21	Below Criteria
18-06-2018	2	Below Criteria
24-06-2018	30	Below Criteria
30-06-2018	8	Below Criteria
06-07-2018	5	Below Criteria
12-07-2018	4	Below Criteria
18-07-2018	44	Below Criteria
Average 1 Jan 2018 to 18 July 2018	24.9	

 Table 17: Particulate Matter (PM10) 2018 Dust Monitoring at Dunloe Sand Quarry

Trends

Trends relating to PM₁₀ monitoring is outlined in **Table 18**.

Table 18PM10 Monitoring Trends

Monitoring Summary for Annual Review Period	Monitoring Results January – July 2018 Period (µg/m³)	Monitoring Results November and December 2017 Period (µg/m³)
PM ₁₀ Reporting Period Average	24.9	10.97
Max. PM ₁₀	125	35.9
Min. PM ₁₀	2	1.2

The Long Term Impact Assessment Criteria (annual average) is not comparable due to results only being collected for two months of the 2017 reporting period. The 2018 results were only required from January 2018 – July 2018. With the different monitoring periods from 2017 and 2018 it is not possible to discuss longterm trends.

During the 2018 reporting period extraction remained below 200,000 tonnes per annum. The site has maintained dust suppression techniques throughout the reporting period in accordance with the requirements of the EMP.

6.3.4 Management Measures

Management measures relating to air quality are outlined within the *Dunloe Sand Quarry Environmental Management Plan and Dust Monitoring Program.* These include:

- Sealing access and egress road from the Quarry to Pottsville Road;
- The wheel shaker screen is to be utilised by all traffic leaving the quarry;
- The route for trucks within the quarry will be wet down daily by a water sprinkler/spray system;
- Additional vegetation rehabilitation areas throughout the site contributing as a buffer to Mooball Creek and surrounding areas;
- Loaded trucks will be covered before exiting the site;
- Dust that is transported onto the access road immediately outside the active quarry area will be removed from the road at least once per month using a local street sweeper;
- Visual daily inspections of all stockpiles will be undertaken to ensure that dust emissions do not occur;
- Visual review of exposed areas, and whether these areas are generating dust, should be undertaken daily;
- Dust generation is generally limited to freshly disturbed areas. To facilitate dampening, a portable hose or water spray/sprinkler system has been installed. The system installed is capable of servicing the entire site;
- Topsoil will not be stripped during windy weather conditions; and
- Six monthly audits of dust levels are to be undertaken by management.

6.3.5 Proposed Improvements

Completion of monitoring as per the EMP and Project Approval requirements. The depositional dust monitoring in 2019 will be spaced out to cover the full 12 months.

6.4 Traffic Management

6.4.1 EIS Predictions

The proposed operational times outlined within the EIS are outlined below:

Table 19: Estimated Operational Times, Periods and Truck Movements (EIS 2007)

Yearly Operation	Days Per Week	Hours per Week	Daily Times Operating	Truck Movements per Hour
50 weeks/year	5.5	46	Mon-Fri: 7:30am -5:00pm Sat: 7:30am -12:30pm	4

6.4.2 Approved Criteria

As per the Project Approval (Schedule 3 Condition 3), operations will be conducted Monday to Saturday. No operations are to be undertaken on Sunday or public holidays.

Table 20: Operational Times, P	Periods and Truck Movements
--------------------------------	-----------------------------

Yearly Operation	Days Per Week	Hours per Week	Daily Times Operating	Truck Movements per Hour
52 weeks/year	5.5	55	Mon-Fri: 7:30am -5:00pm Sat: 7:30am -12:00pm	8*

* Not to exceed more than 8 heavy vehicle movements (in and out) per hour

Internal roads are signposted to a 25-30km/h speed limit.

6.4.3 Key Environmental Performance

Holcim staff were notified during due diligence activities by representatives of Ramtech that operations prior to the acquisition by Holcim were based on a maximum of 8 movements per hour (i.e. - 8 in, 8 out). The DPE compliance team has since notified Holcim that this interpretation is incorrect and the site is only allowed 4 movements per hour (i.e. - 4 in, 4 out).

Holcim has operated in accordance with revised truck movements since direction was given by the DPE on October 20, 2016. It is noted that Holcim are currently undertaking an application to modify this condition to allow greater flexibility to hourly and daily movements for trucks entering and exiting the site. The modification is currently within the Response to Submissions stage.

Daily records of truck movements are recorded by Holcim. Based on the records, all truck movements were 4 movements per hour or below. A summary of the daily truck movements is provided in **Appendix 4**.

Traffic travelling to and from the site continued to make use of the Pacific Highway, via the Cudgera Creek interchange during the 2018 reporting period.

In summary:

- There was a total of 5320 trucks recorded leaving site during 2018. This is an increase from the 4382 trucks recorded leaving site during 2017;
- There were 258 haulage days during 2018; and
- Haulage occurred at an average of 20.6 trucks during haulage days during 2018. This is an increase on the average from 2017, which had 17.5 trucks.

6.4.4 Management Measures

Management measures relating to air quality are outlined within the *Dunloe Sand Quarry Environmental Management Plan* and the *Traffic Management Procedure*, including:

- Construction of a dedicated haulage road (sealed) to provide vehicular access between the sand extraction area and Pottsville-Mooball Road;
- Average truck movements limited to 4 movements per hour (4 in, 4 out);
- All vehicles to observe speed limits for public roads;
- No trucks are to leave the site via Warwick Park Road;
- Appropriate advisory signage placed on public roads to notify of trucks entering Pottsville Mooball Road;
- Appropriate relevant advisory signage placed along the haulage road (especially approaches to the intersections with Kelleher's Road and Pottsville – Mooball Road);
- Truck speed on the internal roads is to be limited to a maximum of 25km/h;
- All loaded vehicles entering or leaving the site are to have their loads covered; and
- Holcim shall ensure that all loaded vehicles leaving the site are cleaned of materials that may fall on the road before they leave the site.

6.4.5 **Proposed Improvements**

There are no proposed changes to transport management. Truck movements will continue to be monitored and recorded in the oncoming reporting period to ensure that they remain within the approved criteria.

6.5 Biodiversity

6.5.1 EIS Predictions

As part of the EIS (2007), a number of threatened species were identified within the surrounding vegetated areas of the site with none being found, or expected to occur, within the previously disturbed areas of the site (including proposed extraction areas).

Rehabilitation and revegetation measures proposed will provide improved flora and fauna links, additional food resources for identified threatened species, improved opportunities for breeding through the installation of breeding boxes and other benefits associated with visual screening and the like.

No clearing of vegetation is required in respect of the proposal, inclusive of haulage routes and operational areas. There is no proposed clearing for 2019.

6.5.2 Approved Criteria

There are no specific criteria associated with biodiversity management for the site. Activities need to be completed in accordance with the EIS.

6.5.3 Key Environmental Performance

There were no biodiversity issues identified during the Annual Review period. There was no clearing during 2018. There was some minor weed spraying at the site in 2018.

Biodiversity assessments are completed as part of the rehabilitation monitoring program. See **Appendix 4** for results.

An assessment on the use of Nest Boxes was completed by Ramtech in 2018.

In accordance with the Project Approval, 11 fauna nest boxes have been installed across the rehabilitation zones in a bid to increase potential nesting options for fauna. Routine fauna box monitoring forms are completed for each nest box on an annual basis. During the 2018 monitoring period, one nest box was being actively utilized at the time of inspection. A mountain brushtail possum was inspected within a cockatoo box located in Zone 1B. A photograph of the possum is included below. No other animals were located within the remaining nest boxes. All boxes were noted to be in a good condition. Spider webs covering the entrance hole of the glider box within Zone 1B were removed. The possum box located within Zone 2C was found to have minor exterior damage –

with evidence of pecking around the entrance hole, however no signs of bird or other fauna use was noted inside of the box.

Photo 1 Mountain Brushtail Possum in Cockatoo Box

6.5.4 Management Measures

Management measures relating to biodiversity are outlined within the *Dunloe Sand Quarry Rehabilitation and Revegetation Management Plan* and the *Dunloe Sand Vegetation Management Plan*. These include:

- Detailed clearing protocol as per Section 5.1 of the *Dunloe Sand Quarry Rehabilitation and Revegetation Management Plan;*
- Weed management;
- Installation of next boxes; and
- Rehabilitation/Ecological monitoring.

6.5.5 Proposed Improvements

Continuation of weed management and fauna box monitoring during 2019.

6.6 Heritage

6.6.1 EIS Predictions

A heritage assessment focusing on both Aboriginal and non-Aboriginal heritage was completed for the EIS (2007). An area of potential Aboriginal heritage significance was cordoned off.

6.6.2 Approved Criteria

There are no specific criteria associated with heritage relating to the project.

6.6.3 Key Environmental Performance

There were no issues relating to Aboriginal and historic heritage during the reporting period. An area was previously identified as having potential Aboriginal heritage significance. During 2018 the area was reviewed for potential artefacts with the assistance of Aboriginal Groups. The Aboriginal Groups did not find any items of heritage significance as part of the survey. Holcim can now complete quarrying activities within the area that was previously demarcated. No quarrying activities were completed within this area in 2018.

6.6.4 Management Measures

Management measures relating to heritage are outlined within the *Dunloe Sand Quarry Aboriginal Cultural Heritage Management Plan*. These include:

- Consultation with Aboriginal stakeholders during the preparation of the EIS;
- Records of known sites of Aboriginal heritage significance;
- Detailed excavation strategy and control of any finds;
- Inspections;
- Training of staff and contractors through the induction process; and
- Procedure for impacts of unexpected finds.

6.6.5 Proposed Improvements

No proposed improvements.

6.7 Acid Sulphate Soils Management and Management of Fines

Holcim undertakes fines management in accordance with Schedule 3 of Conditions 10 and 11, Project Approval 06_0030, in the following manner:

10. The Proponent shall ensure that all excavated potential acid sulfate soil fines material is returned back to below the watertable as soon as possible to prevent oxidation. No potential acid sulfate soil shall be removed from the site, unless adequately neutralised in accordance with methods approved under the Soil and Water Management Plan.

11. The Proponent shall ensure that all potential acid sulfate soil fines material is discharged into the pond at a depth of no less than 3 metres from the water surface, and that all fines are deposited to a final depth of at least 8 metres from the water surface, unless an alternative method(s) is approved by OOW and the Director-General.

Under the operation of Holcim, the site has undertaken a number of improvement works to ensure the effective management of **Acid Sulphate Soils (ASS) and Potential Acid Sulphate Soils (PASS)** during extraction, processing and sales operations. Details of specific management measures are outlined below.

6.7.1 Acid Sulphate Soils Sampling

Holcim undertakes acid sulphate soils sampling in advance of extraction. A sand core drilling program was undertaken in 2016, in accordance with the site's Environmental Management Plan (EMP), for an area of extraction required for the following 2-3 years. The drilling program was developed and undertaken in line with the following activities:

- 1. A minimum of 2 sand cores are drilled per hectare;
- 2. All samples are sent to Soil Surveys Australia Pty Ltd for immediate testing in accordance with the ASSMAC Guidelines;
- 3. Soil Surveys Australia Pty Ltd (NATA Accredited lab) test results provided a volume per m² for lime to be seeded across each hectare before stripping takes place;
- 4. Lime was spread across the reserve and then stripped to expose the loam and sand product; and
- 5. Stockpiled topsoil is tested by a NATA accredited laboratory to confirm there is no presence of PASS.
- 6. A minimum of 2 sand cores are drilled per hectare;
- 7. All samples are sent to Soil Surveys Australia Pty Ltd for immediate testing in accordance with the ASSMAC Guidelines;
- 8. Soil Surveys Australia Pty Ltd (NATA Accredited lab) test results provided a volume per m² for lime to be seeded across each hectare before stripping takes place;
- 9. Lime was spread across the reserve and then stripped to expose the loam and sand product; and
- 10. Stockpiled topsoil is tested by a NATA accredited laboratory to confirm there is no presence of PASS.

The ongoing management of acid sulphate soils during extraction in the sampled area is undertaken in accordance with the site's EMP. Further to the monitoring program that was completed in 2016, ongoing acid sulphate soils monitoring was completed during 2018, with no acid sulphate soils determined during the 2018 testing. A selection of monitoring results is attached in **Appendix 5**.

6.7.2 Extraction

Excavation of loam, dredging and washing activities is undertaken in accordance with the EMP and has been developed in line with the following activities:

- 1. Excavated loam is stockpiled and tested by NATA accredited laboratory to confirm there is no presence of PASS;
- In the event that PASS is present in loam stockpiles a NATA accredited laboratory will provide a detailed report with liming rates for lime to be added by Holcim staff to screened loam to ensure no presence of PASS;
- 3. All dredged material is sent through the plant with fines re-interned below the 3 meter water mark at a depth of 8 metres in the returns pond; and
- 4. Testing of stockpiles to ensure that no PASS are present in concrete sands.

6.7.3 Stockpiling & Sales

Holcim have developed and implemented a testing regime using a NATA accredited laboratory to ensure compliance with PASS requirements for all sales of sand materials. This process includes:

- 1. Routine sampling of sales material stockpiles at designated locations; and
- 2. Implementation of a series of sales and production stockpiles to ensure any materials that have not been tested are isolated until tests confirm no presence of PASS thereafter sales loading occurs.

6.8 Summary of Environmental Performance

A summary of the performance of environmental management measures and sampling results for 2018 are detailed in Table 21.

Aspect	Approval Criteria / EIS Prediction	Performance during 2018 reporting period	Trend / key management implications	Implemented / proposed management actions
Noise	EIS predictions are all below Project Approval criteria.	Quarterly monitoring has met the Project Approval Criteria.	Consistently meets criteria.	None Required.
Air Quality	EIS predictions are all below Project Approval criteria.	Dust deposition results are within criteria of EPL, EIS and Project Approval. However there was no sampling of depositional dust from 8 August 2018 – 5 September 2018. PM ₁₀ monitoring is no longer required at the site (when production remains below 200,000T/annum). There were three occasions where PM ₁₀ results were above the short term criteria	There continued to be some dust monitoring issues in 2018.	Complete monitoring as per the EMP and Project Approval requirements.
Traffic Management	EIS predictions are all below Project Approval criteria.	Met operating criteria (number of trucks per day).	This is an improvement on some past years.	None Required.
Water Management	EIS predictions are all below Project Approval criteria.	Criteria meets EIS, EPL and Project Approval criteria. There were some inconsistencies with testing of monitoring parameters (including algae) based on analysis by different monitoring contractors.	Groundwater consistent with trend data. Water monitoring generally consistent with trend data.	Ensure water quality monitoring and analysis is completed in accordance with the EMP.
Biodiversity	No impacts to threatened species. No Project Approval criteria.	No impacts	Consistently no impacts.	None required.

Table 21: Environmental Performance at the Dunloe Sand Quarry in 2018

Aspect	Approval Criteria / EIS Prediction Performance during 2018 reporting period		Trend / key management implications	Implemented / proposed management actions
Heritage	No impacts to Aboriginal Heritage. No Project Approval criteria.	No impacts. See Section 6.6 for an update on Heritage surveys.	Consistently no impacts.	None required.

7 WATER MANAGEMENT

7.1 EIS Predictions

The site is located within the Mooball Creek catchment and Sheens Creek sub-catchment areas. Detailed flood modelling confirms that the proposal will have no significant impact upon existing drainage regimes within the catchment.

Extraction operations have been designed in conformity with best practice environmental management procedures, including the use of appropriate sediment and water quality devices and the retention of ground cover in areas outside of the extraction ponds.

No negative impacts predicted to water quality with controls in place.

7.2 Approved Criteria

7.3 Surface Water

The site has the requirement to monitor discharges from the two Licenced Discharge Points (LDP) as per the criteria listed in EPL 13077 and reproduced in **Table 22.** LDP001 refers to silt pond discharge and LDP002 refers to dredge pond discharge.

Table 22: Discharge Criteria – LDP001 and LDP002

\sim		IT.	
U	In	41	1

Pollutant	Units of Measure	50 Percentile concentration limit	90 Percentile concentration limit	3DGM concentration limit	100 percentile concentration limit
Oil and Grease	Visible				nil
рН	рН				6.5 - 8.5
TSS	milligrams per litre				50

POINT 2

Pollutant	Units of Measure	50 Percentile concentration limit	90 Percentile concentration limit	3DGM concentration limit	100 percentile concentration limit
Oil and Grease	Visible				nil
рH	рН				6.5 - 8.5
TSS	milligrams per litre				50

The site also has criteria outlined within the EMP. This includes commitments to undertaking quarterly extraction pond monitoring (see **Table 23**). Other sampling criteria and commitments from the EMP are outlined within **Tables 24-27**.

Table 23: Quarterly Surface Water Quality Criteria – Extraction Pond

Quarterly monitoring	include the above parameters, as well as t	he parameters, listed in the table below
Parameter	Interim Target Criteria	Baseline monitoring 9/06-8/0
Manganese	0.15 mg/L	0.01 – 0.56 mg/L
Magnesium	40 mg/L	0.8 – 173.0 (20) mg/L
-		
Sodium	280 mg/L	7-1770 (213) mg/L

Socioni	200 116/1	7-1770 (213) mg/L
Potassium	17.5 mg/L	0 – 71 (12) mg/L
Bicarbonate	400 mg/CaCo3	-
Chloride	285 mg/L	15-3500 (356)mg/L
Sulphate	175 mg/L	9-753 (100) mg/L
Aluminium	0.75 mg/L	<0.01-4.96 (0.50) mg/L
Arsenic	<0.005 mg/L	<0.005 - 0.027 (0.01) mg/L
Iron	<7.5 ug/L	0.03-43 (6.12) ug/L
Chlorophyll a	2-10 ug/L	2-10 ug/L

The site has a commitment to Blue Green Algae monitoring within the extraction ponds at the site in accordance with the criteria listed in **Table 24**.

Table 24: Monthly Monitoring Criteria – Blue Green Algae

Algae and Blue-green algae	No.cells/mL (M.aeruginosa)	<50,000
	mm ³ /L (total biovolume)	<4

The site has a commitment to complete quarterly creek water monitoring within the surrounding environment in accordance with the criteria listed in **Table 25**.

Table Let quality bullabe thater quality enteria bulleunaning Entri enterior
--

Pollutant	Unit of Measure	Interim Target Criteria	Baseline Monitoring 9/06-8/07
рН	рН	5-5-7-5	3.55-8.44 (6.49)
Electrical Conductivity	uS/cm	1800-24000	286-45000 (11930)
Dissolved Oxygen	mg/L	>6	0.81-7.49 (4.34)
Turbidity	NTU	<20	3-67 (14.4)
Suspended Solids	mg/L	<25	1.5-48 (19)

Groundwater

The site has a commitment to complete monthly groundwater monitoring within the surrounding environment in accordance with the criteria listed in **Table 26**.

Table 26: Monthly Groundwater Quality Criteria – Surrounding Environment	
--	--

Parameter	Interim Target Criteria	Baseline Monitoring 9/06-8/07
		Range (mean)
рН	4.2 - 7.0	3.58-7.54 (5.43)
Electrical Conductivity	<2.0 mS/cm	0.07-6.47 (1.24)
(EC)		
Dissolved Oxygen (DO)	>1.50 mg/L	0.16 - 4.83 (0.84)
REDOX Potential	Maximum (mg/L)	
Groundwater level	M (AHD)	0.25-1.52 (0.68)

The site has a commitment to complete quarterly groundwater monitoring within the surrounding environment in accordance with the criteria listed in **Table 27**.

Parameter	Interim Target Criteria	Baseline monitoring 9/06-8/07
Calcium	55	0.7-114 (26)
Manganese	0.15	0.01 - 0.56
Magnesium	40	0.8 – 173.0 (20)
Sodium	280	7-1770 (213)
Potassium	17.5	0-71 (12)
Bicarbonate	400	-
Chloride	285	15-3500 (356)
Alkalinity	185	0-534 (109)
Sulphate	175	9-753 (100)
Aluminium	0.75	<0.01-4.96 (0.50)
Arsenic	0.005	<0.005 - 0.027 (0.01)
Iron	7.5	0.03-43 (6.12)

Table Lit Guarterly Groundmater Guarty Oritoria Guirounang Entrionment
--
7.4 Surface Water Monitoring – Extraction Pond

It should be noted that there were no surface water discharges in 2018 therefore criteria related to **Table 22** have not been triggered. A summary of results obtained from monthly sampling in the extraction pond is provided in **Table 28**.

Parameter	Unit	Interim Target Criteria	Baseline (2006/07)	Min	Мах	2018 Average	2017 Average for Comparison
рН	-	5.0-8.5	3.55-8.44	3.96	4.6	4.2	4.55
EC	uS/cm	<2000	286-450	324	560	388	349.5
DO	Mg/L	>4.00	0.81-7.49	8.18	104	22.4	8.28
Turbidity	NTU	<20	3-67	0.2	3.0	5.3	68.5
Oil and Grease	Mg/L	10	-	<5	<5	<5	<5.0

Table 28: Monthly Extraction Pond (Dam 1) Water Quality Monitoring 2018 Results

A comparison of the 2018 results compared to 2017 results for the Extraction Pond are outlined below:

- pH results there was a slight decrease in average pH from 4.5 in 2017 to 4.2 in 2018;
- EC results there was a slight increase in average EC from 349 uS/cm in 2017 to 388 uS/cm in 2018:
- DO Results based on the results provided to Holcim there was a large increase in the DO maximum with 104mg/L recorded. This result is far greater than past results and may be due to an error in entering the data or analysis;
- Turbidity Results there was a decrease in the average turbidity level from 68.5 NTU in 2017 to 22.4 NTU in 2018. There were a couple of high readings in 2017 that skewed those results; and
- Oil and Grease were <5 Mg/L in 2017 and 2018.

A summary of results obtained from quarterly chemical analysis in the extraction pond is provided in **Table 29**.

Parameter (mg/L)	Interim Target Criteria	Baseline (2006/07)	2018 Min	2018 Max	2018 Average	2017 Average for Comparison
Calcium	55	0.7-114	-		-	-
Manganese	0.15	0.01-0.56	0.243	0.250	0.247	0.275
Magnesium	40	0.8-173.0	4.9	9	6.3	4.43
Sodium	280	7-1,770	14	45	24	18
Potassium	17.5	0-71	3.6	4	3.7	3.5
Bicarbonate	400	-	-	-	-	-
Chloride	285	15-3,500	21	86	42	25.5
Alkalinity	185	0-534	1	1	1	<5
Sulphate	175	9-753	99	135	114	104
Aluminium	0.75	<0.01-4.96	0.62	0.88	0.74	1.68
Arsenic	0.005	<0.005-0.027	Not detected	Not detected	Not detected	Not detected
Iron (Dissolved)	705	0.03-43	0.070	0.100	0.086	0.48

 Table 29: Quarterly Extraction Pond (Dam 1) Chemical Analysis Monitoring 2018 Results

Results obtained from quarterly chemical analysis of extraction pond water shows the results to be generally in accordance with the baseline criteria and interim target criteria of the EMP. The largest

change between 2017 and 2018 was in relation for aluminium which decreased from an average of 1.68mg/L to 0.74mg/L.

Manganese was above interim criteria in 2017 and 2018.

A copy of all extraction pond water quality and chemical analysis are included in **Appendix 2** of this report.

The results of the monthly algae monitoring for the 2018 reporting period are displayed within **Table 30.**

Table 30: Surf	ace Water	Quality	Monitoring	2018	Results for	or Extraction	Pond (D	am 1) ·	- Blue
Green Algae									

Date	Total Algae Count (cells/ml) Criteria: <50,000	Cyanophyta (Blue Green Algae) (cells/ml)
24 January 2018	350	<5
21 February 2018	100	<5
21 March 2018	3,960	<5
18 April 2018	4,580	<5
16 May 2018	250	<5
13 June 2018	5,820	<5
11 July 2018	16,100	<5
8 August 2018	13,800	<5
5 September 2018	Not monitored	Not monitored
5 October 2018	Not monitored	<5
6 November 2018	Not monitored	Not monitored
7 December 2018	Not monitored	Not monitored

It is noted that there were some months where cyanophyta and total algae count were not recorded. This is a non-compliance with the frequency outlined in the EMP. This non-compliance occurred when a new monitoring contractor was engaged for the site. Holcim aims to improve data analysis in 2019.

When tested, the cyanophyta results remained below the detection limit throughout the 2018 reporting period. The maximum total algae count in 2018 (16,100 cells/ml) was much lower than the maximum from 2018 (128,000 cells/ml).

The total algae count results gathered at site across several years have illustrated a large degree of variability. It is noted that variations in total algae count results are not identified as exceedances of the monitoring criteria listed in the EMP and the key to monitoring Blue Green Algae activity generally lies with total algae count readings.

Longterm Trends:

Appendix 2 outlined the longterm monitoring data, including a summary of minimum, maximum and average for key parameters. Key parameters continued to follow longterm trends, including:

- There was no surface water discharge in 2018;
- Generally acidic pH readings;
- High variability of turbidity;
- Low levels of oil and grease;
- Variable levels of total algae, but within longterm trends; and

• EC was highly variable, and generally lower than the longterm average.

Comparison to EIS Predictions:

There was no evidence of any detrimental impact from the Quarry on surface water. This is consistent with the EIS predictions.

7.5 Groundwater Results

Monthly groundwater monitoring was undertaken at 5 locations (DLP 1, DLP 3, DLP 5, DLP 6 and DLP 7) during the 2018 reporting period. Results obtained at each bore in 2018 have been generally consistent at each location with previous results.

DLP3, DLP5 and DLP 7 present conductivity levels above the maximum interim target of 2000 μ S/cm stated within the EMP, with this also being the case in previous years. These sites have also expressed similar levels of electrical conductivity (EC) within legacy background testing and are not causing any environmental impacts outside of the existing environment.

DLP 7 sits immediately adjacent to the existing wetland, which act as a 'drawer' of permanently saline conditions in order to sustain its dominant vegetative makeup. It is therefore considered likely that some localised salinisation of surficial groundwater has occurred within the vicinity of DLP3 and DLP 7 due to tidal influences within these nearby waterways and wetlands. This trend has previously been identified in Annual Reports prepared under the previous operator and is considered to be consistent with the natural salinity levels in the local environment.

A summary of monthly groundwater results for pH and EC is provided in **Table 31**. A copy of all monthly groundwater monitoring has been provided in **Appendix 2** of this report.

Location	Parameter	Interim Target Criteria	Minimum	Maximum	2018 Average	2017 Average for Comparison
זם ום	pН	4.2-7.0	3.9	4.5	4.4	4.3
DLFI	EC (uS/cm)	<2000	114	204	146	134
DLP3	pН	4.2-7.0	5.4	6.2	5.9	6
	EC (uS/cm)	<2000	3760	8230	7320	7464
DLP5	pН	4.2-7.0	4.4	4.9	4.7	5.1
	EC (uS/cm)	<2000	201	2470	847.5	406
	pН	4.2-7.0	3.8	4.0	3.9	3.8
DLP6	EC (uS/cm)	<2000	463	866	607.5	1270
DLP7	pН	4.2-7.0	6.6	3.9	7.0	6.9
	EC (uS/cm)	<2000	2680	3650	3379	3125

 Table 31: Monthly Groundwater Quality Monitoring 2018 Results

There was a large degree in variability across the sites for the 2018 monitoring, with this also being the case in 2017. Generally the pH has been acidic to neutral. The EC has a high variability across sites ranging from 114 uS/cm to 8230 uS/cm.

A summary of quarterly monitoring for Manganese and Magnesium is outlined in Table 32.

Location	Parameter	Interim Target Criteria	Q1	Q2	Q3	Q4	2018 Average	2017 Average (For Comparison)
	Manganese (mg/L)	0.15	0.028	0.024	0.001	0.003	0.014	0.024
DLPT	Magnesium (mg/L)	40	0.8	0.7	<1	<1	0.87	0.65
	Manganese (mg/L)	0.15	0.64	0.61	0.715	0.658	0.65	0.63
DLP3	Magnesium (mg/L)	40	150	120	137	118	131.2	126.7
	Manganese (mg/L)	0.15	0.066	0.019	0.0029	0.039	0.031	0.060
DLP5	Magnesium (mg/L)	40	25	4.8	7	8	11.2	14.5
	Manganese (mg/L)	0.15	0.45	0.4	0.49	0.65	0.49	1.12
DLP6	Magnesium (mg/L)	40	7.1	5.2	7	8	6.8	14.45
	Manganese (mg/L)	0.15	0.065	0.072	0.074	0.65	0.21	0.068
	Magnesium (mg/L)	40	41	37	40	39	39.25	37.3

Table 32: Quarterly Groundwater Quality Monitoring 2018 Results

Note: Where results are below the detectable limit (i.e. <0.5) the average has been calculated by removing the <.

When comparing the 2018 annual average for Manganese and Magnesium to 2017 totals, there is a large degree of similarity. The largest change is the Magnesium level at DLP06 which dropped from 14.45 mg/L to 6.8 mg/L in 2018. DLP3 was once again above the interim criteria, as per 2017 results.

Longterm Trends:

Results for Manganese and Magnesium are similar to previous years. DLP3 has been consistently above the interim target criteria, with this a trend across several years.

A copy of all Quarterly groundwater monitoring has been attached as **Appendix 2** to this report.

Comparison to EIS Predictions:

There was no evidence of any detrimental impact from the Quarry on groundwater. This is consistent with the EIS predictions.

7.6 Water Take

There is no water take associated with the Dunloe Sand Quarry.

8 REHABILITATION AND LANDSCAPE MANAGEMENT

8.1 Rehabilitation Performance during the Reporting Period

As part of the site's approved EMP, re-vegetation and regenerative landscaping is required (Appendix C of the EMP). Ongoing management of the surrounding vegetation is being carried out by Ramtech Pty Ltd over the lifetime of the Dunloe Sand Quarry operations.

The regenerative works have been undertaken via a combination of assisted and natural regrowth and all areas have been fenced so as to limit the intrusion of cattle. In this regard, depending on soil types and topography, each of the areas has been very successful in establishing quality regrowth.

The only limiting factors have been some cattle getting in and around existing fences (primarily at low tide where they have been able to traverse the creek lines.

A copy of all rehabilitation works, checklists and photos showing work areas have been attached as **Appendix 3** to this report.

A summary of rehabilitation at the Dunloe Sand Quarry is outlined in Table 33.

Table 33: Rehabilitation Performance in 2018

Guideline Requirement	Site Comment
Extent of the operations and rehabilitation at completion of the reporting period	There was no rehabilitation at site in 2018.
Agreed post- rehabilitation land use	The proposed rehabilitation aims to return the land to an endangered ecological community (EEC) Swamp Sclerophyll plus Eucalypt Open Forest species and EEC Coastal Wetland within the localised soaks.
Key rehabilitation performance indicators	Criteria are outlined in the <i>Rehabilitation and Revegetation Management Plan</i> .
Renovation or removal of buildings	None during reporting period
 Any other Rehabilitation taken including: Exploration activities; Infrastructure; Dams; and The installation or maintenance of fences, bunds and any other works. 	No rehabilitation of these features was completed.
Any rehabilitation areas which have received formal sign off from the Resources Regulator.	None.
Variations to activities undertaken to those proposed (including why there were variations and whether Resources Regulator was notified)	No variations to the <i>Rehabilitation and Revegetation</i> <i>Management Plan</i> .
Outcomes of trials, research projects and other initiatives	No specific trials, however a summary of monitoring results is outlined in Appendix 3 .
Key issues that may affect successful rehabilitation	There are several potential issues including availability of material, seed stock, climatic events, tidal inundation and rehabilitation methodology.

8.2 Summary of Current Rehabilitation and Performance

A summary of the rehabilitation and disturbance status is outlined in Table 34. This is also shown in

Figure 4.

Table 34: Rehabilitation and Disturbance Status

Quarry Area Type	Previous Reporting Period	This Reporting Period (Actual)	Next Reporting Period (Forecast)	
		Current AEMR Period	Next AEMR Period	

		(ha)	(ha)
A. Total Quarry Footprint	32.2	32.2	32.2
B. Total Active Disturbance	18.8	18.8	18.8
C. Land Being Prepared for Rehabilitation	0	0	0
D. Land Under Active Rehabilitation	13.4	13.4	13.4
E. Completed Rehabilitation	0	0	0

At the end of 2018 there was approximately 18.8 Ha of active disturbance and 13.4 Ha of active rehabilitation. There is no rehabilitation proposed in 2019.

Rehabilitation monitoring of established rehabilitation has shown:

- Most of the rehabilitation has been from natural regeneration;
- Dominant species are paper bark, melaleuca, banksia, casuarina and brackern fern;
- Evidence of grass and leaf litter;
- Some tree species greater than 15 metres high, shrub species greater than 5 m high and groundcover to 2 m; and
- During the 2018 monitoring period, one nest box was being actively utilised at the time of inspection. A mountain brushtail possum was inspected within a cockatoo box located in Zone 1B.

A copy of rehabilitation monitoring is included in **Appendix 3**.

Figure 4: Rehabilitation and Disturbance

8.3 Actions for the Next Reporting Period

The DPE 2015 Annual Review Guidelines require the Annual Review to outline the rehabilitation actions proposed during the next reporting period. These actions are detailed in **Table 35**.

Table 35: Rehabilitation and Closure Actions for the Next Reporting Period (2019)

Requirement	Site Comment
Describe the steps to be undertaken to progress agreement during next reporting period, where final rehabilitation outcomes have not yet been agreed between stakeholders.	No rehabilitation proposed in 2019.
Outline proposed rehabilitation trials, research projects and other initiatives to be undertaken during next reporting period.	Rehabilitation inspections/monitoring to continue. An update will be provided in the 2019 Annual Review.
Summary of rehabilitation activities proposed for next report period.	No specific rehabilitation proposed for 2019. The three rehabilitation zones were managed and worked on in accordance with the approved EMP including invasive species removal and monitoring.

9 COMMUNITY

9.1 Community Engagement Activities

The site implemented a Community Consultative Committee (CCC) when under the operation of Ramtech as part of the conditions of consent. CCC meetings were undertaken on 2 February 2018 and 25 May 2018. All minutes from each of the meetings undertaken in 2018, along with a copy of the complaints register and all publicly listed information including contacts for locals in the community is available on the Dunloe Sand Quarry webpage in accordance with the Project Approval requirements (<u>http://www.holcim.com.au/about-us/community-link/dunloe-sand-quarry-pottsville-nsw.html</u>).

Holcim has maintained community engagement measures, including:

- Maintenance of a website (containing publicly available documents);
- A telephone number, email and postal address (on the website) for community complaints and feedback;
- A copy of the Complaints Register is maintained on the company website; and
- All documents and items displayed on the website are regularly updated by Holcim staff.

9.2 Community Contributions

Holcim supplied some sand free of charge to local schools during the Annual Review period.

9.3 Complaints

There were no community complaints at site during 2018. In 2017 there were two community complaints.

10 INDEPENDENT AUDIT

The site undertook an IEA in 2016 in accordance with the timeframes of the Project Approval. All actions raised in the IEA have been undertaken in accordance with the recommendations made by Consultants Mark Rigby & Associates. All actions were closed out in 2016. The next audit is due in 2019.

11 INCIDENTS AND NON-COMPLIANCE

Table 36 summarises the incidents and non-compliances at the Dunloe Sand Quarry in 2018.

Table 36: Summary of Incidents and Non-Compliances

Date	Incident	Action		
Throughout the Annual Review period	Schedule 3 Condition 6 The Proponent must ensure that particulate not cause exceedances of the criteria in particulate exceedances of the criteria in particulate matter < 10	Ilate matter emissions generated by the pro Table 3 at any residence on privately-own Criterion ac 30 µg/m ³ b 50 µg/m ³ ac 90 µg/m ³ b 2g/m ² /month • 4g/m ² /month M ₁₀ criteria on 19 January 2018, 12 Febru epositional Dust Gauges from 8 August 2 ring the changeover of monitoring contractor	ject do ed land. , , , , , , , , , , , , , , , , , , ,	No further requirements to monitor for PM ₁₀ while production remains below 200,000 T/annum. Depositional dust monitoring to improve in 2018 to ensure a full capture.
September – December 2018	Schedule 3 Condition 22 It is noted that there were some month recorded. This is a non - compliance wi Management (Component of the EMP).	s where cyanophyta and total algae count th the frequency outlined in the Blue – Gre	were not en Algae	Improve monitoring of algae for the rest of 2019.

12 ACTIVITIES TO BE COMPLETED IN THE NEXT REPORTING PERIOD

Holcim staff will undertake the following works and improvement measures and projects in 2019 to ensure compliance with the consent and to ensure that effective environmental management controls are in place and operating in accordance with the requirements of the Consent.

Table 37:	Improvement	Actions	for	2018
-----------	-------------	---------	-----	------

Improvement Measure	Activities
Development Application (Truck Movements Modification)	Application to modify the current Project Approval condition limiting truck movement to 4 (in and out) per hour.
Water Quality Monitoring	Ensure water quality monitoring is completed in accordance with the EMP.
Dust Monitoring	Ensure dust monitoring is completed in accordance with the EMP.
Biodiversity	Weed spraying will continue at site during the next Annual Review period.
	Conduct fauna box monitoring annually.

13 REFERENCES

DPI Water (2017) Water Access Licence Usage; EPA (Ongoing) Environment Protection Licence) – 13077; Holcim (2018) CCC Minutes; Planit Consulting and Holcim (October 2016) *Environmental Management Plan*; and Planit Consulting (2007) Environmental Assessment – Dunloe Park.

14 APPENDICES

APPENDIX 1

DUNLOE SAND QUARRY NOISE MONITORING 2018

Noise Monitoring Assessment Quarterly

Dunloe Quarry, Pottsville, NSW March 2018.

Prepared for: VGT Pty Ltd (on behalf of Holcim (Australia) Pty Ltd) April 2018 MAC170440RP5

Document Information

Quarterly Noise Monitoring Assessment

Dunloe Quarry, Pottsville, NSW

March 2018

Prepared for: VGT Pty Limited (on behalf of Holcim Pty Ltd)

Prepared by: Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com

Document ID	Status	Date	Written By	Signed
MAC170440RP5	Final	10 April 2018	Oliver Muller	QL.

DISCLAIMER

All documents produced by Muller Acoustic Consulting Pty Ltd (MAC) are prepared for a particular client's requirements and are based on a specific scope, circumstances and limitations derived between MAC and the client. Information and/or report(s) prepared by MAC may not be suitable for uses other than the original intended objective. No parties other than the client should use or reproduce any information and/or report(s) without obtaining permission from MAC. Any information and/or documents prepared by MAC is not to be reproduced, presented or reviewed except in full.

CONTENTS

1	11	JTRODUCTION	5
2	N	IOISE CRITERIA	7
3	N	IETHODOLOGY	9
	3.1	LOCALITY	9
	3.2	NOISE MONITORING LOCATIONS	9
	3.3	ASSESSMENT METHODOLOGY	9
4	R	ESULTS	11
	4.1	ASSESSMENT RESULTS - LOCATION R1	11
	4.2	ASSESSMENT RESULTS - LOCATION R2	11
	4.3	ASSESSMENT RESULTS - LOCATION R3	12
	4.4	ASSESSMENT RESULTS - LOCATION R4	12
5	N	OISE COMPLIANCE ASSESSMENT	13
6	D	ISCUSSION	15
	6.1	DISCUSSION OF RESULTS - LOCATION R1	15
	6.2	DISCUSSION OF RESULTS - LOCATION R2	15
	6.3	DISCUSSION OF RESULTS - LOCATION R3	15
	6.4	DISCUSSION OF RESULTS - LOCATION R4	15
7	С	ONCLUSION	17

APPENDIX A - GLOSSARY OF TERMS

This page has been intentionally left blank

1 Introduction

Muller Acoustic Consulting Pty Ltd (MAC) has been commissioned by VGT Pty Limited (VGT) on behalf of Holcim Pty Ltd (Holcim) to complete a Noise Monitoring Assessment (NMA) for Dunloe Quarry ('the quarry'), Pottsville, NSW.

The monitoring has been conducted in accordance with the Dunloe Project Approval and Noise Management Plan at four representative monitoring locations. This assessment represents the operations undertaken during Quarter 1, March 2018.

The assessment has been conducted in accordance with the following documents:

- NSW Environment Protection Authority (EPA), Noise Policy for Industry (NPI), 2017;
- Dunloe Noise Management Plan (NMP), 2016; and
- Standards Australia AS 1055.1:1997 Acoustics Description and measurement of environmental noise - General Procedures.

A glossary of terms, definitions and abbreviations used in this report is provided in Appendix A.

This page has been intentionally left blank

2 Noise Criteria

Schedule 3 Section 2 of the sites Project Approval, outlines the applicable noise criteria for residential receivers surrounding the quarry site.

The noise criteria are applicable when the site undertakes quarrying operations with the site permitted to operate Monday to Friday 7am – 5pm, Saturday 7am – 12pm with no operations on Sunday.

 Table 1 presents the noise criteria for each of the receivers as outlined in the Project Approval.

Table 1 Noise Criteria					
Location	Day dBA, LAeq(15min) Criteria ²				
All privately-owned receivers ¹	48				

Note 1: Receiver locations are shown in Figure 1.

Note 2: Criteria applicable between Monday to Friday 7am – 5pm, Saturday 7am – 12pm with no operations on Sunday as the Table 2 of the EPL.

This page has been intentionally left blank

3 Methodology

3.1 Locality

The quarry is located in Pottsville, NSW, and receivers in the locality surrounding the quarry are primarily rural/residential. The surroundings of the quarry generally consist of coastal bushland and elevated and undulating topography. The monitoring locations with respect to the quarry and assessed receivers are presented in the locality plan shown in **Figure 1**.

3.2 Noise Monitoring Locations

Four monitoring locations have been selected as part of the NMA and are listed below:

- R1 is located at the property on Kellehers Road situated north of the quarry;
- R2 is located west of the quarry on the boundary of 574 Pottsville Road;
- R3 is located to the south-west of the quarry at the address of 122 Warwick Park Road; and
- R4 is located at 265 Warwick Park Road, south of the quarry.

3.3 Assessment Methodology

The attended noise surveys were conducted in general accordance with the procedures described in Australian Standard AS 1055-1997, "Acoustics - Description and Measurement of Environmental Noise and Dunloe Quarry's Conditions of Consent. The measurements were carried out using a Svantek Type 1, 971 noise analyser on Wednesday 28 March 2018. The acoustic instrumentation used carries current NATA calibration and complies with AS IEC 61672.1-2004-Electroacoustics - Sound level meters - Specifications. Calibration of all instrumentation was checked prior to and following measurements. Drift in calibration did not exceed ±0.5dBA.

Measurements were conducted at each monitoring location during the day assessment period. Measurements were of 15 minutes in duration and where possible, throughout each survey the operator quantified the contribution of each significant noise source. Extraneous noise sources were excluded from the analysis as to calculate the LAeq(15min) quarry noise contribution for comparison against the applicable noise criteria.

FIGURE 1 LOCALITY PLAN REF: MAC170440

4 Results

4.1 Assessment Results - Location R1

The monitored noise level contributions and observed meteorological conditions for each day survey period at R1 for Wednesday 28 March 2018 are presented in **Table 2**.

Table 2 Operator-Attended Noise Survey Results – Location R1							
Data	Time (brs)	Descriptor (dBA re 20 µPa)			Motoorology	Description and SPL_dBA	
Date	nine (nis)	LAmax	LAeq	LA90	Weteorology		
						Distant traffic 36-40	
					Dir: E	Local residential noise 39-44	
28/03/2018	10.28	88	62	38	Wind Speed: 1m/s	Birds 44-58	
20/03/2010	10.20	00	02	30	Rain: Nil	Insects <36	
					Rain. Inn	Wind in trees 40-50	
						Local residential traffic 45-88	
	Dunio	be Quarry L	Aeq(15min)	Contribution	n	Quarry Inaudible	

4.2 Assessment Results - Location R2

The monitored noise level contributions and observed meteorological conditions for each day survey period at R2 for Wednesday 28 March 2018 are presented in **Table 3**.

Table 3 Operator-Attended Noise Survey Results – Location R2							
Data	Time (brs)	Descriptor (dBA re 20 µPa)			Meteorology	Description and SPL_dBA	
Duio	11110 (1113)	LAmax	LAeq	LA90	Weteerology		
						Highway traffic 44-52	
					Birds Dir: E Wind in t	Birds 47-52	
28/02/2018	10.57	86	64	19		Wind in trees <44	
20/03/2010	10.57	00	04	40	Rain: Nil	Local traffic 52-83	
					Ram. INI	Aircraft 52-54	
						Local residential noise 47-54	
Dunloe Quarry LAeq(15min) Contribution Quarry Inaudible							

4.3 Assessment Results - Location R3

The monitored noise level contributions and observed meteorological conditions for each day survey period at R3 for Wednesday 28 March 2018 are presented in **Table 4**.

Table 4 Operator-Attended Noise Survey Results – Location R3							
Data	Time (has)	Descriptor (dBA re 20 µPa)			Mataoralagy	Description and SPL_dBA	
Dale	Time (fills)	LAmax	LAeq	LA90	Meteorology	Description and SFE, dBA	
						Insects <38	
					Dir: E	Aircraft 39-48	
28/03/2018	11:19	67	43	39	Wind Speed: 1m/s	Wind in trees <38	
					Rain: Nil	Distant traffic 38-43	
						Local residential noise 44-51	
	Dunk	Quarry Inaudible					

4.4 Assessment Results - Location R4

The monitored noise level contributions and observed meteorological conditions for each day survey period at R4 for Wednesday 28 March 2018 are presented in **Table 5**.

Table 5 Operator-Attended Noise Survey Results – Location R4							
Data	T:	Descriptor (dBA re 20 µPa)			Mataarala <i>mu</i>	Description and CDL dDA	
Dale	Time (TIIS)	LAmax	LAmax LAeq LA90		Description and SFE, dBA		
					Dir: E	Wind in troop 42.62	
28/03/2018	11:39	78	51	41	Wind Speed: 1m/s	Dirdo 42 52	
					Rain: Nil	BIIUS 45-55	
	Dunic	Quarry Inaudible					

5 Noise Compliance Assessment

The compliance assessment for each residential receiver R1, R2, R3 and R4 are presented in **Table 6** for day assessment periods.

Table 6 Daytime Noise Compliance Summary								
Popoivor No	Quarry Noise Contribution	Quarry Noise Criteria	Compliant					
Necewer No.	dBA, LAeq(15min)	dBA, LAeq(15min)	Compliant					
R1	Nil	48	\checkmark					
R2	Nil	48	\checkmark					
R3	Nil	48	\checkmark					
R4	Nil	48	\checkmark					

This page has been intentionally left blank

6 Discussion

6.1 Discussion of Results - Location R1

Quarry noise was inaudible at R1 during the March 2018 monitoring assessment, and therefore satisfies the relevant criteria of 48dBA LAeq(15min). Extraneous noise sources included distant traffic, local residential noise, residential traffic, birds, insects and wind in trees. All extraneous noises remained generally constant during the 15-minute measurement at R1.

6.2 Discussion of Results - Location R2

Quarry noise remained inaudible at R2 during the March 2018 monitoring assessment. Quarry contributions therefore satisfied the relevant criteria of 48dBA LAeq(15min). Highway and local traffic dominated the March 2018 measurements at R2 and extraneous sources including birds, wind in trees, aircraft and local residential noise which was predominantly masked by the traffic in the area although remained generally constant during the 15-minute measurement at R2.

6.3 Discussion of Results - Location R3

Quarry noise was inaudible during the March 2018 survey period at R3, satisfying the daytime criteria of 48dBA LAeq(15min). Non-quarrying noise sources included insects, aircrafts, wind in trees, distant traffic and local residential noise. Extraneous noises remained constant during the 15-minute measurement at R3.

6.4 Discussion of Results - Location R4

Quarry emissions were inaudible throughout the March 2018 monitoring quarter at R4. Therefore, quarry emissions satisfied the relevant daytime noise limit of 48dBA LAeq(15min). Extraneous non-quarrying sources include wind in trees and birds.

This page has been intentionally left blank

7 Conclusion

Muller Acoustic Consulting Pty Ltd (MAC) has completed a Noise Monitoring Assessment (NMA) for VGT Pty Ltd on behalf of Holcim Pty Ltd at the Dunloe Quarry, Pottsville, NSW. The assessment was completed to assess the quarry's compliance with the relevant criteria outlined in their Project Approval for relevant surrounding residential receivers for the Quarter 1, March 2018 assessment.

Attended noise monitoring was undertaken on 28 March 2018 at representative monitoring locations, with quarry noise contributions compared against the relevant criteria. The assessment has identified that noise emissions generated by Dunloe Quarry comply with relevant statutory noise criteria specified in the Project Approval at all assessed residential receivers.

This page has been intentionally left blank

Appendix A - Glossary of Terms

Table A1 provides a number of technical terms have been used in this report.

Table A1 Glossary of Te	erms
Term	Description
1/3 Octave	Single octave bands divided into three parts
Octave	A division of the frequency range into bands, the upper frequency limit of each band being twice
	the lower frequency limit.
ABL	Assessment Background Level (ABL) is defined in the NPI as a single figure background level for
	each assessment period (day, evening and night). It is the tenth percentile of the measured LA90
	statistical noise levels.
Adverse Weather	Weather effects that enhance noise (that is, wind and temperature inversions) that occur at a site
	for a significant period of time (that is, wind occurring more than 30% of the time in any
	assessment period in any season and/or temperature inversions occurring more than 30% of the
	nights in winter).
Ambient Noise	The noise associated with a given environment. Typically a composite of sounds from many
	sources located both near and far where no particular sound is dominant.
A Weighting	A standard weighting of the audible frequencies designed to reflect the response of the human
	ear to noise.
dBA	Noise is measured in units called decibels (dB). There are several scales for describing noise, the
	most common being the 'A-weighted' scale. This attempts to closely approximate the frequency
	response of the human ear.
dB(Z), dB(L)	Decibels Linear or decibels Z-weighted.
Hertz (Hz)	The measure of frequency of sound wave oscillations per second - 1 oscillation per second
	equals 1 hertz.
LA10	A noise level which is exceeded 10 $\%$ of the time. It is approximately equivalent to the average of
	maximum noise levels.
LA90	Commonly referred to as the background noise, this is the level exceeded 90 % of the time.
LAeq	The summation of noise over a selected period of time. It is the energy average noise from a
	source, and is the equivalent continuous sound pressure level over a given period.
LAmax	The maximum root mean squared (rms) sound pressure level received at the microphone during a
	measuring interval.
RBL	The Rating Background Level (RBL) is an overall single figure background level representing
	each assessment period over the whole monitoring period. The RBL is used to determine the
	intrusiveness criteria for noise assessment purposes and is the median of the ABL's.
Sound power level (LW)	This is a measure of the total power radiated by a source. The sound power of a source is a
	fundamental location of the source and is independent of the surrounding environment. Or a
	measure of the energy emitted from a source as sound and is given by :
	= 10.log10 (W/Wo)
	Where : W is the sound power in watts and Wo is the sound reference power at 10-12 watts.

Table A2 Common Noise Sources and Their Typical Sound Pressure Levels (SPL), dBA				
Source	Typical Sound Level			
Threshold of pain	140			
Jet engine	130			
Hydraulic hammer	120			
Chainsaw	110			
Industrial workshop	100			
Lawn-mower (operator position)	90			
Heavy traffic (footpath)	80			
Elevated speech	70			
Typical conversation	60			
Ambient suburban environment	40			
Ambient rural environment	30			
Bedroom (night with windows closed)	20			
Threshold of hearing	0			

 Table A2 provides a list of common noise sources and their typical sound level.

Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com

Noise Monitoring Assessment Quarterly

Dunloe Quarry, Pottsville, NSW June 2018.

Prepared for: VGT Laboratories Pty Ltd (on behalf of Holcim (Australia) Pty Ltd) June 2018 MAC170440RP6

Document Information

Quarterly Noise Monitoring Assessment

Dunloe Quarry, Pottsville, NSW

June 2018

Prepared for: VGT Laboratories Pty Limited (on behalf of Holcim (Australia) Pty Ltd)

Prepared by: Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com

Document ID	Status	Date	Written By	Signed
MAC170440RP6	Final	27 June 2018	Oliver Muller	QL_

DISCLAIMER

All documents produced by Muller Acoustic Consulting Pty Ltd (MAC) are prepared for a particular client's requirements and are based on a specific scope, circumstances and limitations derived between MAC and the client. Information and/or report(s) prepared by MAC may not be suitable for uses other than the original intended objective. No parties other than the client should use or reproduce any information and/or report(s) without obtaining permission from MAC. Any information and/or documents prepared by MAC is not to be reproduced, presented or reviewed except in full.

CONTENTS

1	11	JTRODUCTION	5
2	N	IOISE CRITERIA	7
3	N	IETHODOLOGY	9
	3.1	LOCALITY	9
	3.2	NOISE MONITORING LOCATIONS	9
	3.3	ASSESSMENT METHODOLOGY	9
4	R	ESULTS	11
	4.1	ASSESSMENT RESULTS - LOCATION R1	11
	4.2	ASSESSMENT RESULTS - LOCATION R2	11
	4.3	ASSESSMENT RESULTS - LOCATION R3	12
	4.4	ASSESSMENT RESULTS - LOCATION R4	12
5	N	OISE COMPLIANCE ASSESSMENT	13
6	D	ISCUSSION	15
	6.1	DISCUSSION OF RESULTS - LOCATION R1	15
	6.2	DISCUSSION OF RESULTS - LOCATION R2	15
	6.3	DISCUSSION OF RESULTS - LOCATION R3	15
	6.4	DISCUSSION OF RESULTS - LOCATION R4	15
7	С	ONCLUSION	17

APPENDIX A - GLOSSARY OF TERMS

1 Introduction

Muller Acoustic Consulting Pty Ltd (MAC) has been commissioned by VGT Laboratories Pty Limited (VGT) on behalf of Holcim (Australia) Pty Ltd (Holcim) to complete a Noise Monitoring Assessment (NMA) for Dunloe Quarry ('the quarry'), Pottsville, NSW.

The monitoring has been conducted in accordance with the Dunloe Project Approval and Noise Management Plan at four representative monitoring locations. This assessment represents the operations undertaken during Quarter 2, June 2018.

The assessment has been conducted in accordance with the following documents:

- NSW Environment Protection Authority (EPA), Noise Policy for Industry (NPI), 2017;
- Dunloe Noise Management Plan (NMP), 2016; and
- Standards Australia AS 1055.1:1997 Acoustics Description and measurement of environmental noise - General Procedures.

A glossary of terms, definitions and abbreviations used in this report is provided in Appendix A.

2 Noise Criteria

Schedule 3 Section 2 of the sites Project Approval, outlines the applicable noise criteria for residential receivers surrounding the quarry site.

The noise criteria are applicable when the site undertakes quarrying operations with the site permitted to operate Monday to Friday 7am – 5pm, Saturday 7am – 12pm with no operations on Sunday.

 Table 1 presents the noise criteria for each of the receivers as outlined in the Project Approval.

Table 1 Noise Criteria				
Location	Day dBA, LAeq(15-min) Criteria ²			
All privately-owned receivers ¹	48			

Note 1: Receiver locations are shown in Figure 1.

Note 2: Criteria applicable between Monday to Friday 7am – 5pm, Saturday 7am – 12pm with no operations on Sunday as the Table 2 of the EPL.

3 Methodology

3.1 Locality

The quarry is located in Pottsville, NSW, and receivers in the locality surrounding the quarry are primarily rural/residential. The surroundings of the quarry generally consist of coastal bushland and elevated and undulating topography. The monitoring locations with respect to the quarry and assessed receivers are presented in the locality plan shown in **Figure 1**.

3.2 Noise Monitoring Locations

Four monitoring locations have been selected as part of the NMA and are listed below:

- R1 is located at the property on Kellehers Road situated north of the quarry;
- R2 is located west of the quarry on the boundary of 574 Pottsville Road;
- R3 is located to the south-west of the quarry at the address of 122 Warwick Park Road; and
- R4 is located at 265 Warwick Park Road, south of the quarry.

3.3 Assessment Methodology

The attended noise surveys were conducted in general accordance with the procedures described in Australian Standard AS 1055-1997, "Acoustics - Description and Measurement of Environmental Noise and Dunloe Quarry's Conditions of Consent. The measurements were carried out using a Svantek Type 1, 971 noise analyser on Thursday 21 June 2018. The acoustic instrumentation used carries current NATA calibration and complies with AS IEC 61672.1-2004-Electroacoustics - Sound level meters - Specifications. Calibration of all instrumentation was checked prior to and following measurements. Drift in calibration did not exceed ±0.5dBA.

Measurements were conducted at each monitoring location during the day assessment period. Measurements were of 15 minutes in duration and where possible, throughout each survey the operator quantified the contribution of each significant noise source. Extraneous noise sources were excluded from the analysis as to calculate the LAeq(15-min) quarry noise contribution for comparison against the applicable noise criteria.

FIGURE 1 LOCALITY PLAN REF: MAC170440

4 Results

4.1 Assessment Results - Location R1

The monitored noise level contributions and observed meteorological conditions for the day survey period at R1 for Thursday 21 June 2018 are presented in **Table 2**.

Table 2 Operator-Attended Noise Survey Results – Location R1							
Data	T' (1)	Descriptor (dBA re 20 µPa)			Mataorology	Description and SDL dDA	
Date Lime (hrs)		LAmax	LAeq	LA90	Meteorology	Description and SPL, dBA	
					Dir: 9	Wind in grass 38-45	
01/06/0010	09:55	78 54	ΕA	54 42	Wind Speed: 2 m/s	Local residential noise 42-78	
21/00/2018			54			Birds 44-63	
					Rain: Nii	Distant highway traffic 38-46	
	Dunic	Quarry Inaudible					

4.2 Assessment Results - Location R2

The monitored noise level contributions and observed meteorological conditions for the day survey period at R2 for Thursday 21 June 2018 are presented in **Table 3**.

Table 3 Operator-Attended Noise Survey Results – Location R2							
Dete	T: (1)	Descriptor (dBA re 20 µPa)				Description and SPL dPA	
Dale	Time (fils)	LAmax	LAeq	LA90	- Meleorology	Description and SPL, dBA	
	10:18	80 6			Dir: S Wind Speed: 1 m/s	Highway traffic 51-55	
21/06/2018			61	50		Birds <51	
			01	50		Local traffic 51-80	
					Nain. Nii	Wind in trees <51	
Dunloe Quarry LAeq(15-min) Contribution Quarry Inaudible							

4.3 Assessment Results - Location R3

The monitored noise level contributions and observed meteorological conditions for the day survey period at R3 for Thursday 21 June 2018 are presented in **Table 4**.

Table 4 Operator-Attended Noise Survey Results – Location R3							
Data	T:	Descriptor (dBA re 20 µPa)			Motoorology	Description and SPL dPA	
		LAmax	LAeq	LA90	Meteorology	Description and SFE, dBA	
	10:38	38 76			Dir: S	Distant traffic 34-42	
01/06/0010			E1	40		Wind in trees 38-48	
21/00/2010			51	42	wind Speed. T m/s	Birds 38-45	
					Kain. Nii	Local traffic 46-76	
	Dunic	Quarry Inaudible					

4.4 Assessment Results - Location R4

The monitored noise level contributions and observed meteorological conditions for the day survey period at R4 for Thursday 21 June 2018 are presented in **Table 5**.

Table 5 Operator-Attended Noise Survey Results – Location R4							
Dete	T: (1)	Descriptor (dBA re 20 µPa)					
Dale	Date Time (firs)		LAeq	LA90	Meteorology	Description and SFE, dBA	
					Dir: S	Wind in trees 41-52	
21/06/2018	10:59	67	49	39	Wind Speed: 1 m/s	Birds 36-53	
					Rain: Nil	Aircraft 42-67	
Dunloe Quarry LAeq(15-min) Contribution Quarry Inaudible							

5 Noise Compliance Assessment

The compliance assessment for each residential receiver R1, R2, R3 and R4 are presented in **Table 6** for day assessment periods.

Table 6 Daytime Noise Compliance Summary							
Poooivor No	Quarry Noise Contribution	Quarry Noise Criteria	Compliant				
	dBA, LAeq(15-min)	dBA, LAeq(15-min)	Compliant				
R1	Nil	48	\checkmark				
R2	Nil	48	\checkmark				
R3	Nil	48	\checkmark				
R4	Nil	48	\checkmark				

6 Discussion

6.1 Discussion of Results - Location R1

Quarry noise was inaudible at R1 during the June 2018 monitoring assessment, and therefore satisfies the relevant criteria of 48dBA LAeq(15-min). Extraneous noise sources included wind in grass, local residential noise, birds, distant highway traffic. All extraneous noises remained generally constant during the 15-minute measurement at R1.

6.2 Discussion of Results - Location R2

Quarry noise remained inaudible at R2 during the June 2018 monitoring assessment and therefore satisfied the relevant criteria of 48dBA LAeq(15-min). Highway and local traffic dominated the June 2018 measurements at R2 with birds and wind in trees also present.

6.3 Discussion of Results - Location R3

Quarry noise was inaudible during the June 2018 survey period at R3, satisfying the daytime criteria of 48dBA LAeq(15-min). Non-quarrying noise sources included distant highway traffic, wind in trees, birds and local traffic which remained constant during the 15-minute measurement at R3.

6.4 Discussion of Results - Location R4

Quarry emissions were inaudible throughout the June 2018 monitoring quarter at R4. Therefore, quarry emissions satisfied the relevant daytime noise limit of 48dBA LAeq(15-min). Extraneous non-quarrying sources include wind in trees, aircraft noise and birds.

7 Conclusion

Muller Acoustic Consulting Pty Ltd (MAC) has completed a Noise Monitoring Assessment (NMA) for VGT Laboratories Pty Ltd on behalf of Holcim (Australia) Pty Ltd at the Dunloe Quarry, Pottsville, NSW. The assessment was completed to assess the quarry's compliance with the relevant criteria outlined in their Project Approval for relevant surrounding residential receivers for the Quarter 2, June 2018 assessment.

Attended noise monitoring was undertaken on 21 June 2018 at representative monitoring locations, with quarry noise contributions compared against the relevant criteria. The assessment has identified that noise emissions generated by Dunloe Quarry comply with relevant statutory noise criteria specified in the Project Approval at all assessed residential receivers.

Appendix A - Glossary of Terms

 Table A1 provides a number of technical terms have been used in this report.

Table A1 Glossary of Te	erms
Term	Description
1/3 Octave	Single octave bands divided into three parts
Octave	A division of the frequency range into bands, the upper frequency limit of each band being twice
	the lower frequency limit.
ABL	Assessment Background Level (ABL) is defined in the NPI as a single figure background level for
	each assessment period (day, evening and night). It is the tenth percentile of the measured LA90
	statistical noise levels.
Adverse Weather	Weather effects that enhance noise (that is, wind and temperature inversions) that occur at a site
	for a significant period of time (that is, wind occurring more than 30% of the time in any
	assessment period in any season and/or temperature inversions occurring more than 30% of the
	nights in winter).
Ambient Noise	The noise associated with a given environment. Typically a composite of sounds from many
	sources located both near and far where no particular sound is dominant.
A Weighting	A standard weighting of the audible frequencies designed to reflect the response of the human
	ear to noise.
dBA	Noise is measured in units called decibels (dB). There are several scales for describing noise, the
	most common being the 'A-weighted' scale. This attempts to closely approximate the frequency
	response of the human ear.
dB(Z), dB(L)	Decibels Linear or decibels Z-weighted.
Hertz (Hz)	The measure of frequency of sound wave oscillations per second - 1 oscillation per second
	equals 1 hertz.
LA10	A noise level which is exceeded 10 $\%$ of the time. It is approximately equivalent to the average of
	maximum noise levels.
LA90	Commonly referred to as the background noise, this is the level exceeded 90 % of the time.
LAeq	The summation of noise over a selected period of time. It is the energy average noise from a
	source, and is the equivalent continuous sound pressure level over a given period.
LAmax	The maximum root mean squared (rms) sound pressure level received at the microphone during a
	measuring interval.
RBL	The Rating Background Level (RBL) is an overall single figure background level representing
	each assessment period over the whole monitoring period. The RBL is used to determine the
	intrusiveness criteria for noise assessment purposes and is the median of the ABL's.
Sound power level (LW)	This is a measure of the total power radiated by a source. The sound power of a source is a
	fundamental location of the source and is independent of the surrounding environment. Or a
	measure of the energy emitted from a source as sound and is given by :
	= 10.log10 (W/Wo)
	Where : W is the sound power in watts and Wo is the sound reference power at 10-12 watts.

Table A2 Common Noise Sources and Their Typical Sound Pressure Levels (SPL), dBA					
Source	Typical Sound Level				
Threshold of pain	140				
Jet engine	130				
Hydraulic hammer	120				
Chainsaw	110				
Industrial workshop	100				
Lawn-mower (operator position)	90				
Heavy traffic (footpath)	80				
Elevated speech	70				
Typical conversation	60				
Ambient suburban environment	40				
Ambient rural environment	30				
Bedroom (night with windows closed)	20				
Threshold of hearing	0				

 Table A2 provides a list of common noise sources and their typical sound level.

Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com

Noise Monitoring Assessment

Dunloe Quarry, Pottsville, NSW Quarter 3 Ending September 2018.

Prepared for: Holcim (Australia) Pty Ltd September 2018 MAC180611-07RP1

Document Information

Noise Monitoring Assessment

Dunloe Quarry, Pottsville, NSW

Quarter 3 Ending September 2018

Prepared for: Holcim (Australia) Pty Ltd

Prepared by: Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com

Document ID	Status	Date	Prepared By	Signed	Reviewed By	Signed
MAC180611-07RP1	Final	17 September 2018	Robin Heaton	Robin Heaton	Rod Linnett	RHLA

DISCLAIMER

All documents produced by Muller Acoustic Consulting Pty Ltd (MAC) are prepared for a particular client's requirements and are based on a specific scope, circumstances and limitations derived between MAC and the client. Information and/or report(s) prepared by MAC may not be suitable for uses other than the original intended objective. No parties other than the client should use or reproduce any information and/or report(s) without obtaining permission from MAC. Any information and/or documents prepared by MAC is not to be reproduced, presented or reviewed except in full.

CONTENTS

1	IN	ITRODUCTION	5
2	Ν	OISE CRITERIA	7
3	Μ	IETHODOLOGY	9
	3.1	LOCALITY	9
	3.2	NOISE MONITORING LOCATIONS	9
	3.3	ASSESSMENT METHODOLOGY	9
4	R	ESULTS	11
	4.1	ASSESSMENT RESULTS - LOCATION R1	11
	4.2	ASSESSMENT RESULTS - LOCATION R2	11
	4.3	ASSESSMENT RESULTS - LOCATION R3	12
	4.4	ASSESSMENT RESULTS - LOCATION R4	12
5	Ν	OISE COMPLIANCE ASSESSMENT	13
6	D	ISCUSSION	15
	6.1	DISCUSSION OF RESULTS - LOCATION R1	15
	6.2	DISCUSSION OF RESULTS - LOCATION R2	15
	6.3	DISCUSSION OF RESULTS - LOCATION R3	15
	6.4	DISCUSSION OF RESULTS - LOCATION R4	15
7	С	ONCLUSION	17

APPENDIX A - GLOSSARY OF TERMS

1 Introduction

Muller Acoustic Consulting Pty Ltd (MAC) has been commissioned by Holcim (Australia) Pty Ltd (Holcim) to complete a Noise Monitoring Assessment (NMA) for the quarterly period ending September 2018 for Dunloe Quarry (the 'quarry'), Pottsville, NSW.

The monitoring has been conducted in accordance with the Dunloe Project Approval and Noise Management Plan at four representative monitoring locations. This assessment represents the operations undertaken during Quarter 3, September 2018 and forms part of the annual noise monitoring program to address conditions of the project approval.

The assessment has been conducted in accordance with the following documents:

- NSW Environment Protection Authority (EPA), Noise Policy for Industry (NPI), 2017;
- Dunloe Noise Management Plan (NMP), 2016; and
- Australian Standard AS 1055.1:1997 Acoustics Description and measurement of environmental noise - General Procedures.

A glossary of terms, definitions and abbreviations used in this report is provided in Appendix A.

2 Noise Criteria

Schedule 3 Section 2 of the sites Project Approval, outlines the applicable noise criteria for residential receivers surrounding the quarry site.

The noise criteria are applicable when the site undertakes quarrying operations with the site permitted to operate Monday to Friday 7am – 5pm, Saturday 7am – 12pm with no operations on Sunday.

 Table 1 presents the noise criteria for each of the receivers as outlined in the Project Approval.

Table 1 Noise Criteria					
Location	Day LAeq(15min) Criteria ²				
All privately-owned receivers ¹	48				

Note 1: Receiver locations are shown in Figure 1.

Note 2: Criteria applicable between Monday to Friday 7am – 5pm, Saturday 7am – 12pm with no operations on Sunday as the Table 2 of the Project Approval.

3 Methodology

3.1 Locality

The quarry is approximately 2.5km south west of Pottsville, NSW. Receivers surrounding the quarry are primarily rural/residential situated in coastal bushland with elevated and undulating topography. The monitoring locations with respect to the quarry and assessed receivers are presented in the locality plan shown in **Figure 1**.

3.2 Noise Monitoring Locations

Four monitoring locations have been selected as part of the NMA and are listed below:

- R1 is located at the property on Kellehers Road situated north of the quarry;
- R2 is located west of the quarry on the boundary of 574 Pottsville Road;
- R3 is located to the south-west of the quarry at the address of 122 Warwick Park Road; and
- R4 is located at 265 Warwick Park Road, south of the quarry.

3.3 Assessment Methodology

Attended noise surveys were conducted in general accordance with the procedures described in Australian Standard AS 1055-1997, "Acoustics - Description and Measurement of Environmental Noise and Dunloe Quarry's Project Approval. Measurements were carried out using a Svantek Type 1, 971 noise analyser on Tuesday 11 September 2018. Acoustic instrumentation used carries current NATA calibration and complies with AS IEC 61672.1-2004-Electroacoustics - Sound level meters - Specifications. Calibration of all instrumentation was checked prior to and following measurements. Drift in calibration did not exceed ±0.5dBA.

One measurement was conducted at each monitoring location during the daytime period. Measurements were of 15 minutes in duration and where possible, throughout each survey the operator quantified the contribution of each significant noise source.

Extraneous noise sources were excluded from the analysis to determine the LAeq(15min) quarry noise contribution for comparison against the relevant criteria. Where the quarry was inaudible, the contribution is estimated to be at least 10dB below the ambient noise level.

FIGURE 1 LOCALITY PLAN REF: MAC180611-07

4 Results

4.1 Assessment Results - Location R1

The monitored noise level contributions and observed meteorological conditions for R1 for are presented in **Table 2**.

Table 2 Operator-Attended Noise Survey Results – Location R1							
Date	Time (hrs)	Descriptor (dBA re 20 µPa)			Motoorology	Description and SDL dDA	
		LAmax	LAeq	LA90	Meteorology	Description and SFE, dBA	
						Wind in grass 40-46	
					Dir: S	Cars in Drive 50-89	
11/09/2018	11:29	89	61	38	Wind Speed: 2 m/s	Farm Activities 40-46	
					Rain: Nil	Distant traffic 35-45	
						Quarry Inaudible	
	Dunk	<30					

4.2 Assessment Results - Location R2

The monitored noise level contributions and observed meteorological conditions for R2 are presented in **Table 3.**

Table 3 Operator-Attended Noise Survey Results – Location R2							
Date	Time (hrs)	Descriptor (dBA re 20 µPa)			Motoorology	Description and SPL dPA	
		LAmax	LAeq	LA90	Meteorology	Description and Sr E, dBA	
						Highway traffic 51-55	
					Dir: S	Birds 36-50	
11/09/2018	10:57	80	61	47	Wind Speed: 1.5 m/s	Local traffic 41-80	
					Rain: Nil	Wind in trees 40-48	
						Quarry Inaudible	
	<30						

4.3 Assessment Results - Location R3

The monitored noise level contributions and observed meteorological conditions R3 are presented in Table 4.

Table 4 Operator-Attended Noise Survey Results – Location R3							
Date Time (hrs	Time (brs)	Descriptor (dBA re 20 µPa)			Mataorology	Description and SPL_dBA	
	Time (Tits)	LAmax	LAeq	LA90	Meteorology		
						Distant traffic 35-41	
					Dir: S	Wind in trees 32-47	
11/09/2018	10:36	58	42	38	Wind Speed: 1.2 m/s	Resident Noise 30-36	
					Rain: Nil	Aircraft 41-46	
						Quarry Inaudible	
	<30						

4.4 Assessment Results - Location R4

The monitored noise level contributions and observed meteorological conditions for R4 are presented in **Table 5**.

Table 5 Operator-Attended Noise Survey Results – Location R4							
Date Time (r	Time (brs)	Descriptor (dBA re 20 µPa)			Mataoralogy	Description and SPL dBA	
	Time (Tits)	LAmax	LAeq	LA90	Meteorology	Description and Sr E, dBA	
						Wind in trees 40-51	
					Dir: S	Birds 36-50	
11/09/2018	10:15	70	46	37	Wind Speed: 2.6m/s	Aircraft 40-52	
					Rain: Nil	Truck on farm 43-46	
						Quarry Inaudible	
Dunloe Quarry LAeq(15min) Contribution						<30	

5 Noise Compliance Assessment

The compliance assessment for each residential receiver R1, R2, R3 and R4 are presented in **Table 6** for day assessment periods.

Table 6 Daytime Noise Compliance Summary							
Poooiver No	Quarry Noise Contribution	Quarry Noise Criteria					
Receiver no.	LAeq(15min)	LAeq(15min)	Compliant				
R1	<30	48	\checkmark				
R2	<30	48	\checkmark				
R3	<30	48	\checkmark				
R4	<30	48	\checkmark				

6 Discussion

6.1 Discussion of Results - Location R1

Quarry noise emissions were inaudible during noise monitoring conducted on Tuesday 11 September 2018 at location R1, satisfying the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources included wind in trees, local residential noise, birds, distant highway traffic. All extraneous noises were generally constant during the 15 minute measurement at R1.

6.2 Discussion of Results - Location R2

Quarry noise emissions were inaudible during noise monitoring conducted on Tuesday 11 September 2018 at location R2, satisfying the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources included wind in trees, highway and passing local traffic. All extraneous noises were generally constant during the 15 minute measurement at R2.

6.3 Discussion of Results - Location R3

Quarry noise emissions were inaudible during noise monitoring conducted on Tuesday 11 September 2018 at location R3, satisfying the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources included distant highway traffic, wind in trees and birds. All extraneous noises were generally constant during the 15 minute measurement at R3.

6.4 Discussion of Results - Location R4

Quarry noise emissions were inaudible during noise monitoring conducted on Tuesday 11 September 2018 at location R4, satisfying the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources included wind in trees, aircraft noise, birds, distant highway traffic. All extraneous noises were generally constant during the 15 minute measurement at R4.

7 Conclusion

Muller Acoustic Consulting Pty Ltd (MAC) has completed a Noise Monitoring Assessment (NMA) on behalf of Holcim (Australia) Pty Ltd at Dunloe Quarry, Pottsville, NSW. The assessment was completed to determine the quarry's compliance with the relevant criteria outlined in their Project Approval for relevant surrounding residential receivers for the Quarter 3 period ending September 2018.

Attended noise monitoring was undertaken on 11 September 2018 at representative monitoring locations, with quarry noise contributions compared against the relevant criteria. The assessment has identified that noise emissions generated by Dunloe Quarry comply with relevant noise criteria specified in the Project Approval at all assessed residential receivers.

Appendix A - Glossary of Terms

 Table A1 provides a number of technical terms have been used in this report.

Table A1 Glossary of Te	Table A1 Glossary of Terms						
Term	Description						
1/3 Octave	Single octave bands divided into three parts						
Octave	A division of the frequency range into bands, the upper frequency limit of each band being twice						
	the lower frequency limit.						
ABL	Assessment Background Level (ABL) is defined in the NPI as a single figure background level for						
	each assessment period (day, evening and night). It is the tenth percentile of the measured LA90						
	statistical noise levels.						
Adverse Weather	Weather effects that enhance noise (that is, wind and temperature inversions) that occur at a site						
	for a significant period of time (that is, wind occurring more than 30% of the time in any						
	assessment period in any season and/or temperature inversions occurring more than 30% of the						
	nights in winter).						
Ambient Noise	The noise associated with a given environment. Typically a composite of sounds from many						
	sources located both near and far where no particular sound is dominant.						
A Weighting	A standard weighting of the audible frequencies designed to reflect the response of the human						
	ear to noise.						
dBA	Noise is measured in units called decibels (dB). There are several scales for describing noise, the						
	most common being the 'A-weighted' scale. This attempts to closely approximate the frequency						
	response of the human ear.						
dB(Z), dB(L)	Decibels Linear or decibels Z-weighted.						
Hertz (Hz)	The measure of frequency of sound wave oscillations per second - 1 oscillation per second						
	equals 1 hertz.						
LA10	A noise level which is exceeded 10 % of the time. It is approximately equivalent to the average of						
	maximum noise levels.						
LA90	Commonly referred to as the background noise, this is the level exceeded 90 $\%$ of the time.						
LAeq	The summation of noise over a selected period of time. It is the energy average noise from a						
	source, and is the equivalent continuous sound pressure level over a given period.						
LAmax	The maximum root mean squared (rms) sound pressure level received at the microphone during a						
	measuring interval.						
RBL	The Rating Background Level (RBL) is an overall single figure background level representing						
	each assessment period over the whole monitoring period. The RBL is used to determine the						
	intrusiveness criteria for noise assessment purposes and is the median of the ABL's.						
Sound power level (LW)	This is a measure of the total power radiated by a source. The sound power of a source is a						
	fundamental location of the source and is independent of the surrounding environment. Or a						
	measure of the energy emitted from a source as sound and is given by :						
	= 10.log10 (W/Wo)						
	Where : W is the sound power in watts and Wo is the sound reference power at 10-12 watts.						

Table A2 Common Noise Sources and Their Typical Sound Pressure Levels (SPL), dBA						
Source	Typical Sound Level					
Threshold of pain	140					
Jet engine	130					
Hydraulic hammer	120					
Chainsaw	110					
Industrial workshop	100					
Lawn-mower (operator position)	90					
Heavy traffic (footpath)	80					
Elevated speech	70					
Typical conversation	60					
Ambient suburban environment	40					
Ambient rural environment	30					
Bedroom (night with windows closed)	20					
Threshold of hearing	0					

 Table A2 provides a list of common noise sources and their typical sound level.

Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com

Noise Monitoring Assessment

Dunloe Quarry, Pottsville, NSW Quarter 4 Ending December 2018.

Prepared for: Holcim (Australia) Pty Ltd December 2018 MAC180611-07RP2

Document Information

Noise Monitoring Assessment

Dunloe Quarry, Pottsville, NSW

Quarter 4 Ending December 2018

Prepared for: Holcim (Australia) Pty Ltd

Prepared by: Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com

Document ID	Status	Date	Prepared By Signed		Reviewed By	Signed
MAC180611-07RP2	Final	7 December 2018	Robin Heaton	Robin Heaton	Rod Linnett	RH Leff-

DISCLAIMER

All documents produced by Muller Acoustic Consulting Pty Ltd (MAC) are prepared for a particular client's requirements and are based on a specific scope, circumstances and limitations derived between MAC and the client. Information and/or report(s) prepared by MAC may not be suitable for uses other than the original intended objective. No parties other than the client should use or reproduce any information and/or report(s) without obtaining permission from MAC. Any information and/or documents prepared by MAC is not to be reproduced, presented or reviewed except in full.

CONTENTS

1	IN	ITRODUCTION	5
2	N	OISE CRITERIA	7
3	Μ	IETHODOLOGY	9
	3.1	LOCALITY	9
	3.2	NOISE MONITORING LOCATIONS	9
	3.3	ASSESSMENT METHODOLOGY	9
4	R	ESULTS	11
	4.1	ASSESSMENT RESULTS - LOCATION R1	11
	4.2	ASSESSMENT RESULTS - LOCATION R2	11
	4.3	ASSESSMENT RESULTS - LOCATION R3	12
	4.4	ASSESSMENT RESULTS - LOCATION R4	12
5	Ν	OISE COMPLIANCE ASSESSMENT	13
6	D	ISCUSSION	15
	6.1	DISCUSSION OF RESULTS - LOCATION R1	15
	6.2	DISCUSSION OF RESULTS - LOCATION R2	15
	6.3	DISCUSSION OF RESULTS - LOCATION R3	15
	6.4	DISCUSSION OF RESULTS - LOCATION R4	15
7	С	ONCLUSION	17

APPENDIX A - GLOSSARY OF TERMS

1 Introduction

Muller Acoustic Consulting Pty Ltd (MAC) has been commissioned by Holcim (Australia) Pty Ltd (Holcim) to complete a Noise Monitoring Assessment (NMA) for the quarterly period ending December 2018 for Dunloe Quarry (the 'quarry'), Pottsville, NSW.

The monitoring has been conducted in accordance with the Dunloe Project Approval and Noise Management Plan at four representative monitoring locations. This assessment represents the operations undertaken during Quarter 4, ending December 2018 and forms part of the annual noise monitoring program to address conditions of the project approval.

The assessment has been conducted in accordance with the following documents:

- NSW Environment Protection Authority (EPA), Noise Policy for Industry (NPI), 2017;
- Dunloe Noise Management Plan (NMP), 2016; and
- Australian Standard AS 1055:2018- Acoustics Description and measurement of environmental noise - General Procedures.

A glossary of terms, definitions and abbreviations used in this report is provided in Appendix A.

2 Noise Criteria

Schedule 3 Section 2 of the sites Project Approval, outlines the applicable noise criteria for residential receivers surrounding the quarry site.

The noise criteria are applicable when the site undertakes quarrying operations with the site permitted to operate Monday to Friday 7am – 5pm, Saturday 7am – 12pm with no operations on Sunday.

 Table 1 presents the noise criteria for each of the receivers as outlined in the Project Approval.

Table 1 Noise Criteria						
Location	Day LAeq(15min) Criteria ²					
All privately-owned receivers ¹	48					

Note 1: Receiver locations are shown in Figure 1.

Note 2: Criteria applicable between Monday to Friday 7am – 5pm, Saturday 7am – 12pm with no operations on Sunday as the Table 2 of the Project Approval.

3 Methodology

3.1 Locality

The quarry is approximately 2.5km south west of Pottsville, NSW. Receivers surrounding the quarry are primarily rural/residential situated in coastal bushland with elevated and undulating topography. The monitoring locations with respect to the quarry and assessed receivers are presented in the locality plan shown in **Figure 1**.

3.2 Noise Monitoring Locations

Four monitoring locations have been selected as part of the NMA and are listed below:

- R1 is located at the property on Kellehers Road situated north of the quarry;
- R2 is located west of the quarry on the boundary of 574 Pottsville Road;
- R3 is located to the south-west of the quarry at the address of 122 Warwick Park Road; and
- R4 is located at 265 Warwick Park Road, south of the quarry.

3.3 Assessment Methodology

Attended noise surveys were conducted in general accordance with the procedures described in Australian Standard AS 1055:2018, "Acoustics - Description and Measurement of Environmental Noise and Dunloe Quarry's Project Approval. Measurements were carried out using a Svantek Type 1, 971 noise analyser on Wednesday 21 November 2018. Acoustic instrumentation used carries current NATA calibration and complies with AS IEC 61672.1-2004-Electroacoustics - Sound level meters - Specifications. Calibration of all instrumentation was checked prior to and following measurements. Drift in calibration did not exceed ±0.5dBA.

One measurement was conducted at each monitoring location during the daytime period. Measurements were of 15 minutes in duration and where possible, throughout each survey the operator quantified the contribution of each significant noise source.

Extraneous noise sources were excluded from the analysis to determine the LAeq(15min) quarry noise contribution for comparison against the relevant criteria. Where the quarry was inaudible, the contribution is estimated to be at least 10dB below the ambient noise level.

4 Results

4.1 Assessment Results - Location R1

The monitored noise level contributions and observed meteorological conditions for R1 for are presented in **Table 2**.

Table 2 Operator-Attended Noise Survey Results – Location R1							
Date Time (hrs)	Time (bre)	Descriptor (dBA re 20 µPa)			Mataoralagy	Description and SDL dDA	
	nine (nis)	LAmax	LAeq	LA90	Meleorology	Description and SPL, dBA	
					WD: N	Wind in trees 42-78	
	10.44	78	56	44	WD. N	Birds 42-50	
21/11/2010	12.44				WS. 1.5m/s	Distant traffic 40-44	
					Rain. Nii	Quarry Inaudible	
	Dunk	<30					

4.2 Assessment Results - Location R2

The monitored noise level contributions and observed meteorological conditions for R2 are presented in **Table 3.**

Table 3 Operator-Attended Noise Survey Results – Location R2						
Date Time (hrs)	Time (bre)	Descriptor (dBA re 20 µPa)			Mataaralagy	Description and CDL dDA
	LAmax	LAeq	LA90	Meleorology	Description and SPL, dBA	
						Wind in trees 48-56
					WD: N	Traffic 48-82
21/11/2018	13:05	82	63	52	WS: 2.0m/s	Aircraft 48-56
					Rain: Nil	Insects 45-52
						Quarry Inaudible
Dunloe Quarry LAeq(15min) Contribution						<30

4.3 Assessment Results - Location R3

The monitored noise level contributions and observed meteorological conditions R3 are presented in Table 4.

Table 4 Operator-Attended Noise Survey Results – Location R3							
Date Time (hrs)	Time (bre)	Descriptor (dBA re 20 µPa)				Description and CDL dDA	
	nine (nis)	LAmax	LAeq	LA90	Meleorology	Description and SPL, dBA	
					WD: N	Wind in trees 52-58	
21/11/2018 13:23	10.00	13:23 71 57 52	50		Insects 50-63		
	13:23		57	52	WS: 2.0m/s	Traffic 52-71	
					Rain: Nil	Quarry Inaudible	
	Dunk	<30					

4.4 Assessment Results - Location R4

The monitored noise level contributions and observed meteorological conditions for R4 are presented in **Table 5**.

Table 5 Operator-Attended Noise Survey Results – Location R4							
Date Time	Time (bra)	Descript	or (dBA re	20 µPa)	Mataaralagu	Description and SDL dDA	
	Time (TIIS)	LAmax	LAeq	LA90	Meteorology	Description and SPL, dBA	
					WD: N	Wind in trees 52-67	
21/11/2018	13:43	67	57	51	WS: 2.0m/s	Traffic 45-51	
					Rain: Nil	Quarry Inaudible	
Dunloe Quarry LAeq(15min) Contribution					<30		

5 Noise Compliance Assessment

The compliance assessment for each residential receiver R1, R2, R3 and R4 are presented in **Table 6** for day assessment periods.

Table 6 Daytime Noise Compliance Summary										
DessiverNe	Quarry Noise Contribution	Quarry Noise Criteria								
Receiver no.	LAeq(15min)	LAeq(15min)	Compliant							
R1	<30	48	\checkmark							
R2	<30	48	\checkmark							
R3	<30	48	\checkmark							
R4	<30	48	\checkmark							

6 Discussion

6.1 Discussion of Results - Location R1

Quarry noise emissions were inaudible during noise monitoring conducted on Wednesday 21 November 2018 at location R1, satisfying the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources included wind in trees, birds, distant highway traffic and were generally constant throughout the measurement.

6.2 Discussion of Results - Location R2

Quarry noise emissions were inaudible during noise monitoring conducted on Wednesday 21 November 2018 at location R2, satisfying the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources included the continuous noise of the wind in trees, insects, distant highway traffic and intermittent sources such as passing local traffic and aircraft passing overhead.

6.3 Discussion of Results - Location R3

Quarry noise emissions were inaudible during noise monitoring conducted on Wednesday 21 November 2018 at location R3, satisfying the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources included distant highway and local traffic, wind in trees and insects. All extraneous noises were generally constant during the 15 minute measurement at R3.

6.4 Discussion of Results - Location R4

Quarry noise emissions were inaudible during noise monitoring conducted on Wednesday 21 November 2018 at location R4, satisfying the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources included wind in trees, and distant highway traffic were generally constant throughout the measurement.

7 Conclusion

Muller Acoustic Consulting Pty Ltd (MAC) has completed a Noise Monitoring Assessment (NMA) on behalf of Holcim (Australia) Pty Ltd at Dunloe Quarry, Pottsville, NSW. The assessment was completed to determine the quarry's compliance with the relevant criteria outlined in their Project Approval for relevant surrounding residential receivers for the Quarter 4, ending December 2018.

Attended noise monitoring was undertaken on Wednesday 21 November 2018 at representative monitoring locations, with quarry noise contributions compared against the relevant criteria. The assessment has identified that noise emissions generated by Dunloe Quarry comply with relevant noise criteria specified in the Project Approval at all assessed residential receivers.

Appendix A - Glossary of Terms

 Table A1 provides a number of technical terms have been used in this report.

Table A1 Glossary of Terms								
Term	Description							
1/3 Octave	Single octave bands divided into three parts							
Octave	A division of the frequency range into bands, the upper frequency limit of each band being twice							
	the lower frequency limit.							
ABL	Assessment Background Level (ABL) is defined in the NPI as a single figure background level for							
	each assessment period (day, evening and night). It is the tenth percentile of the measured LA90							
	statistical noise levels.							
Adverse Weather	Weather effects that enhance noise (that is, wind and temperature inversions) that occur at a site							
	for a significant period of time (that is, wind occurring more than 30% of the time in any							
	assessment period in any season and/or temperature inversions occurring more than 30% of the							
	nights in winter).							
Ambient Noise	The noise associated with a given environment. Typically a composite of sounds from many							
	sources located both near and far where no particular sound is dominant.							
A Weighting	A standard weighting of the audible frequencies designed to reflect the response of the human							
	ear to noise.							
dBA	Noise is measured in units called decibels (dB). There are several scales for describing noise, the							
	most common being the 'A-weighted' scale. This attempts to closely approximate the frequency							
	response of the human ear.							
dB(Z), dB(L)	Decibels Linear or decibels Z-weighted.							
Hertz (Hz)	The measure of frequency of sound wave oscillations per second - 1 oscillation per second							
	equals 1 hertz.							
LA10	A noise level which is exceeded 10 % of the time. It is approximately equivalent to the average of							
	maximum noise levels.							
LA90	Commonly referred to as the background noise, this is the level exceeded 90 $\%$ of the time.							
LAeq	The summation of noise over a selected period of time. It is the energy average noise from a							
	source, and is the equivalent continuous sound pressure level over a given period.							
LAmax	The maximum root mean squared (rms) sound pressure level received at the microphone during a							
	measuring interval.							
RBL	The Rating Background Level (RBL) is an overall single figure background level representing							
	each assessment period over the whole monitoring period. The RBL is used to determine the							
	intrusiveness criteria for noise assessment purposes and is the median of the ABL's.							
Sound power level (LW)	This is a measure of the total power radiated by a source. The sound power of a source is a							
	fundamental location of the source and is independent of the surrounding environment. Or a							
	measure of the energy emitted from a source as sound and is given by :							
	= 10.log10 (W/Wo)							
	Where : W is the sound power in watts and Wo is the sound reference power at 10-12 watts.							

Table A2 Common Noise Sources and Their Typical Sound Pressure Levels (SPL), dBA									
Source	Typical Sound Level								
Threshold of pain	140								
Jet engine	130								
Hydraulic hammer	120								
Chainsaw	110								
Industrial workshop	100								
Lawn-mower (operator position)	90								
Heavy traffic (footpath)	80								
Elevated speech	70								
Typical conversation	60								
Ambient suburban environment	40								
Ambient rural environment	30								
Bedroom (night with windows closed)	20								
Threshold of hearing	0								

 Table A2 provides a list of common noise sources and their typical sound level.

Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com

APPENDIX 2

DUNLOE SAND QUARRY LONGTERM ENVIRONMENTAL MONITORING

Longterm Depositional Dust Monitoring at Dunloe Sands Quarry										
Data located Date Location		Location	D1	D2	D3	D4				
		g/m2/month	g/m2/month	g/m2/month	g/m2/month					
Appendix of 2015 AEMR	17-07-2015	Dunloe Sands	0.3	0.2	0.7	0.4				
Appendix of 2015 AEMR	19-08-2015	Dunloe Sands	0.3	0.3	0.2	0.2				
Appendix of 2015 AEMR	17-09-2015	Dunloe Sands	0.5	1.6	0.4	0.5				
Appendix of 2015 AEMR	21-10-2015	Dunloe Sands	0.1	0.6	0.2	0.1				
Appendix of 2015 AEMR	25-11-2015	Dunloe Sands	0.3	1.7	0.6	0.5				
Appendix of 2015 AEMR	16-12-2015	Dunloe Sands	0.7	0.8	0.4	0.6				
2016 AEMR	Jan-16	Dunloe Sands	0.3	0.4	0.5	0.6				
2016 AEMR	Feb-16	Dunloe Sands	0.4	0.6	0.5	0.5				
2016 AEMR	Mar-16	Dunloe Sands	0.2	4.7	0.3	0.5				
2016 AEMR	Apr-16	Dunloe Sands	0.2	1.6	0.2	0.8				
2016 AEMR	May-16	Dunloe Sands	0.3	1.2	0.3	1.6				
2016 AEMR	Jun-16	Dunloe Sands	0.3	1.1	1.6	0.5				
2016 AEMR	Jul-16	Dunloe Sands	0.13	0.52	0.41	0.39				
2016 AEMR	Aug-16	Dunloe Sands	0.6	0.5	0.3	0.4				
2016 AEMR	Sep-16	Dunloe Sands	0.8	0.5	0.4	0.3				
2016 AEMR	Oct-16	Dunloe Sands	0.8	0.5	0.4	0.3				
2016 AEMR	Nov-16	Dunloe Sands	0.4	1.9	0.3	0.4				
2016 AEMR	Dec-16	Dunloe Sands	0.5	1.7	0.6	0.5				
2017 Q1 Env Mon report	30-01-2017	Dunloe Sands	0.3	0.2	0.5	0.3				
2017 Q1 Env Mon report	27-02-2017	Dunloe Sands	0.3	0.2	0.2	0.3				
2017 Enviro Monitoring	22-03-2017	Dunloe Sands	0.2	0.1	2.4	0.3				
2017 Enviro Monitoring	19-04-2017	Dunloe Sands	0.2	0.9	1	0.3				
2017 Enviro Monitoring	17-05-2017	Dunloe Sands	0.8	0.8	1.4	0.7				
2017 Enviro Monitoring	14-06-2017	Dunloe Sands	0.2	0.2	0.2	0.2				
2017 Enviro Monitoring	12-07-2017	Dunloe Sands	0.3	0.1	0.2	0.3				
2017 Enviro Monitoring	09-08-2017	Dunloe Sands	0.1	0.1	0.2	0.5				
2017 Enviro Monitoring	06-09-2017	Dunloe Sands	0.5	0.2	0.5	0.5				
2017 Enviro Monitoring	04-10-2017	Dunloe Sands	0.7	0.6	2.4	0.9				
2017 Enviro Monitoring	01-11-2017	Dunloe Sands	0.5	0.3	0.8	0.5				
2017 Enviro Monitoring	29-11-2017	Dunloe Sands	0.1	0.2	0.3	0.1				
2017 Enviro Monitoring	28-12-2017	Dunloe Sands	0.4	0.3	0.2	0.2				
2018 Enviro Monitoring	24-01-2018	Dunloe Sands	0.1	0.1	0.1	0.1				
2018 Enviro Monitoring	21-02-2018	Dunloe Sands	2.7	0.7	1.6	0.6				
2018 Enviro Monitoring	21-03-2018	Dunloe Sands	0.4	4.9c	11.8c	7.1c				
2018 Enviro Monitoring	18-04-2018	Dunloe Sands	0.4	0.1	0.3	0.2				
2018 Enviro Monitoring	16-05-2018	Dunloe Sands	0.2	0.4	0.6	0.3				
2018 Enviro Monitoring	13-06-2018	Dunloe Sands	0.3	0.2	5.2c	0.4				
2018 Enviro Monitoring	11-07-2018	Dunloe Sands	0.5	0.4	0.5	0.2				
2018 Enviro Monitoring	08-08-2018	Dunloe Sands	0.4	0.5	0.3	0.2				
2018 Enviro Monitoring	05-09-2018	Dunloe Sands	NS	NS	NS	NS				
2018 Enviro Monitoring	05-10-2018	Dunloe Sands	0.1	0.4	0.3	0.7				
2018 Enviro Monitoring	06-11-2018	Dunloe Sands	0.1	0.1	1.5	0.7				
2018 Enviro Monitoring	Dunloe Sands	1	0.2	1.6	0.3					
		Minimum	0.1	0.1	0.1	0.1				

Niaximum	2./	1.9	2.4	1.6
Average	0.45	0.53	0.70	0.44

\\au.sir.local\Corporate\Projects-SLR\630-SrvNTL\630-NTL\630.12676 Holcim Quarries Annual Reporting 2018\04 Reports\Dunloe Sands\Environmental Monitoring Database\Dunloe Sands Enviro longterm mon 18.xlsx DUST Printed 27-03-2019 1:29 PM

Longterm Surrounding Surface Water Quality Monitoring at Dunloe Sands Quarry

Data located	Date	Location	рН	EC	DO (membrane electrode)	Turbidity	TSS	Total Phosphorus-P	Total-N	Calcium	Magnesium	Potassium	Sulfur as Sulfate	Arsenic (Total)	Iron (Total)	Manganese (Total)
			pH	µScm-1	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
2011/2012 AEMR	Dec-11	SW3	6	253	8.4		8	0.03	0.05	.				<u> </u>		
2011/2012 AEMR	Mar-12	SW3	5.4	227	5.5		11	0.02	0.96							
2011/2012 AEMR	Jun-12	SW3	6	314	7.8	36	12	0.05	0.7	8.2						
2011/2012 AEMR	27-09-2012	SW3	6.7	17676	7.6	10	5.2	0.03	0.52							
2012/2013 AEMR	Dec-12	SW3	6.7	25765	6		14	0.04	0.7							
2012/2013 AEMR	Mar-13	SW3	6.7	3489	6.8		8.4	0.03	0.53							
2012/2013 AEMR	Jun-13	SW3	6	692	7.2		48									
2012/2013 AEMR	Sep-13	SW3	7	17686	7.3		14	0.02	0.38							
2013/2014 AEMR	12-12-2013	SW3	7.1	25681	5.8		13	0.02	0.34							
2013/2014 AEMR	Mar-14	SW3	3.7	1753	2.9		42	0.05	1.54							
2013/2014 AEMR	31-03-2014	SW3	3.7	1753	2.9	77	42	0.05	1.54							
2013/2014 AEMR	25-06-2014	SW3	5.7	19911	8.9	14	9	< 0.02	0.76							
2013/2014 AEMR	Aug-14	SW3	7.9	41455	8.4		5.8	<0.02	0.2							
2013/2014 AEMR	29-09-2014	SW3	7.9	41455	8.4	6.2	5.8	<0.02	0.2	123	16	7	505	< 0.005	11	106
Appendix of 2015 AEMR	15-12-2014	SW3	7.7	30732	7.9	9.9	35	0.03	0.36							
Appendix of 2015 AEMR	26-03-2015	SW3	3.7	1834	4.8	54	23	0.04	1.32							
Appendix of 2015 AEMR	24-04-2015	SW3	6.5	12467	7.2	7.8	4.0	0.15	0.46							
Appendix of 2015 AEMR	17-09-2015	SW3	6.7	15704	7.3	33	20	0.02	0.45							
Appendix of 2015 AEMR	11-12-2015	SW3	6.5	15038	6.8	13	24	<0.02	0.41							
Appendix of 2016 AEMR	24-03-2016	SW3	3.8	2548	3.6	54	24	0.06	1.16							
Appendix of 2016 AEMR	30-06-2016	SW3	5.5	1501.6	6.8	31	25	0.03	0.87							
Appendix of 2016 AEMR	29-09-2016	SW3	6.7	38914	6.1		5.6	0.02	0.23							
Appendix of 2016 AEMR	20-12-2016	SW3	7.4	36425	7.1		6.2	<0.02	0.31							
	Number o	of Samples	23	23	23	12	23	17	22	2	1	1	1	0	1	1
		Minimum	3.7	227	2.9	6.2	4		0.05	8.2	16	7	505		11	106
		Maximum	7.9	41455	8.9	77	48		1.54	123	16	7	505		11	106
		Average	6.13	15359.72	6.59	28.83	17.61		0.64	65.60	16.00	7.00	505.00		11.00	106.00
2011/2012 AEMR	Dec-11	SW4	6.4	1504	5.3		12	0.03	0.63							
2011/2012 AEMR	Mar-12	SW4	6	458	6.8		6.7	0.03	0.81							
2011/2012 AEMR	Jun-12	SW4	6.2	805	8.6	26	7.7	0.04	0.78	10						
2011/2012 AEMR	27-09-2012	SW4	7	23790	7	5.1	10	< 0.02	0.27							
2012/2013 AEMR	Dec-12	SW4	7	30543	5.7		9.4	< 0.02	0.39							
2012/2013 AEMR	Mar-13	SW4	7.6	29821	7		9.6	0.02	0.54							
2012/2013 AEMR	Jun-13	SW4	5.9	890	7.4		16									
2012/2013 AEMR	Sep-13	SW4	6.8	16825	7.2		8.8	0.02	0.41							
2013/2014 AEMR	12-12-2013	SW4	6.7	17021	5.5		15	0.03	0.51							
2013/2014 AEMR	Mar-14	SW4	3.8	1354	2.5		41	0.04	1.43							
2013/2014 AEMR	31-03-2014	SW4	3.8	1354	2.5	76	41	0.04	1.43							
2013/2014 AEMR	25-06-2014	SW4	6.5	25363	8.4	12	8	<0.02	0.5							
2013/2014 AEMR	Aug-14	SW4	7.1	22190	8.4		6	<0.02	0.31							
2013/2014 AEMR	29-09-2014	SW4	7.1	22190	8.4	9.8	6	<0.02	0.31							
Appendix of 2015 AEMR	15-12-2014	SW4	8	29257	10	11	33	0.05	0.86							
Appendix of 2015 AEMR	26-03-2015	SW4	3.7	1426	4.7	48	24	0.1	1.15							
Appendix of 2015 AEMR	24-04-2015	SW4	6.4	12416	7.4	22	18	0.02	0.45							
Appendix of 2015 AEMR	17-09-2015	SW4	6.7	8008	7.3	19	11	0.02	0.48							
Appendix of 2015 AEMR	11-12-2015	SW4	7.7	39859	7.5	4.2	9.5	0.02	0.24							
Appendix of 2016 AEMR	24-03-2016	SW4	3.8	2721	5.5	54	25	0.06	1.15							
Appendix of 2016 AEMR	30-06-2016	SW4	6.5	3468.2	8.4	14	10	0.02	0.7							
Appendix of 2016 AEMR	29-09-2016	SW4	6.9	37551	9.6		66	0.02	0.34							
Appendix of 2016 AEMR	20-12-2016	SW4	6.9	17005	6.9		8.5	0.03	0.49							
	Number of	of Samples	23	23	23	12	23	17	22	1						
		Minimum	3.7	23	2.5	4.2	6		0.24	1						
		Maximum	8	39859	10	76	66		1.43	10						
		Average	6.28	15035 62	6.87	25.09	17 /0		0.64	10.00						
		Average	0.20	10030.02	0.07	20.09	17.43		0.04	10.00						
Longterm Surrounding Surface Water Quality Monitoring at Dunloe Sands Quarry

			_							_	-	-		_	
2011/2012 AEMR	Dec-11	SW9	6.4	657	7.8		13	0.03	0.53						
2011/2012 AEMR	Mar-12	SW9	6.1	704	6.5		36	0.09	1.31						
2011/2012 AEMR	Jun-12	SW9	6.1	575	5.4	25	10	0.04	0.6	32					
2011/2012 AEMR	27-09-2012	SW9	7.3	13557	9.4	4.8	13	0.02	0.53						
2012/2013 AEMR	Dec-12	SW9	6.8	17219	6.9		9.4	0.04	0.76						
2012/2013 AEMR	Mar-13	SW9	6.7	3708	7.3		6.8	0.03	0.43						
2012/2013 AEMR	Jun-13	SW9	4.9	305	6.5		27								
2012/2013 AEMR	Sep-13	SW9	7	2753	9.9		29	0.13	1.34						
2013/2014 AEMR	12-12-2013	SW9	6.8	10096	5.2		20	0.05	0.81						
2013/2014 AEMR	Mar-14	SW9	4.6	1431	2.1		40	0.13	1.64						
2013/2014 AEMR	31-03-2014	SW9	4.6	1431	2.1	30	40	0.13	1.64						
2013/2014 AEMR	25-06-2014	SW9	6.6	18376	7.9	60	16	0.05	0.67						
2013/2014 AEMR	Aug-14	SW9	7.1	10705	9.3		20	0.03	0.6						
2013/2014 AEMR	29-09-2014	SW9	7.1	10705	9.3	36	20	0.03	0.6						
Appendix of 2015 AEMR	15-12-2014	SW9	8	26966	10	33	37	0.05	1.52						
Appendix of 2015 AEMR	26-03-2015	SW9	4.2	763	5.2	16	5.8	0.02	1.04						
Appendix of 2015 AEMR	24-04-2015	SW9	6.2	4344	6.8	29	14	0.03	0.86						
Appendix of 2015 AEMR	17-09-2015	SW9	6.6	7381	6.8	34	14	0.03	0.83						
Appendix of 2015 AEMR	11-12-2015	SW9	7.1	5694	5.2	22	28	0.05	0.81						
Appendix of 2016 AEMR	24-03-2016	SW9	6.1	4157	6.5	13	10	0.04	0.88						
Appendix of 2016 AEMR	30-06-2016	SW9	6.6	2577.4	7.6	19	6.3	0.02	0.78						
Appendix of 2016 AEMR	29-09-2016	SW9	6.8	35815	7.4		35	< 0.02	0.26						
Appendix of 2016 AEMR	20-12-2016	SW9	6.9	21421	6.9		6.4	0.04	0.82						
	Number o	of Samples	23	23	23	12	23		22	1					
		Minimum	4.2	23	2.1	4.8	5.8		0.26	1					
		Maximum	8	35815	10	60	40		1.64	32					
		Average	6 37	8753.93	6.87	26.82	19.86		0.88	32.00			1		
2011/2012 AEMD	Dec 11	Average	0.51	400	0.07	20.02	13.00	0.04	0.00	52.00					
2011/2012 AEMR	Dec-11	SVV10	0.Z	492	7.5		23	0.04	0.54						ł
2011/2012 AEMR	Ivial-12	SW10	5.7	040 905	4.3	46	3 I 22	0.03	0.73	25					
2011/2012 AEMR	Jun-12	SW10	0.4	000	0.7	43	22	0.07	0.00	30					ł
2011/2012 AEMR	27-09-2012 Dec 12	SW10	7.4 6.7	12/49	9.4	1.1	14	0.04	0.04						
2012/2013 AEMR	Dec-12	SW10	0.7	19403	0.9 E.C		1.4	0.03	0.71						
2012/2013 AEMR	Iviai-13	SW10	0.0	1025	5.0		10	0.05	0.77						ł
2012/2013 AEMR	Son 12	SW10	4.0	302	5.7 15		30	0.20	2.15						
2012/2013 AEMR	3ep-13	SW10	1.0	2070	15		40	0.29	2.15						
2013/2014 AEMR	12-12-2013 Mor 14	SW10	0.0	10775			10	0.03	0.00						
2013/2014 AEMR	21 02 2014	SW10	4.0	1454	2.2	20	40	0.13	1.03						
2013/2014 AEMIN 2013/2014 AEMID	25-06 2014	SW10 SW10	4.0	17210	<u> </u>	32	40	0.13	0.70		 	1	1		ł
2013/2014 AEMIN 2013/2014 AEMID	Δυσ 1/	SW10 SW10	7.0	016/	1.0	57	30	0.04	1.06		 	1	1		ł
2013/2014 AEMIN 2013/2014 AEMID	20_00 2011	SW10 SW10	7.2	016/	11	16	30	0.11	1.00						<u> </u>
Appendix of 2015 AEMD	15-12-2014	SW10	7.6	26036	12	40 22	<u> </u>	0.11	1.00						<u> </u>
Appendix of 2015 AEMR	26-03-2015	SW10	1.0	770	56	14	8.0	0.07	1.00						+
Appendix of 2015 AEMR	20-03-2015	SW10	4.2	119	5.0	25	15	0.00	0.87						
Appendix of 2015 AEMR	17 00 2015	SW10	6.5	6756	0.5	25	21	0.03	0.07						
Appendix of 2015 ALMIR	11-12 2015	S\//10	6.9	17660	57	57	<u>2</u> 1	<0.04	0.30		 				ł
Appendix of 2016 AEMP	24-03 2016	SW10 SW10	5.2	2067	<u> </u>	5.4 7 /	9 / Q	~0.0Z	0.33		 	1	1		ł
Appendix of 2016 AEMP	30-06 2016	SW10 SW10	5.3 6.7	1803.3	7 1	7.4	4.0 / Q	0.04	0.77		 				ł
Appendix of 2016 AEMP	20-00-2010	SW10 SW10	6.0	4030.0 350.02	60	1.1	4.0 26	0.02	0.01		 	1	1		ł
Appendix of 2016 AEMP	20-00-2010	SW10 SW10	6.9	7010	0.9 7 Q		10	0.02	0.00		 	1	1		ł
Appendix of 2016 AEMR	20-12-2010	SVVIU	0.9	1210	1.0	40	10	0.04	0.01	4					
		J Samples	23	23	23	12	23		22	1					
		Minimum	4.2	23	2.2	5.4	4.8		0.33	1					
		Maximum	7.8	35928	15	46	45		2.15	35					
		Average	6.34	8696.75	7.21	24.72	22.00		0.94	35.00					
		3													/

Longterm Pond Water Quality Monitoring at Dunloe Sands Quarry

Data located	Date	Location	рН	EC	DO (membrane electrode)	*Redox Potential	Alkalinity as CaCO3	Bicarbonate as CaCO3	Chloride	Turbidity	TSS	Chlorophyll 'a'	Oil and Grease	Total Phosphorus-P	Total-N	Ammonia	Calcium	Magnesium	Sodium	Potassium	Sulfur as Sulfate	Aluminium (Total)	Arsenic (Total)	Iron (Total)	Manganese (Total)
			рН	µScm-1	mg/L	mV	mg/L	mg/L	mg/L	NTU	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
2011/2012 AEMR 2011/2012 AEMR	30-05-2012	Lake	5.8	133	8.9		3	2	8	190	84		<2	0.09	0.66		13	15	63	<5	/1	1 21	<0.005	1.01	0.03
2011/2012 AEMR	26-07-2012	Lake	7	164	9.4		5	2	0	18	15		<2	0.04	33		15	1.5	0.5	-0	41	1.21	40.000	1.01	0.05
2011/2012 AEMR	27-08-2012	Lake	5.7	188	9.3	168			40	100	70		2	0.04	0.44			10			05	0.47	-0.005	0.44	0.05
2011/2012 AEMR 2011/2012 AEMR	29-10-2012	Lake	4.6	214	8.2		<1	<1	10	2.9	4		<2	<0.02	0.09		22	1.9	9	<5	65	0.47	<0.005	0.41	0.05
2012/2013 AEMR	25-11-2013	Lake	5.9	478	7					18	26		<2	0.04	0.33										
2013/2014 AEMR 2013/2014 AEMR	12-12-2013	Lake	4.7	568	7.7	160	2	1	22	33	54		<2	0.06	0.48		75	8.6	15	5	244	8.92	<0.005	3.49	0.64
2013/2014 AEMR	24-02-2014	Lake	4.4	780	7.7					40	41		<2	0.03	0.25										
2013/2014 AEMR	31-03-2014	Lake	4.9	800	7.5					70	63		<2	0.04	0.55										
2013/2014 AEMR 2013/2014 AEMR	28-04-2014	Lake	4.4	874	9.2					33 42	30		<2 <2	0.03	0.17										
2013/2014 AEMR	25-06-2014	Lake	3.8	916	9.4		<1	<1	35	72	53		<2	0.08	0.37		109	16	23	6	413	26	<0.005	12	1.05
2013/2014 AEMR 2013/2014 AEMR	30-07-2014	Lake	4.3	917						79 138	44		<2	0.02	0.44										
2013/2014 AEMR	29-09-2014	Lake	3.8	971	8		<1	<1		68	58		5	0.03	0.58										
Appendix of 2015 AEMR	28-11-2014	Lake	4	998	8.3		ND		40	70	101		<2	0.07	0.5		450	40		7	004	00	0.000	44	1.00
Appendix of 2015 AEMR Appendix of 2015 AEMR	15-12-2014 22-01-2015	Lake Lake 1	4.4	1005	8 7.4	204	NP	<1	40	119 78	<u>167</u> 96		<2 <2	0.14	0.31		159	18	29	/	394	33	0.008	11	1.23
Appendix of 2015 AEMR	25-02-2015	Lake 1	4.2	960	7					85	89		<2	0.08	0.6										
Appendix of 2015 AEMR	26-03-2015	Lake 1	4.1	853	7.5		NP	NP	38	34	55		<2	0.25	0.42		92	12	22	6	369	24.2	0.003	5.61	1.03
Appendix of 2015 AEMR	28-05-2015	Lake	4.4	927	9					52	85		<2	0.22	0.44										
Appendix of 2015 AEMR	17-09-2015	Lake	4.5	928	8.9		NP		35	56	61	6	<2	0.1	0.43	0.08	117	13	25	8	361	19.3	0.003	6.7	0.953
Appendix of 2015 AEMR Appendix of 2015 AEMR	21-10-2015	Lake Lake	4.4	955 996	7.8					56 5.1	100		<2 <2	0.08	0.28										
Appendix of 2015 AEMR	11-12-2015	Lake 1	4.2	956	6.8		<1	<1	45	20	39		<2	0.39	0.57		111	13	29	9	429	14.3	0.004	2.54	0.896
Appendix of 2016 AEMR	25-01-2016	Pond	3.9	1002	7.3					7.9			6												
Appendix of 2016 AEMR	24-02-2016	Pond	3.9	1021	7.9					7.2			2	0.07	0.12		112.71	14.14	43.28	9.32	382.38	10.93	0.002	1.24	0.88
Appendix of 2016 AEMR	29-04-2016	Pond	4.4	1037	8.6	-		-		7.7			2			-	-	-	-	-		-			
Appendix of 2016 AEMR	30-06-2016	Pond	4.9	518.9	9.8					4		16	4 2	0.02	0.31	<0.02	57.45	7.218	24.38	5.39	185.14	4.51	0.002	0.41	0.56
Appendix of 2016 AEMR	21-07-2016	Pond	4.5	546.4	9.3					1.2			0												
Appendix of 2016 AEMR Appendix of 2016 AEMR	31-08-2016 29-09-2016	Pond Pond	4.1	618	9.1 8.7					2		10	2			<0.02		7.9	27	6	220	2.83	0.002	0.41	0.39
Appendix of 2016 AEMR	27-10-2016	Pond	4	684	8.4					7.2		10	2			0.02		110		Ŭ	220	2.00	0.002	0.11	0.00
Appendix of 2016 AEMR	29-11-2016	Pond	3.8	714	8					1.7		2	2	<0.02	0.10	0.03		0.3	20	7	251	4.01	0.001	0.71	0.48
2017 Q1 Env Mon report	30-01-2017	Pond	3.6	758	7.2					2.6		2	<2	<0.02	0.13	0.05		3.5	23	1	231	4.01	0.001	0.71	0.40
2017 Q1 Env Mon report	27-02-2017	Pond	3.5	858	7.7		-5		67	2.4			<2	<0.05	0.01	0.013		10	46	7	260	EG	<0.001	17	0.57
2017 Env Monitoring 2017 Env Monitoring	19-04-2017	Pond	6.5	84	7.6		~5		07	400			<5.0	<0.05	0.01	0.013		10	40	1	200	5.0	<0.001	1.7	0.57
2017 Env Monitoring	17-05-2017	Pond	5.9	101	8.1					230			<5.0	0.07	0.07	0.00			_		0.5	0.17	0.001	0.04	0.10
2017 Env Monitoring 2017 Env Monitoring	14-06-2017	Pond	4.8	115 153	9.5	-	<5	-	8	100			<5.0 <5.0	0.07	0.07	0.03	-	2	/	2	25	0.17	<0.001	0.04	0.12
2017 Env Monitoring	09-08-2017	Pond	4.2	171	9.9					3.4			<5.0												
2017 Env Monitoring 2017 Env Monitoring	06-09-2017	Pond	4.2	183	6.6 8.6		<5		11	3.2			<5.0 <5.0	<0.05	0.3	< 0.005		2	8	2	47	0.35	<0.001	0.085	0.18
2017 Env Monitoring	01-11-2017	Pond	4.1	271	8					2.9			<5.0												
2017 Env Monitoring	29-11-2017	Pond	4.3	303	7.6		45		10	4			<5.0	-0.05	-0.1	-0.005		0.7	44	2	0.4	0.0	10 001	0.10	0.00
2017 Env Monitoring 2018 Env Monitoring	24-01-2018	Dam 1	4.1	361	8.3		<0		10	2.1		<1	<5.0	<0.05	<0.1	<0.005		3.7	11	3	84	0.6	<0.001	0.12	0.23
2018 Env Monitoring	21-02-2018	Dam 1	3.96	367	8.74		_			2.1		<1	<5		<u>.</u>			_							
2018 Env Monitoring 2018 Env Monitoring	21-03-2018 18-04-2018	Dam 1 Dam 1	4.05	395	8.61 8.18		<5		21	2.42		<1	<5	< 0.05	<0.1	< 0.005		5	14	3.6	99	0.88	< 0.001	0.088	0.25
2018 Env Monitoring	16-05-2018	Dam 1	4.12	346	8.38					2.27		<1	<5												
2018 Env Monitoring 2018 Env Monitoring	13-06-2018	Dam 1	4.21	366	9.18		<5		21	2.87		<1	<5	< 0.05	<0.1	< 0.005		4.9	14	3.6	110	0.62	< 0.001	0.1	0.25
2018 Env Monitoring	08-08-2018	Dam 1	4.08	384	9.38					5.3		<1	<5	<u> </u>						<u> </u>			1		
2018 Env Monitoring	05-09-2018	Dam 1	6.73	382	99.2	138				21		<1		0.02		0.04									
2018 Env Monitoring	05-10-2018	Dam 1	4.25	560	104	2520		+		0.2	~5						+	1		+		<u>↓</u>			
2018 Env Monitoring	07-12-2018	Dam 1	4.42	540	99.8	3520	1		86	1.4	^ 3	<1	<5	0.18		0.01		9	45	4	135	0.72	< 0.002	0.07	0.243
		Minimum	3.4	84	6.6	138	1	1	8	0.2	4	1	0	0.02	0.01	0.01	13	1.5	6.3	2	25	0.17	0.001	0.04	0.03
		Maximum	7	1060	104	3520	3	2	86	400	187	16	6	0.39	33	0.08	159	18	46	9.32	429	33	0.008	12	1.23
		Average	4.45	609.88	12.86	756.67	2.00	1.50	30.87	39.18	61.79	7.00	2.60	0.08	1.36	0.03	86.82	8.38	22.47	5.52	216.55	8.35	0.00	2.51	0.53

Longterm Pond Water Layer Monitoring at Dunloe Sands Quarry

Data located	Date	Location	рН	EC	DO (membrane electrode)	*Redox Potential	Turbidity	TSS	Total Phosphorus-P	Total-N
			рН	µScm-1	mg/L	mV	NTU	mg/L	mg/L	mg/L
2011/2012 AEMR	27-06-2012	Lake 2m	6.1	144	9.4	257				
2011/2012 AEMR	27-09-2012	Lake 2m	4.6	214	8.2		2.2	4.5	0.02	
Appendix of 2015 AEMR	26-03-2015	Lake 2m	4.0	859	7.6	280				
Appendix of 2015 AEMR	17-09-2015	Lake 2m	4.5	915	8.8	185				
Appendix of 2015 AEMR	11-12-2015	Lake 2m	4.2	952	7.2		19	44	0.13	0.13
Appendix of 2016 AEMR	24-03-2016	Lake 2m	4.3	1011	8					
Appendix of 2016 AEMR	30-06-2016	Lake 2m	4.8	527.6	9.9					
Appendix of 2016 AEMR	29-09-2016	Lake 2m	4.1	647	8.8					
Appendix of 2016 AEMR	20-12-2016	Lake 2m	3.5	/42	7.4		-	-		
	NOC	or Samples	9	9	9	3	2	2	2	1
		Minimum	3.5	144	7.2	185	2.2	4.5	0.02	0.13
		Maximum	6.1	1011	9.9	280	19	44	0.13	0.13
	-	Average	4.46	667.96	8.37	240.67	10.60	24.25	0.08	0.13
2011/2012 AEMR	27-06-2012	Lake 3m	6.1	144	9.5	267				
2011/2012 AEMR	27-09-2012	Lake 3m	4.6	214	8.2		14	30	0.03	
Appendix of 2015 AEMR	26-03-2015	Lake 3m	4.0	859	7.5	297				
Appendix of 2015 AEMR	17-09-2015	Lake 3m	4.5	915	8.7	200			0.07	0.07
Appendix of 2015 AEMR	11-12-2015	Lake 3m	4.2	949	1.2		19	96	0.07	0.07
Appendix of 2016 AEMR	24-03-2016	Lake 3m	4.4	1014	8.1					
Appendix of 2016 AEMR	30-06-2016	Lake 3m	4.9	510.8	9.8					
Appendix of 2016 AEMR	29-09-2010	Lake 311	4.1 3.6	000	0.0 7 7				+	
Appendix of 2016 AEMR	20-12-2010		3.0	742	1.1		-	-		-
		Minimum	9	9	9	3	2	2	2	1
		Minimum	3.6	144	7.2	200	14	30	0.03	0.07
		Maximum	6.1	1014	9.8	297	19	96	0.07	0.07
		Average	4.49	666.42	8.39	254.67	16.50	63.00	0.05	0.07
2011/2012 AEMR	27-06-2012	Lake 4m	6.2	144	9.6	264				
2011/2012 AEMR	27-09-2012	Lake 4m	4.6	213	8.2	040	5.8	9.2	0.02	
Appendix of 2015 AEMR	26-03-2015	Lake 4m	4.0	860	7.5 9.7	312				
Appendix of 2015 AEMR	11-09-2015	Lake 4m	4.3	915	0.7	200	16	102	0.06	0.06
Appendix of 2016 AEMR	24-03-2016	Lake 4m	4.2	1 11	7.5		10	102	0.00	0.00
Appendix of 2016 AEMR	30-06-2016	Lake 4m	4.8	517.4	9.9					
Appendix of 2016 AEMR	29-09-2016	Lake 4m	4	648	8.8					
Appendix of 2016 AEMR	20-12-2016	Lake 4m	3.6	742	7.7					
	No c	of Samples	9	9	9	3	2	2	2	1
		Minimum	3.6	1.11	7.5	200	5.8	9.2	0.02	0.06
		Maximum	6.2	952	9.9	312	16	102	0.06	0.06
		Average	4.47	554.72	8.42	258.67	10.90	55.60	0.04	0.06
2011/2012 AFMR	27-06-2012	Lake 5m	6.5	144	9.5	261				
Appendix of 2015 AEMR	26-03-2015	Lake 5m	4.0	864	7.5	316				
Appendix of 2015 AEMR	17-09-2015	Lake 5m	4.4	913	8.7	210				
Appendix of 2015 AEMR	11-12-2015	Lake 5m	4.1	954	7.7		12	22	0.06	0.06
Appendix of 2016 AEMR	24-03-2016	Lake 5m	4.7	1019	8.1					
Appendix of 2016 AEMR	30-06-2016	Lake 5m	4.8	515.5	9.9					
Appendix of 2016 AEMR	29-09-2016	Lake 5m	4	647	8.8					
Appendix of 2016 AEMR	20-12-2016	Lake 5m	3.6	742	7.6					
	No c	of Samples	8	8	8	3	1	1	1	1
		Minimum	3.6	144	7.5	210	12	22	0.06	0.06
		Maximum	6.5	1019	9.9	316	12	22	0.06	0.06
		Average	4.51	724.81	8.48	262.33	12.00	22.00	0.06	0.06
Appendix of 2016 AEMR	30-06-2016	Lake 6m	5.2	516.6	9.9					
Appendix of 2016 AEMR	29-09-2016	Lake 6m	4.5	627	8.4					
Appendix of 2016 AEMR	20-12-2016	Lake 6m	3.6	740	7.4					
	No c	of Samples	3	3	3					
		Minimum	3.6	516.6	7.4					
		Maximum	5.2	740	9.9					
		Average	4.43	627.87	8.57					

Longterm Algae Monitoring at Dunloe Sands Quarry

			Cyanophyta	Chlorophyta	Diatoms	Dinophyta	Euglenophyta
Data located	Date	Location	(Blue Green Algae)	(Total Algae Count)	(Bacillariophyta)	(Dinoflagellates)	(Euglenoids)
			cells/mL	cells/mL	cells/mL	cells/mL	cells/mL
2011/2012 AEMR	30-11-2011	Extraction Pond	240				
2011/2012 AEMR	22-12-2012	Extraction Pond	800				
2011/2012 AEMR 2011/2012 AEMR	20-02-2012	Extraction Pond	<100				
2011/2012 AEMR	28-02-2012	Extraction Pond	14375				
2011/2012 AEMR	27-03-2012	Extraction Pond	1200				
2011/2012 AEMR	30-05-2012	Extraction Pond	<100				
2011/2012 AEMR	27-06-2012	Extraction Pond	130	0.01			
2011/2012 AEMR	26-07-2012	Extraction Pond	16360	2520			
2011/2012 AEMR 2011/2012 AEMR	27-06-2012	Extraction Pond	24640 68000	3720			
2011/2012 AEMR	29-10-2012	Extraction Pond	<100	7900			
2012/2013 AEMR	28-11-2012	Extraction Pond	<100	80670			
2012/2013 AEMR	24-12-2012	Extraction Pond	<100				
2012/2013 AEMR	17-01-2013	Extraction Pond	<100				
2012/2013 AEMR	01-02-2013	Extraction Pond	<100				
2012/2013 AEMR	08-03-2013	Extraction Pond	<100	215			
2012/2013 AEMR	30-05-2013	Extraction Pond	<100	880			
2012/2013 AEMR	30-06-2013	Extraction Pond	<100				
2012/2013 AEMR	30-07-2013	Extraction Pond	<100	34000			
2012/2013 AEMR	28-08-2013	Extraction Pond	<100	205			
2012/2013 AEMR	25-10-2013	Extraction Pond	<100	17/130			
2013/2014 AEMR	25-11-2013	Extraction Pond	-100	17400	-	480	
2013/2014 AEMR	12-12-2013	Extraction Pond	1150	39500			
2013/2014 AEMR	19-12-2013	Extraction Pond		22000			
2013/2014 AEMR	09-01-2014	Extraction Pond		123000			
2013/2014 AEMR	29-01-2014	Extraction Pond		34000	205		
2013/2014 AEMR	28-04-2014	Extraction Pond	ļ	7700	∠ສວ 45		
2013/2014 AEMR	29-05-2014	Extraction Pond	ND	7600	UT		
2013/2014 AEMR	26-06-2014	Extraction Pond	ND	52000			
2013/2014 AEMR	31-07-2014	Extraction Pond	ND	28000			
2013/2014 AEMR	28-10-2014	Extraction Pond	ND	168000			
Appendix of 2015 AEMR	28-11-2014	Extraction Pond	ND	123000	260	60	
Appendix of 2015 AEMR	22-01-2015	Extraction Pond		37000	220	35	
Appendix of 2015 AEMR	26-02-2015	Extraction Pond	ND	57000			
Appendix of 2015 AEMR	26-03-2015	Extraction Pond	ND	8750			
Appendix of 2015 AEMR	24-04-2015	Extraction Pond	ND	8000			
Appendix of 2015 AEMR	29-05-2015	Extraction Pond	ND	76000	4200		
Appendix of 2015 AEMR	29-06-2015	Extraction Pond	ND	211000	6300	25	455
Appendix of 2015 AEMR	21-10-2015	Extraction Pond		4850	co	30 5	155
Appendix of 2015 AEMR	11-12-2015	Extraction Pond	ND	11900	30	10	
2016 AEMR	25-01-2016	Extraction Pond	ND	34000			
2016 AEMR	08-02-2016	Extraction Pond	ND	0			
2016 AEMR	24-02-2016	Extraction Pond	ND	3700			
2016 AEMR 2016 AEMR	24-03-2016	Extraction Pond	ND	7600			
2016 AEMR	07-04-2016	Extraction Pond	ND	9700			
2016 AEMR	29-04-2016	Extraction Pond	ND	11800			
2016 AEMR	24-05-2016	Extraction Pond	ND	5700			
2016 AEMR	30-06-2016	Extraction Pond	ND	28930			
2016 AEMR	31-08-2016	Extraction Pond	840 ND	61500			
2016 AFMR	04-10-2016	Extraction Pond	ND	920			
2016 AEMR	28-10-2016	Extraction Pond	ND	29000			
2016 AEMR	21-12-2016	Extraction Pond	ND	10830			
2017 Q1 Env Mon report	30-01-2017	Extraction Pond	ND	1480			
2017 Q1 Env Mon report	27-02-2017	Extraction Pond	ND	640			
2017 Env Monitoring	22-03-2017	Extraction Pond		175 600			<u> </u>
2017 Env Monitoring	17-05-2017	Extraction Pond	ND	2820			
2017 Env Monitoring	14-06-2017	Extraction Pond	ND	1830			<u> </u>
2017 Env Monitoring	12-07-2017	Extraction Pond	ND	5260			
2017 Env Monitoring	09-08-2017	Extraction Pond	ND	41500			
2017 Env Monitoring	06-09-2017	Extraction Pond	ND	99800			
2017 Env Monitoring	01-11-2017	Extraction Pond	ND	38600			
2017 Env Monitoring	29-11-2017	Extraction Pond	ND	8150			
2017 Env Monitoring	28-12-2017	Extraction Pond	ND	1890			
2018 Env Monitoring	24-01-2018	Extraction Pond	<5	350			
2018 Env Monitoring	21-02-2018	Extraction Pond	<5	100			
2018 Env Monitoring	18-04-2018	Extraction Pond	>> <5	3,900 4,580			
2018 Env Monitoring	16-05-2018	Extraction Pond	<5	250			
2018 Env Monitoring	13-06-2018	Extraction Pond	<5	5,820			
2018 Env Monitoring	11-07-2018	Extraction Pond	<5	16,100			
2018 Env Monitoring	08-08-2018	Extraction Pond	<5	13,800			
2018 Env Monitoring	05-09-2018	Extraction Pond	ND 25	ND			
2018 Env Monitoring	06-11-2018	Extraction Pond	ND	ND			
2018 Env Monitoring	07-12-2018	Extraction Pond	ND	ND			
		Number of Samples	11	65	8	6	1
		Minimum	130	0	30	5	155
		Average	11675 9	211000	6300 1426 9	480	155 0
					1740.0	1.41.6	

	-			-			Lo	ngterm Gro	undwater	Quality Mon	itoring at D	Dunloe Sand	ds Quarry				•		1		
Data located	Date	Location	рН	EC	DO (membrane	*Redox Potential	Alkalinity as CaCO3	Bicarbonate as CaCO3	Chloride	Total Phosphorus-P	Total-N	Ammonia	Calcium	Magnesium	Sodium	Potassium	Sulfur as Sulfate	Aluminium (Total)	Arsenic (Total)	Iron (Total)	Manganese (Total)
			рН	µScm-1	mg/L	mV	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
2011/2012 AEMR	Dec-11	DPL1							13				0.2	0.4	4	<5	3.5		< 0.005	1.34	< 0.01
2011/2012 AEMR 2011/2012 AEMR	30-05-2012	DPL1	4.2	98	3.3	435			1/				0.2	0.4	5.4	<5	4.8		<0.005	1.32	<0.01
2011/2012 AEMR	Jun-12	DPL1	4.2	105	3.8	405	<1	<1	20				0.6	0.6	11	<5	5.3		<0.005	2.49	<0.01
2011/2012 AEMR	26-07-2012	DPL1	4.3	87	5.1	374															
2011/2012 AEMR	27-09-2012	DPL1	4.2	98	2.6	305	<1	<1	15				0.5	0.3	8.4	<5	6.7		<0.005	3.25	<0.01
2011/2012 AEMR	29-10-2012	DPL1	4.6	96	5.8	208															
2012/2013 AEMR 2012/2013 AEMR	Dec-12 Mar-13	DPL1 DPL1							36 12				0.2	0.7	<u>6.3</u> 9.2	<5 <5	4.9		<0.005	4.32	<0.01 <0.01
2012/2013 AEMR	Jun-13	DPL1							19				0.1	<0.1	0.1	<5	5.9		<0.005	1.5	<0.01
2012/2013 AEMR	Sep-13	DPL1	4.0		2.5	01	2	<u> </u>	16				0.4	0.2	7.5	<5	6.0	-	< 0.005	5.82	< 0.01
2013/2014 AEMR	29-01-2014	DPL1	4.8	279	5.7	264	3	2	20				0.4	0.2	0.2	<5	0.2		<0.005	3.83	0.02
2013/2014 AEMR	24-02-2014	DPL1	4.6	76	3.8	242	-									_					
2013/2014 AEMR 2013/2014 AEMR	31-03-2014 24-04-2014	DPL1	4.9	72	6.3	136 204	3	2	15				0.6	0.1	0.1	<5	3.5	-	<0.005	2.44	<0.01
2013/2014 AEMR	28-05-2014	DPL1	4.2	95		307															
2013/2014 AEMR	25-06-2014	DPL1	4.1	98	2	350	<1	<1	16				0.5	0.3	9.7	<5	6.4	0.77	< 0.005	0.76	< 0.01
2013/2014 AEMR	29-08-2014	DPL1	4.1	97	4.3	185	NP	NP	20				0.4	<0.2	9.6	<5	4.3	0.77	<0.005	3.93	<0.01
2013/2014 AEMR	29-09-2014	DPL1	4	108	3.5	177															
Appendix of 2015 AEMR Appendix of 2015 AEMR	28-11-2014	DPL1	4.7	81 94	3.3	110	NP	<1	15				1.6	0.4	10	<5	6.1	0.32	<0.005	2 55	0.02
Appendix of 2015 AEMR	22-01-2015	DPL1	4.8	80	3.8	110			10				1.0	0.1	10	.0	0.1	0.02	-0.000	2.00	0.02
Appendix of 2015 AEMR	25-02-2015	DPL1	4.2	110	1.1	160	ND	ND													
Appendix of 2015 AEMR	24-04-2015	DPL1	4.1	131	2.7	245	INP	NP NP													
Appendix of 2015 AEMR	28-05-2015	DPL1	3.8	164	2	256										_					
Appendix of 2015 AEMR Appendix of 2015 AEMR	21-10-2015	DPL1	4.1	135	3.9	195 217	NP		18			<0.02	0.7	0.8	12	<5	10	0.64	<0.001	0.95	0.017
Appendix of 2015 AEMR	25-11-2015	DPL1	4.2	102	6.1	170															
Appendix of 2015 AEMR	11-12-2015	DPL1	4.6	86	2.4	232	1	1	14				0.3	0.2	11	<5	10	0.32	<0.001	3.21	0.009
Appendix of 2016 AEMR	24-02-2016	DPL1	4.8	98	5.7	138															
Appendix of 2016 AEMR	24-03-2016	DPL1	4.6	104	3.8	268	2	2	17				0.37	0.23	10.21	<5	9.403	0.727	0.001	4.224	0.007
Appendix of 2016 AEMR	29-04-2016	DPL1	4.3	106	<u> </u>	255															
Appendix of 2016 AEMR	30-06-2016	DPL1	4.9	101.1	3.6	283							3.503	0.353	10.561	<5	9.636	0.471	0.001	2.508	0.14
Appendix of 2016 AEMR	31-08-2016	DPL1	3.9	142.2	6.8	384 321															
Appendix of 2016 AEMR	29-09-2016	DPL1	3.9	151	2.5	366															
Appendix of 2016 AEMR	27-10-2016	DPL1	4	151	2.5	366															
Appendix of 2016 AEMR	20-12-2016	DPL1	4.7	131	5.2	307.1															
Q1 2017 Env mon report	30-01-2017	DPL1	4.2	121																	
2017 Env Monitoring	22-03-2017	DPL1	4.6	103			<5		18	0.09	1.1	0.056		<0.5	12	1	12	0.48	< 0.001	4.8	0.018
2017 Env Monitoring	19-04-2017	DPL1	4.2	180																	
2017 Env Monitoring 2017 Env Monitoring	17-05-2017	DPL1	4.4	135			<5		22	<0.05	0.5	0.039		1	14	1	30	1.6	<0.001	13	0.039
2017 Env Monitoring	12-07-2017	DPL1	4.1	137						40.00	0.0	0.000		· · · ·	17			1.0	40.001	10	0.000
2017 Env Monitoring	09-08-2017	DPL1	4.3	123			-5		10	<0.05	10	0.031		<0.5	11	1	10	0.72	<0.001	2.4	0.017
2017 Env Monitoring	06-09-2017	DPL1	4.3	124			<5		18	<0.05	1.2	0.031		<0.5	11		10	0.73	<0.001	3.4	0.017
2017 Env Monitoring	01-11-2017	DPL1	4.4	121																	
2017 Env Monitoring 2017 Env Monitoring	29-11-2017	DPL1	4.5	129			<5		21	<0.05	0.4	0.071		0.6	12	21	44	0.53	<0.001	5	0.02
2018 Env Monitoring	24-01-2018	DPL1	4.49	138.4																	
2018 Env Monitoring 2018 Env Monitoring	21-02-2018	DPL1	4.46	120.5			<5		21	0.06	0.2	0.062		0.8	13	1 5	44	4 0.76	5 < 0.001	5 5	0.028
2018 Env Monitoring	18-04-2018	DPL1	4.49	153			~5			0.00	0.2	0.002		0.0	1.	1.5	1	0.70	<0.001	5.5	0.020
2018 Env Monitoring	16-05-2018	DPL1	4.4	146.3					47) <0.0E	0.4	0.057		0.7	17	1 1 4		0 07	<0.001	6.2	0.024
2018 Env Monitoring 2018 Env Monitoring	11-07-2018	DPL1	4.33	167.1			<5		19	9 < 0.05	0.4	0.057		0.7	14	1.4	20	5 0.76	5<0.001	0.2	0.024
2018 Env Monitoring	08-08-2018	DPL1	3.91	204															0.001		
2018 Env Monitoring 2018 Env Monitoring	05-09-2018	DPL1	4.12	114	4.52		<1		18	5		0.07		<1	22	1	20	b 1.08	3 < 0.001	0.05	0.001
2018 Env Monitoring	06-11-2018	DPL1	4.51	142	4.8		1												1		
2018 Env Monitoring	07-12-2018	DPL1	4.49	120	4.8	44.3	<1		17	7		0.06		1	11	<1	30	5 0.88	3 0.001	10.7	0.003
	No	of Samples				40					_	^	40			-	~-				
	NO	Minimum	38	54	41	40	4	4	125	0.06	0.2	0.031	18	0.1	0 1	1	3.5	0.32	0.001	26	0.001
		Maximum	4.9	279	7	435	3	2	36	0.09	1.2	0.071	3.503	1	22	2.1	44	1.6	0.001	13	0.14
		Average	4.34	116.43	3.75	248.18	2.25	1.75	18.24	0.08	0.63	0.06	0.65	0.46	9.43	1.29	14.03	0.72	0.00	3.67	0.03

							Loi	ngterm Gro	undwater (Quality Mor	itoring at D	Dunloe Sand	ds Quarry	•	•		•	-			
2011/2012 AEMR	Dec-11								2300				72	110	842	72	136		<0.005	0 74	0.53
2011/2012 AEMR	Mar-12	DPL3							2400				66	109	1081	<5	126		< 0.005	1.25	0.53
2011/2012 AEMR	30-05-2012	DPL3	6.6	7074	2.3	317															
2011/2012 AEMR 2011/2012 AEMR	Jun-12 26-07-2012	DPL3 DPL3	<u>6.7</u>	7057	6.6	<u>315</u> 284	150	94	2220				70	112	1119	48	143		< 0.005	1.94	0.53
2011/2012 AEMR	27-08-2012	DPL3	6.7	7343	1.8	193															
2011/2012 AEMR	27-09-2012	DPL3	6.4	7130	2.4	249	120	75	2280				63	100	1060	50	147		<0.005	2.11	0.51
2011/2012 AEMR 2012/2013 AEMR	29-10-2012 Dec-12	DPL3 DPL3	6.3	/1//	4.8	146			2270				68	103	946	61	132		<0.005	2.46	0.52
2012/2013 AEMR	Mar-13	DPL3							2280				74	115	1296	48	149		<0.005	1.78	0.58
2012/2013 AEMR	Jun-13	DPL3							2310				66	105	66	44	169		< 0.005	1.63	0.52
2012/2013 AEMR 2013/2014 AEMR	Sep-13 12-12-2013	DPL3 DPL3	6.2	7140	24	116	120	73	2280				60	93	1003	38 43	168		<0.005	3.05	0.52
2013/2014 AEMR	29-01-2014	DPL3	6.3	6964	4.4	201	120	10	2010				00	101	101	-10	100		-0.000	0.10	0.07
2013/2014 AEMR	24-02-2014	DPL3	6.3	6677	3.6	245	100	74	100					400	400	40	475		-0.005	0.00	0.50
2013/2014 AEMR 2013/2014 AEMR	24-04-2014	DPL3 DPL3	6.5	7234	4.2	118	120	74	120				63	109	109	43	175		<0.005	2.86	0.56
2013/2014 AEMR	28-05-2014	DPL3	6.6	7484		318															
2013/2014 AEMR	25-06-2014	DPL3	6.6	7370	5.9	260	110	70	2290				82	125	1320	44	180	0.02	< 0.005	6.47	0.93
2013/2014 AEMR 2013/2014 AEMR	29-08-2014	DPL3	6.5	7643	3.9	122	110	68	2420				74	114	1140	40	168	0.03	<0.005	4.22	0.56
2013/2014 AEMR	29-09-2014	DPL3	6.1	7558	3	188															
Appendix of 2015 AEMR	28-11-2014	DPL3	6.1	7491	4.2	100	120	77	2270				00	110	1240	19	146	0.04	<0.005	2.52	0.50
Appendix of 2015 AEMR	22-01-2015	DPL3	6.1	7473	2.0	130	130	11	2010				υZ	110	1240	40	140	0.04	<u>∼0.005</u>	3.33	0.09
Appendix of 2015 AEMR	25-02-2015	DPL3	6.4	7478	3.2	150															
Appendix of 2015 AEMR	26-03-2015	DPL3	6.1	7542	2.9	195 246	130	128													
Appendix of 2015 AEMR	28-05-2015	DPL3	6.5	7483	5.2	182															
Appendix of 2015 AEMR	17-09-2015	DPL3	6.4	7422	3.7	150	120		2380			0.04	68	102	1220	41	152	0.22	<0.001	3.09	0.641
Appendix of 2015 AEMR Appendix of 2015 AEMR	21-10-2015	DPL3 DPL3	6.2	7310	2.4	205															
Appendix of 2015 AEMR	11-12-2015	DPL3	6.3	7321	2.6	182	120	120	2370				68	108	1220	40	181	0.13	0.001	2.99	6.23
Appendix of 2016 AEMR	25-01-2016	DPL3	6.1	7395	2.8	147															
Appendix of 2016 AEMR	24-02-2016	DPL3 DPL3	6.4	7406	3.5	155	123	123	2650				78.03	117.11	1284.98	44.19	176.114	0.07	0.001	2.183	0.625
Appendix of 2016 AEMR	29-04-2016	DPL3	6.4	7417	6.4	196															
Appendix of 2016 AEMR	30-06-2016	DPL3 DPL3	6.5	7394	5.4 6.4	180															
Appendix of 2016 AEMR	21-07-2016	DPL3	6.5	6868.2	6.6	262															
Appendix of 2016 AEMR	31-08-2016	DPL3	6.5	7281	5.8	170	121		2650				78	121	1350	46	170		0.001	3.33	0.541
Appendix of 2016 AEMR	27-10-2016	DPL3	6.1	7313	399	1738															
Appendix of 2016 AEMR	29-11-2016	DPL3	6.1	7376	1.8	67										10					
Appendix of 2016 AEMR	20-12-2016	DPL3	6	7673	4	315.9	121		2700				75	114	1.28	43	182		0.001	2.4	0.541
Q1 2017 Env mon report	27-02-2017	DPL3	6.1	7013																	
2017 Env Monitoring	22-03-2017	DPL3	5.9	7570			130		2300	0.1	4.1	2.9		130	1500	54	230	0.04	<0.001	15	0.67
2017 Env Monitoring 2017 Env Monitoring	17-05-2017	DPL3 DPL3	5.9	7660																	
2017 Env Monitoring	14-06-2017	DPL3																			
2017 Env Monitoring	12-07-2017	DPL3	6.2	7060																	
2017 Env Monitoring	06-09-2017	DPL3	<u>6.1</u>	7490			140		2000	<0.05	3	2		120	1600	55	140	0.04	<0.001	2.8	0.6
2017 Env Monitoring	04-10-2017	DPL3	6	7530																	
2017 Env Monitoring 2017 Env Monitoring	29-11-2017	DPL3 DPL3	5.9 5.9	7970 7680																	
2017 Env Monitoring	28-12-2017	DPL3	6	7570			130		2400	0.05	3.8	2.8		130	1700	53	190	0.09	<0.001	13	0.62
2018 Env Monitoring	24-01-2018	DPL3	5.94	7640																	
2018 Env Monitoring	21-02-2010	DPL3	5.87	8230			140		2500	<0.05	3.7	2.9		150	1400	53	200	0.09	<0.001	9.9	0.64
2018 Env Monitoring	18-04-2018	DPL3	5.94	7580																	
2018 Env Monitoring 2018 Env Monitoring	16-05-2018	DPL3	5.97 6.02	7670			130		2300	<0.05	⊿ 1	27		120	1500	56	180	0.08	<0.001	11	0.61
2018 Env Monitoring	11-07-2018	DPL3	6.18	7280			100		2000	-0.00	4.1	2.1		120	1000	50	100	0.00	100.07		0.01
2018 Env Monitoring	08-08-2018	DPL3	6.1	7880	60.0	044	104		0700			0.40		107	1000	40	101	0.00	0.000	04	0.745
2018 Env Monitoring 2018 Env Monitoring	05-09-2018	DPL3 DPL3	5.38 5.87	3760	69.8 7.8	211	134		2760			2.46		137	1380	49	191	0.66	0.002	24	0./15
2018 Env Monitoring	06-11-2018	DPL3	5.81	7580																	
2018 Env Monitoring	07-12-2018	DPL3	5.82	7520	3.4	40	151	44	2470	0	F	2.29	40	118	130	45	158	0.32	<0.001	12.9	0.658
	110 01	Minimum	5.38	3760	40	40	110	66	120	0.05	3	0.04	60	93	1.28	38	126	0.03	0,001	0.74	0.51
		Maximum	6.7	8230	399	1738	151	128	2760	0.1	4.1	2.9	82	150	1700	72	230	0.66	0.002	24	6.23
		Average	6.21	7352.31	15.64	228.15	126.67	88.00	2297.31	0.08	3.74	2.26	70.74	115.50	1031.24	48.29	166.64	0.15	0.00	5.45	0.81

	1		-		1	Lor	ngterm Gro	undwater (Quality Mon	nitoring at I	ounloe San	ds Quarry	•	•		1		•		•
2011/2012 AEMR	Dec-11 DPL5																			
2011/2012 AEMR	Mar-12 DPL5							14				0.5	1	9.1	<5	5.9		<0.005	2.51	<0.01
2011/2012 AEMR 2011/2012 AEMR	30-05-2012 DPL5 Jun-12 DPL5	4.7	92 81	4.6	386 347	2	1	17				0.6	13	9.2	<5	43		<0.005	1 01	<0.01
2011/2012 AEMR	26-07-2012 DPL5	4.7	92	3.7	313							0.0		0.2				0.000		0.01
2011/2012 AEMR 2011/2012 AEMR	27-08-2012 DPL5	4.6	103	3.4	292 266	<1	<1	19				0.7	14	10	<5	8.5		<0.005	0.89	<0.01
2011/2012 AEMR	29-10-2012 DPL5	4.4	102	2.2	288			10				0.1	1.4	10		0.0		40.000	0.00	40.01
2012/2013 AEMR 2012/2013 AEMR	Dec-12 DPL5 Mar-13 DPL5							18				0.6	1.2	5.9	<5	3.5		<0.005	2.16	<0.01
2012/2013 AEMR	Jun-13 DPL5							30				0.0	1.9	0.2	<5	8.2		< 0.005	0.31	<0.01
2012/2013 AEMR	Sep-13 DPL5	4.0	224	2.2	106	3	2	640				13	40	243	9	15		< 0.005	15	0.14
2013/2014 AEMR	29-01-2014 DPL5	4.0	314	4.2	161	3	2	09				2.3	1.2	1.2	<5	15		<0.005	4.01	0.04
2013/2014 AEMR	24-02-2014 DPL5	4.1	337	4.1	255			110				0.4		0.0		40		-0.005	0.50	-0.04
2013/2014 AEMR 2013/2014 AEMR	24-04-2014 DPL5	5 4.7	110	3.3	107	2	1	110				2.4	6.3	6.3	<5	12		<0.005	3.52	<0.01
2013/2014 AEMR	28-05-2014 DPL5	4	239		313										_					
2013/2014 AEMR 2013/2014 AEMR	25-06-2014 DPL5 30-07-2014 DPL5	3.6	566 639	2.1	375 238	<1 <1	<1 <1	140 140				4.2	9.9 11	64 69	<5 <5	9.8 47	3.96	<0.005	1.73 2	0.05
2013/2014 AEMR	29-08-2014 DPL5	3.9	678	2.7	215	NP	NP	170				4.9	12	75	<5	16		<0.005	11	0.03
2013/2014 AEMR Appendix of 2015 AEMR	29-09-2014 DPL5 28-11-2014 DPL5	3.8	942 706	1.8	247 105															
Appendix of 2015 AEMR	15-12-2014 DPL5	5.2	801	2	115	5	3	220				6.2	15	110	<5	11	0.3	<0.005	14	0.08
Appendix of 2015 AEMR	22-01-2015 DPL5	5	811 ⊿วว	3.8	160															
Appendix of 2015 AEMR	26-03-2015 DPL5	4.8	1066	3.9	144	2	2													
Appendix of 2015 AEMR	24-04-2015 DPL5	3.7	963	4.8	257															
Appendix of 2015 AEMR	17-09-2015 DPL5	3.9	844	2.5	205	NP		220			0.18	5.5	9.6	113	<5	23	0.67	<0.001	1.4	0.055
Appendix of 2015 AEMR	21-10-2015 DPL5	4.3	676	5.4	189															
Appendix of 2015 AEMR	11-12-2015 DPL5	5.4	310	2.3	151	7	7	80				2.2	3.9	41	<5	12	0.13	<0.001	7.21	0.027
Appendix of 2016 AEMR	25-01-2016 DPL5	5.6	376	3.1	113															
Appendix of 2016 AEMR	24-02-2016 DPL5	5.6	412	2.9	186	6	6	112				2.99	3.88	42.05	<5	13.372	0.148	<0.001	4.597	0.022
Appendix of 2016 AEMR	29-04-2016 DPL5	4.6	285	6.2	259															
Appendix of 2016 AEMR	30-06-2016 DPL5	4.5	300	4.7	195 271															
Appendix of 2016 AEMR	21-07-2016 DPL5	4.4	321.5	5.2	297										_					
Appendix of 2016 AEMR Appendix of 2016 AEMR	31-08-2016 DPL5 29-09-2016 DPL5	4.4	348	4.4	230 285	<1		89				2.2	2.8	57	<5	28		0.001	11.2	0.012
Appendix of 2016 AEMR	27-10-2016 DPL5	4.4	399	2.5	285															
Appendix of 2016 AEMR Appendix of 2016 AEMR	29-11-2016 DPL5 20-12-2016 DPL5	5.4 5.2	5.4 298	1.6	74 244 5	5		50				23	2.8	47	<5	21		0.001	4 55	0.012
Q1 2017 Env mon report	30-01-2017 DPL5	5.2	260	0.0	21110							2.0	2.0					0.001		0.0.12
Q1 2017 Env mon report 2017 Env Monitoring	27-02-2017 DPL5	5.5	244			<5		63	0.1	1	0.1		2	55	1	22	0.2	<0.001	15	0.009
2017 Env Monitoring	19-04-2017 DPL5	5.1	203						0.1		0.1						0.2	-0.001	1.0	0.000
2017 Env Monitoring 2017 Env Monitoring	17-05-2017 DPL5	5.1	226																	
2017 Env Monitoring	12-07-2017 DPL5	5.2	189																	
2017 Env Monitoring 2017 Env Monitoring	09-08-2017 DPL5	5.1	200			ß		26	<0.05	13	0.055		<0.5	35	0.7	18	0.54	<0.001	0.23	<0.005
2017 Env Monitoring	04-10-2017 DPL5	5.3	188			0		20	~0.00	1.0	0.000		~0.0		0.7	10	0.04	-0.001	0.20	~0.000
2017 Env Monitoring 2017 Env Monitoring	01-11-2017 DPL5	5.3	197																	
2017 Env Monitoring	28-12-2017 DPL5	4.5	2200			<5		640	< 0.05	0.6	0.24		41	450	6.8	79	2.4	<0.001	7.2	0.11
2018 Env Monitoring	24-01-2018 DPL5	4.42	2470																	
2018 Env Monitoring 2018 Env Monitoring	21-02-2018 DPL5	4.53	1392			11		370	<0.05	0.4	0.14		25	230	5.1	59	1.2	<0.001	4.2	0.066
2018 Env Monitoring	18-04-2018 DPL5	4.88	266					570		5.1					5					
2018 Env Monitoring 2018 Env Monitoring	16-05-2018 DPL5	4.78	486			~5		96	< 0.05	0.4	0.098		4.8	66	21	15	0.28	<0.001	21	0.019
2018 Env Monitoring	11-07-2018 DPL5	4.73	623							0.4	0.000		-7.0		<u> </u>	10	0.20	-0.001	<u> </u>	0.010
2018 Env Monitoring 2018 Env Monitoring	08-08-2018 DPL5	4.61	252		+	٨		117			0.12		7	58	2	11	0.36	<0.001	2 11	0.0020
2018 Env Monitoring	05-10-2018 DPL5	4.96	201			т 		112			0.12		/		2	(4	0.00	-0.001	5.11	0.0023
2018 Env Monitoring 2018 Env Monitoring	06-11-2018 DPL5	4.99	296		_112.6	2		154			0.16		Q	80	2	20	0.31	<0.001	3.66	0.030
2010 Environmonitoring	No of Samples	04 63	63	37	40	12	7	25	1	5	8	18	24	25	8	20	12	2	25	17
	Minimum	3.6	5.4	1.6	-112.6	2	1	12	0.1	0.4	0.055	0.5	1	0.7	0.7	3.5	0.13	0.001	0.09	0.0029
	Maximum	5.6	2470	6.6	386	11	7	640	0.1	1.3	0.24	13	41	450	9	79	3.96	0.001	15	0.14
	Avolage	4./1	501.71	3.50	209.00	4./5	3.14	140.32	0.10	0.74	0.14	3.60	9.10	/ 3.0/	3.59	19.5/	0.87	0.00	4.40	0.05

		1				Lo	ngterm Gro	undwater (Quality Mon	itoring at D	unloe San	ds Quarry	1		-	-				
2011/2012 AEMR	Dec-11 DPL6							14				27	3.6	49	<5	37		<0.005	9.48	0.02
2011/2012 AEMR	Mar-12 DPL6							14				3.3	4.5	8.4	<5	42		< 0.005	17	0.02
2011/2012 AEMR	30-05-2012 DPL6	3.8	302	1	464	-11	-1	14				7.0	40	10	-5	104		-0.005	47	0.11
2011/2012 AEMR	26-07-2012 DPL6	4.6	331	3.3	14			14				1.5	12	10	<5	104		<0.005	17	0.11
2011/2012 AEMR	27-08-2012 DPL6	4.4	419	2	84										_					
2011/2012 AEMR 2011/2012 AEMR	27-09-2012 DPL6 29-10-2012 DPL6	4.3	363	2.2	279 127	<1	<1	15				11	14	12	<5	130		< 0.005	24	0.16
2012/2013 AEMR	Dec-12 DPL6		120					15				4.7	4.7	13	<5	63		<0.005	15	0.07
2012/2013 AEMR 2012/2013 AEMR	Mar-13 DPL6							14				3.6	2.5	11	<5	34		< 0.005	20	0.07
2012/2013 AEMR	Sep-13 DPL6							16				2.4	1.6	11	<5	40		<0.005	10	0.04
2013/2014 AEMR	12-12-2013 DPL6	5.2	162	4.4	42	10	6	20				4.5	1.5	1.5	<5	30		<0.005	10	0.06
2013/2014 AEMR	29-01-2014 DPL6	4.2	210	4.5	269															
2013/2014 AEMR	31-03-2014 DPL6	4.8	165	2.5	130	3	2	22				5.6	1.8	1.8	<5	34		<0.005	10.5	0.06
2013/2014 AEMR 2013/2014 AEMR	24-04-2014 DPL6 28-05-2014 DPL6	5 3.8	156		162 343															
2013/2014 AEMR	25-06-2014 DPL6	3.2	497	6.1	440	<1	<1	17				7	4.5	16	<5	119		<0.005	13	0.2
2013/2014 AEMR	29-08-2014 DPL6	4.1	1764	4.9	191	NP	NP	40				45	23	16	9	958		< 0.005	388	2.01
Appendix of 2015 AEMR	28-11-2014 DPL6	4.5	1622	2.6	90															
Appendix of 2015 AEMR	15-12-2014 DPL6	3.5	1700	<0.1	290	NP	<1	<3				134	26	24	10	768	10	<0.005	322	1.91
Appendix of 2015 AEMR Appendix of 2015 AEMR	22-01-2015 DPL6 25-02-2015 DPL6	4.1	1216 951	3.4	230 213		+						<u> </u>		+	+				
Appendix of 2015 AEMR	26-03-2015 DPL6	4.2	1600	5.1	177	NP	NP													
Appendix of 2015 AEMR Appendix of 2015 AEMR	24-04-2015 DPL6 28-05-2015 DPL6	4.0	1558 2153	2.5	226															
Appendix of 2015 AEMR	17-09-2015 DPL6	3.8	2219	2	220	NP		100			1.13	22	24	16	9	1490	147	<0.001	580	3.65
Appendix of 2015 AEMR	21-10-2015 DPL6	3.6	2189	2	284															
Appendix of 2015 AEMR	11-12-2015 DPL6	3.4	2164	0.9	342	<1	<1	40				50	23	18	10	1520	104	0.011	291	3
Appendix of 2016 AEMR	25-01-2016 DPL6	4.5	2056	1.1	52															
Appendix of 2016 AEMR	24-02-2016 DPL6	4.4	2030	1.5	183	<1	<1	23				55.48	23.88	17.76	10.27	1382.076	94.142	0.026	428	3.75
Appendix of 2016 AEMR	29-04-2016 DPL6	3.9	1997	1.9	183															
Appendix of 2016 AEMR Appendix of 2016 AEMR	24-05-2016 DPL6 30-06-2016 DPL6	3.8	1974 1810.2	2.8	199 275															
Appendix of 2016 AEMR	21-07-2016 DPL6	3.5	1731.9	1.3	338															
Appendix of 2016 AEMR Appendix of 2016 AEMR	31-08-2016 DPL6 29-09-2016 DPL6	3.7 3.8	1783	3.8	262 189	<1		790				24	22	14	<5	1100		0.001	241	1.96
Appendix of 2016 AEMR	27-10-2016 DPL6	3.8	1738	1.9	189															
Appendix of 2016 AEMR	29-11-2016 DPL6	3.8	3.8	2.3	182	<1		<1				21	33	16	9	1080		0.001	259	1.96
Q1 2017 Env mon report	30-01-2017 DPL6	3.6	1745	2.1	214.1	-1						21		10		1000		0.001	200	1.50
Q1 2017 Env mon report	27-02-2017 DPL6	3.8	1653			~5		17	0.3	2.5	0.54		21	14	10	1200	50	0.004	270	1.0
2017 Env Monitoring 2017 Env Monitoring	19-04-2017 DPL6	3.9	1540			N 0		17	0.5	2.0	0.54		21	14	10	1200	59	0.004	370	1.9
2017 Env Monitoring	17-05-2017 DPL6	3.8	1580					47		1.0	0.50		47			000	40	0.000		
2017 Env Monitoring	12-07-2017 DPL6	3.7	1380		<u>+</u> +	~0		1/	0.2	1.0	0.09		1/	14	11	390	43	0.003	300	1.4
2017 Env Monitoring	09-08-2017 DPL6	3.9	1050					40	10.05	4.0	0.54			(0)	_	070	47	0.000	400	0.00
2017 Env Monitoring 2017 Env Monitoring	04-10-2017 DPL6	3.7	977		+ +	<5		16	<0.05	1.6	0.51		11	12	8	3/0	17	0.002	081	0.93
2017 Env Monitoring	01-11-2017 DPL6	3.9	1000		1 1															
2017 Env Monitoring 2017 Env Monitoring	29-11-2017 DPL6 28-12-2017 DPL6	3.9 3.9	919 822		╂────╂	<5		18	0.1	16	0 41		8.8	11	8	540	12	0.001	150	0.67
2018 Env Monitoring	24-01-2018 DPL6	3.88	866			-0		10	0.1	1.0	0.71		3.0			070	12	0.001	100	0.01
2018 Env Monitoring 2018 Env Monitoring	21-02-2018 DPL6	3.84	822		<u> </u>	~5		20	11	10	0.0		74	4.4	7 2	410	8.0	0.001	120	0.45
2018 Env Monitoring	18-04-2018 DPL6	4.03	472			~		20		1.3	0.3		(.1		1.3	410	0.2	0.001	120	0.40
2018 Env Monitoring	16-05-2018 DPL6	3.98	469		<u> </u>	~ 5		25	14		0.50		5.0		6.5	200	6.7	<0.004	74	0.4
2018 Env Monitoring	11-07-2018 DPL6	3.89	463		<u> </u>	< 2		25	11	1.4	0.52		5.2	11	0.5	320	0./	<0.001	/4	0.4
2018 Env Monitoring	08-08-2018 DPL6	3.93	517	0.00	145	-1		00	44		0.05		-			005	0.01	0.004		0.400
2018 Env Monitoring 2018 Env Monitoring	05-10-2018 DPL6	3.82	600	6.82 8.8	14.5	<1		20	11		0.25		7	11	б	205	9.31	0.001		0.498
2018 Env Monitoring	06-11-2018 DPL6	4.02	634	14.1		.4							-			005	10.1	0.001	400	0.055
2018 Env Monitoring	No of Samples	4.01 63	618 63	3.2	39	<1 2	2	17 24	11 7	6	0.28 9	18	26	26	6 14	328	12.1 12	0.001	123 25	0.659
	Minimum	1 <u>3.2</u>	3.8	0.9	14	3	2	14	0.1	1.3	0.25	2.4	1.5	1.5	6	30	6.7	0.001	9.48	0.02
	Maximum	n <u>5.2</u>	2264	14.1	464	10	6	790	11	2.5	1.13	134	33	24	11	1520	147	0.026	580	3.75
	Average	3.96	1132.47	3.42	216.83	6.50	4.00	55.08	6.37	1.67	0.50	22.59	12.03	11.90	8.58	531.76	43.54	0.00	159.48	1.00

							Loi	ngterm Gro	undwater C	Quality Mon	itoring at I	Dunloe San	ds Quarry		-	-	-	-	_		
2011/2012 AEMP	Dec-11								680				16	30	451	36	207		<0.005	0.34	0.04
2011/2012 AEMR	Mar-12	DPL7							710				17	39	649	28	210		<0.005	0.34	0.04
2011/2012 AEMR	30-05-2012	DPL7	7.4	3451	3.6	241															
2011/2012 AEMR 2011/2012 AEMR	Jun-12 26-07-2012	DPL7 DPL7	7.5	3446 3434	5 34	-15	550	336	700				17	36	561	30	214		< 0.005	0.32	0.05
2011/2012 AEMR	27-08-2012	DPL7	7.6	3492	2.5	24															
2011/2012 AEMR	27-09-2012	DPL7	7.4	3385	2.1	154	430	256	730				15	32	530	28	226		<0.005	1.11	0.02
2011/2012 AEMR 2012/2013 AEMR	Dec-12	DPL7 DPL7	1.2	3416	1.7	52			730				16	34	673	29	203		< 0.005	0.56	0.02
2012/2013 AEMR	Mar-13	DPL7							750				18	38	610	27	223		< 0.005	0.72	0.05
2012/2013 AEMR	Jun-13	DPL7							740				16	36	16	25	274		< 0.005	1.56	0.03
2012/2013 AEMR 2013/2014 AEMR	12-12-2013	DPL7 DPL7	72	3341	4 1	52	390	238	750				16	34	543 38	23	249		<0.005	1.2	0.05
2013/2014 AEMR	29-01-2014	DPL7	7.3	3243	3.9	154		200								20	210		0.000		0.00
2013/2014 AEMR	24-02-2014	DPL7	7.2	3151	2.4	231	440	050	700				10				050		-0.005	4.50	0.04
2013/2014 AEMR 2013/2014 AEMR	24-04-2014	DPL7 DPL7	7.2	3358	2.8	-2 116	410	250	720				19	39	39	26	253		<0.005	1.52	0.04
2013/2014 AEMR	28-05-2014	DPL7	7.3	3468		297															
2013/2014 AEMR	25-06-2014	DPL7	4.6	69	2.3	320	1	<1	15				0.3	0.2	9.9	<5	4.2		< 0.005	0.85	<0.01
2013/2014 AEMR 2013/2014 AEMR	30-07-2014	DPL7	7.5	3414	3.5	126	390	240	760				19 17	41	656 611	27	261	0.41	< 0.005	1.42	0.02
2013/2014 AEMR	29-09-2014	DPL7	7.2	3436	4.9	173	400	245	740						011	20	200		40.000	1.00	0.01
Appendix of 2015 AEMR	28-11-2014	DPL7	7.1	3416	4.9	75															
Appendix of 2015 AEMR	15-12-2014	DPL7	7.2	3340	2.3	100	400	243	780				22	43	685	29	211	0.34	<0.005	1.62	0.06
Appendix of 2015 AEMR	25-02-2015	DPL7	7.4	3396	4.5	30														<u> </u>	
Appendix of 2015 AEMR	26-03-2015	DPL7	7.1	3446	3.1	78	420	423	780				18	38	651	26	250	0.51	<0.001	2.62	0.077
Appendix of 2015 AEMR	24-04-2015	DPL7	7.5	3438	5.5	53														ļļ	
Appendix of 2015 AEMR	17-09-2015	DPL7	7.3	3323	2.8	110	380		760			0.06	18	39	644	25	250	0.62	< 0.001	2.53	0.025
Appendix of 2015 AEMR	21-10-2015	DPL7	7.2	3330	3.5	144															
Appendix of 2015 AEMR	25-11-2015	DPL7	7.2	3500	5.8	100	290	290	770				17	27	644	24	272	0.04	0.0002	2.44	0.084
Appendix of 2016 AEMR	25-01-2016	DPL7	7.1	3344	1.8	-36.00	380	380	110				17	57	044	24	212	0.04	0.0002	2.44	0.084
Appendix of 2016 AEMR	24-02-2016	DPL7	7.2	3444	5.5	-60.00															
Appendix of 2016 AEMR	24-03-2016	DPL7	7.2	3399	4.1	-9.00	363	363	738				18.21	38.01	637.38	26.08	260.218	0.356	<0.001	1.772	0.084
Appendix of 2016 AEMR	29-04-2016	DPL7 DPL7	7.4	3374	0.4 5.5	-57.00															
Appendix of 2016 AEMR	30-06-2016	DPL7	7.4	3404.7	5.7	98.00															
Appendix of 2016 AEMR	21-07-2016	DPL7	7.5	3159	6.5	-31.00	200		700				24	25	604	24	047		0.001	2.07	0.000
Appendix of 2016 AEMR	29-09-2016	DPL7 DPL7	7.2	3364	3.7	44.00	369		760				24	35	604	24	217		0.001	2.07	0.082
Appendix of 2016 AEMR	27-10-2016	DPL7	7.2	3558	2.4	44.00															
Appendix of 2016 AEMR	29-11-2016	DPL7	7.1	7.1	2.4	20.00	070		070				10	20	649	05	2022		0.001	4.05	0.000
Q1 2017 Env mon report	30-01-2017	DPL7 DPL7	6.9 6.9	3527	4.5	229.3	372		372				18	38	648	25	263		0.001	1.85	0.082
Q1 2017 Env mon report	27-02-2017	DPL7	7.1	3174																	
2017 Env Monitoring	22-03-2017	DPL7	7	3430			350		360	0.1	2.1	0.19		36	830	29	710	0.33	<0.001	1.8	0.076
2017 Env Monitoring 2017 Env Monitoring	17-05-2017	DPL7 DPL7	6.9	3440																<u> </u>	
2017 Env Monitoring	14-06-2017	DPL7	0.0	0110																	
2017 Env Monitoring	12-07-2017	DPL7	7	3360										ļ						┟────────────	
2017 Env Monitoring 2017 Env Monitoring	09-08-2017	DPL7 DPL7	7	3480 3380			390		640	0.1	2.9	0.67		38	940	31	350	0.33	<0.001	13	0.065
2017 Env Monitoring	04-10-2017	DPL7	7	3450					010			0.07			010			0.00	0.001		0.000
2017 Env Monitoring	01-11-2017	DPL7	6.9	3440																└─────	
2017 Env Monitoring 2017 Env Monitoring	29-11-2017	DPL7 DPL7	6.8	344 3410			380		720	0.1	3.6	24		38	930	30	250	0.33	<0.001	1.4	0.063
2018 Env Monitoring	24-01-2018	DPL7	6.84	3450			000		120	0.1	0.0	2.1		00	000	00	200	0.00	-0.001	1.1	0.000
2018 Env Monitoring	21-02-2018	DPL7	6.83	3310			400		71.0		2.7			41	750	20	250	0.07			0.005
2018 Env Monitoring 2018 Env Monitoring	18-04-2018	DPL7 DPL7	6.88	3650			400		/10	0.2	3./	2.3		41	/50	30	250	0.37	<0.001	1.3	0.065
2018 Env Monitoring	16-05-2018	DPL7	6.89	3480																	
2018 Env Monitoring	13-06-2018	DPL7	6.89	3570			380		680	0.1	3.9	2.3		37	840	31	260	0.35	< 0.001	1.6	0.072
2018 Env Monitoring 2018 Env Monitoring	08-08-2018	DPL7	7.08	3220										-			-		+	┟────┦	
2018 Env Monitoring	05-09-2018	DPL7	3.9	2680	57.6	391	393		783			2.06		40	651	26	232	0.49	< 0.001	ļ	0.074
2018 Env Monitoring	05-10-2018	DPL7	6.88	3340	7.5																
2018 Env Monitoring 2018 Env Monitoring	06-11-2018	DPL7	6.73	3530	4	-117 6	205		7/0			2 00		20	625	25	070	0 5	<0.001	17	0 650
	No of	Samples	62	62	<u>د.</u> 2	41	21	10	27	5	5	8	20	27	27	25	2/0	13	3	26	26
		Minimum	3.9	7.1	1.7	-112.6	1	238	15	0.1	2.1	0.06	0.3	0.2	9.9	23	4.2	0.04	0.0002	0.28	0.01
		Maximum	7.6	3650	57.6	391	550	423	783	0.2	3.9	2.4	24	43	940	36	710	0.62	0.001	2.62	0.659
		Average	7.06	3239.74	5.15	96.75	378.24	297.40	680.63	0.12	3.24	1.51	16.98	36.23	573.20	27.35	254.36	0.38	0.00	1.43	0.08

Longterm Groundwater Depth Monitoring at Dunloe Sands Quarry

Date	DPL1	DPL3	DPL5	DPL6	DPL7
Nov-13	0.61	0.57	0.67	0.59	0.61
Apr-14	0.61	0.58	0.68	0.61	0.62
Nov-14	1.30	1.90	1.20	1.40	1.90
Dec-14	1.20	1.80	1.20	1.40	1.80
Jan-15	1.10	1.40	0.90	1.20	1.40
Feb-15	0.30	1.00	0.20	0.80	1.50
Mar-15	0.70	1.00	0.40	1.00	1.20
Apr-15	0.90	1.00	0.80	1.20	1.40
May-15	1.10	1.70	0.80	1.40	1.20
Jun-15	1.40	1.40	0.80	1.20	1.30
Jul-15	1.00	1.50	1.10	1.10	1.00
Aug-15	1.30	1.50	0.90	1.10	1.60
Sep-15	1.30	1.80	1.30	1.20	1.70
Oct-15	1.40	1.70	1.10	1.20	1.80
Nov-15	1.20	1.40	1.20	1.30	1.70
Dec-15	1.10	1.20	0.90	1.20	1.60
22-03-2017	1.58	1.28	1.38	1.95	1.20
19-04-2017	1.53	1.46	1.51	1.26	
17-05-2017	1.64	1.44	1.54	1.51	1.51
14-06-2017	0.89			1.08	
12-07-2017	1.69	1.52	1.60	1.54	1.47
09-08-2017	1.83	1.60	1.68	1.77	1.69
06-09-2017	1.90	1.61	1.67	1.85	1.80
04-10-2017	1.91	1.54	1.61	1.81	1.69
01-11-2017	1.92	1.64	1.72	1.81	1.72
29-11-2017	1.93	1.65	1.74	1.81	1.77
28-12-2017	1.94	1.66	1.74	1.97	1.78
24-01-2018	2.03	1.70	1.77	1.88	1.9
21-02-2018	1.94	1.52	1.62	1.87	1.89
21-03-2018	1.68	1.38	1.49	1.62	1.4
18-04-2018	1.6	1.33	1.41	1.52	1.24
16-05-2018	1.62	1.23	1.36	1.65	1.37
13-06-2018	1.74	1.42	1.56	1.78	1.55
11-07-2018	1.78	1.48	1.56	1.71	1.62
08-08-2018	1.98	1.72	1.80	1.78	1.78
05-09-2018		1.36	1.74	1.6	1.78
05-10-2018	1.73	1.39	1.39	1.73	1.64
06-11-2018	1.74	1.74	1.54	1.62	1.52
07-12-2018		1.39	1.46	1.58	1.34
Minimum	0.3	0.57	0.2	0.59	0.61
Maximum	2.03	1.9	1.8	1.97	1.9
Average	1.44	1.43	1.29	1.45	1.51

APPENDIX 3

DUNLOE SAND QUARRY REHABILITATION AND ECOLOGICAL MONITORING 2018

Holcim Dunloe Sand Quarry Rehabilitation Sub-Report 2018 Annual Review

This report has been prepared by Sasha Peterson BSusEnv&Plan for inclusion in the 2018 AEMR for the Holcim Dunloe Park Sand Quarry.

As per the comments provided by the Department this sub-report has been prepared to satisfy the outstanding actions from previous AMER reviews. This report contains the following:

- 1. Year-on-year comparison of monitoring results for 2017-2018
- 2. Comparison of 2018 monitoring results against rehabilitation and revegetation objectives
- 3. Summary of nest box monitoring results for 2018
- 4. Mapping identifying monitoring location photograph points

<u>1.0 – 2017 and 2018 Comparison of Monitoring Results</u>

The 2012 Revised EMP for Dunloe Park Sand Quarry states "the success of a regeneration project can be assessed by systematic visual monitoring of rehabilitation areas". The project site has three vegetation monitoring forms to be completed for each rehabilitation zone at various intervals throughout the year, these are:

- Form A: Routine Quarterly Rehabilitation Monitoring Sheet
- Form B: Proforma for Assessing Site Condition (Six Monthly)
- Form C: Revegetation/Forest Structure (Annually)
- Form D: Proforma for Monitoring Floristic Composition (Annually)

In addition to the above forms, photo points and photographs taken at quarterly intervals are undertaken as per the requirements of the EMP.

1.1 – The following section provides a year-on-year comparison (2017-2018) of monitoring data collected under for each of the three rehabilitation zones under Form A of the EMP.

1.1.1 Zone 1: Form A

General Management: No fires, rubbish dumping, plant theft or utilization of Zone 1 for cattle grazing, vehicle parking or stockpiling occurred in 2018 or 2017. It is noted that during March 2017 monitoring Zone 1C was not accessible due to weather, however work performed across the rehabilitation zones to remove flood debris from fences that occurred during April showed no indication that Zone 1C had been used for cattle grazing, rubbish dumping etc. Record of slashing of bushfire trails and adjacent pastures can be accessed in the 2018 Work Log (Appendix 1).

Biodiversity: An array of native fauna was noted throughout the routine quarterly monitoring in Zone 1 during 2018, these included tadpoles, mud crab, koala and crow. Native fauna was also noted within Zone 1 during 2017, including a wallaby, snakes (brown and tree snake), lorikeet, fairy wrens and finches. Presence of fauna year on year demonstrates that Zone 1 is utilized by a range of native wildlife.

Weeds: No areas of weeds established within Zone 1 during 2018 – single plant infestations were noted in June with 1 small camphor laurel and 1 small lantana bush noted along the maintenance track. During monitoring in 2017 one instance of single plant infestations was noted along the maintenance track in December (1 x lantana and 2 x camphor laurel), these were poisoned in 2018. Year on year comparison demonstrates that there is a trend for weed occurrence along the maintenance track – this is likely due to the track being maintained and kept clear allowing for weeds to occur due to an opening in the canopy and little to no competition from native plants.

Modifications: No structural modifications or illegal modifications were made within Zone 1 during 2018 and fences were noted to be in a good condition. During 2017, no structural modification or illegal modifications were made within Zone 1, the need for fencing repairs were noted during the 2017 period and these improvements were undertaken in January 2018.

Vegetation Regeneration: Table 1 below displays a year on year comparison of the natural regeneration of tree, shrub and groundcover species and their respective heights. The monitoring requires a visual estimate of vegetation, due to the size of the rehabilitation zone different areas of the zone are traversed each quarter – as such there can be significant differences in recorded heights due to different trees being inspected during the visits. It is also noted that although majority of the zone has been rehabilitated some existing native trees were present which is reflective of the higher height range estimates.

Table 2 below displays a year on year comparison of the dominant species noted during quarterly inspections within each canopy layer. Due to the size of the rehabilitation zone different areas of the zone are traversed each quarter – as such there can be differences in the recorded species. Seasonal influences as well as the maturity of the rehabilitation zone also influence the species that are noted during inspection.

etres	15metres
etres	5metres
etre	2metres
(etres etre

Table 1: Natural regeneration heights 2017 and 2018 within Zone 1

	2017	2018
Tree	Paperbark	Paperbark
	 Banksia 	 Banksia
	 Sheoak 	 Eucalyptus
		 Sheoak
Shrub	 Mangrove 	 Mangrove
		 Coast geebung
		 Coast wattle
Groundcover	Bracken Fern	Bracken fern
		 Salt couch
		 Flat sedge

		Twigrush
Table 2. Densinent engeles with	in an ab anna nu lawar 2017 an d	2010 within Zana 1

Table 2: Dominant species within each canopy layer 2017 and 2018 within Zone 1

1.1.2 Zone 2: Form A

General Management: No fires, rubbish dumping, plant theft or utilization of Zone 2 for cattle grazing, vehicle parking or stockpiling occurred in 2017 or 2018. Slashing of trails within Zone 2 occurred in 2018 as detailed in Appendix 1.

Biodiversity: A number of native fauna was noted during 2018, this included fairy wrens, willy wag tails, a butcher bird, cicada, finch and bees. Native fauna was also spotted during 2017 monitoring, species included willy wag tail, eastern rosella, lorikeet, finches, wallaby, tree snake and kookaburra. Presence of fauna year on year demonstrates that Zone 2 is utilized by a range of native wildlife.

Weeds: No areas of weeds re-established within Zone 2 during the 2017 or 2018 period. Although there are still gaps in vegetation as this rehabilitation are continues to mature, groundcover from grasses is near 100% restricting weeds from establishing.

Modifications: No structural modifications or illegal modifications were made within Zone 2 during 2017 or 2018 and fences were noted to be in good condition.

Vegetation Regeneration: Table 3 below displays a year on year comparison of the natural regeneration of tree, shrub and groundcover species and their respective heights. Table 4 presents the dominant species within each canopy layer. As noted in the discussion of Tables 1 and 2 the same considerations of recorded heights as well as species must be applied to both Table 3 and 4.

	2017	2018
Tree	8metres	13metres
Shrub	3metres	3metres
Groundcover	1metre	2metres

Table 3: Natural regeneration heights 2017 and 2018 within Zone 2

	2017	2018
Tree	Paperbark	 Sheoak
	 Banksia 	 Paperbark
	 Sheoak 	 Banksia
Shrub		Coast wattle
		 Coast geebung
Groundcover	Grass	Bracken fern
		Common reed
		Common rush

Table 4: Dominant species within each canopy layer 2017 and 2018 within Zone 2

1.1.3 Zone 3: Form A

General Management: No fires, rubbish dumping, plant theft or utilization of Zone 3 for cattle grazing, vehicle parking or stockpiling occurred in 2017 or 2018.

Biodiversity: No native fauna was noted during the quarterly monitoring during 2018. However, during 2017 monitoring native fauna including an eagle and goanna. Monitoring results indicate this zone is used less by native fauna in comparison to Zones 1 and 2, however it must be considered that Zone 3 is significantly smaller then these other zones.

Weeds: During the 2017 period single plant infestations were noted in June (1 x tobacco bush). No areas of weeds established during Zone 3 during 2018 – single plant infestations were noted in March (1 x tobacco bush), June (1 x lantana bush, 1 x camphor laurel) and in December (1 x camphor laurel). This data suggests that weed occurrence has increased in the 2018 period when compared to 2017 levels. However, infestation rates are still extremely low – however, due to this occurrence continuation of routine monitoring and maintenance is especially important to ensure the success of this rehabilitation zone.

Modifications: No structural modification or illegal modifications were made within Zone 1 during 2017 or 2018. Fencing improvements occurred in Zone 3 during the 2017 period with none being required in 2018.

Vegetation Regeneration: Table 4 and 5 below display natural regeneration heights for trees, shrubs and groundcovers as well as the dominant species within each canopy layer for both 2017 and 2018. As noted in the discussion of Tables 1 and 2 the same considerations of recorded heights as well as species must be applied to both Table 5 and 6.

	2017	2018
Tree	6metres	13metres
Shrub	2metres	4metres
Groundcover	1metre	1metre

Table 5: Natural regeneration heights 2017 and 2018 within Zone 3

	2017	2018
Tree	 Banksia 	Banksia
		Sheoak
Shrub		 Coastal geebung
Groundcover	Bracken fern	Bracken fern
	 Leaf litter 	

Table 6: Dominant species within each canopy layer 2017 and 2018 within Zone 3

1.2 - The following section provides a year-on-year comparison (2017-2018) of monitoring data collected under for each of the three rehabilitation zones under Form B of the EMP.

1.2.1 Zone 1: Form B

2017 Summary

Canopy cover very strong within Zone 1A and B, with ample leaf litter providing almost 100% groundcover within the site. The previously planted supplementary plantings within

the zone have established very well and are beginning to achieve good height. Zone 1C is tidal and as such is wet almost year-round, this directly influences the vegetation that occurs here – e.g. sedges and mangroves. No weeds were noted during the inspections. Despite the significant flooding in 2017 the whole of the site faired extremely well. The entire Zone 1 was rated as A (OK on track towards target).

2017 Summary

The thickness in plant coverage is noted to be continually improving, especially in regard to the occurrence and variety of shrubs and groundcovers. The entire Zone 1 was rated as A (OK on track towards target) – routine maintenance is recommended to continue to manage any potential weed infestations as well as preserve access tracks into the site.

1.2.2 Zone 2: Form B

2017 Summary

Supplementary plantings in Zone 2 are doing very well, however there were some small losses in numbers due to salt water inundation during King and High tide events. These supplementary plantings are beginning to move toward the 2metre height mark. Natural regeneration is occurring in zone with vegetation reaching up to 1metre in height. Grass in this zone is very thick, creating difficult conditions for weeds to establish within the zone. Despite the significant flooding in 2017 the whole of the site faired extremely well. The entire Zone 2 was rated as A (OK on track towards target) during both June and December monitoring in 2017.

2018 Summary

The same tidal influences still impact upon this zone and is an environmental factor that influences the outcomes of this zone. Zone 2B being a fresh water wetland is also another factor that influences the outcomes of this zone. The canopy is continuing to close in this zone, supplementary plantings are doing well, and no weeds were noted. Groundcover continues to be strong, restricting weeds from establishing. The entire Zone 2 was rated as A (OK on track towards target) during both June and December monitoring in 2018.

1.2.3 Zone 3: Form B

2017 Summary

No supplementary plantings have occurred in Zone 3. Good growth has been noted, while an area of grass remains in the centre of the zone, natural regeneration is occurring and this grassed area continues to become smaller as the zone progresses over time. Ground cover is strong, with little to no bare ground - leaf and branch litter are the predominant covers. Three tobacco bushes were recorded during the 2017 monitoring period – which were removed in accordance with the EMP. The entire Zone 3 was rated as A (OK on track towards target) during both June and December monitoring in 2017.

2018 Summary

No supplementary plantings have occurred in Zone 3. Grass gap in vegetation still present but continues to close as natural regeneration progresses. The previously poisoned tobacco bushes noted in 2017 had not re-established during the 2018 period. One camphor laurel was noted during 2018 Form B monitoring which was cut down with its stump painted to prevent grow back. The entire Zone 3 was rates as A (OK on track towards target) during both June and December monitoring in 2018.

1.3 - The following section provides a year-on-year comparison (2017-2018) of monitoring data collected under for each of the three rehabilitation zones under Form C and D of the EMP. Form C (revegetation/forest structure) is surveyed on a 50m x 20m plot, as is Form D (floristic composition).

A 50 m x 20 m monitoring plot is the extent of the area assessed to complete both forms C and D. The 50 m x 20 m monitoring plot within each rehabilitation zone are semi-permanent fixtures to allow for year-on-year monitoring of the same area, allowing for better data collection and understanding of how it is progressing through the rehabilitation process. If necessary, these plots can be moved into a new area within the zone or removed completely if the current location of the plot or entire rehabilitation zone is deemed to be successfully rehabilitated.

Ground cover, canopy cover and canopy height are surveyed at 5m, 25m and 45m points within the monitoring plot. A 1m x 1m quadrant is used to conduct the groundcover survey. Canopy cover, canopy height and special life forms are assessed within a 10m x 10m quadrant. It is important to note that the results of these assessments are subjective as it is a visual assessment.

1.3.1 Zone 1: Form C

2017 Summary

Groundcover was strong within Zone 1, with only 5% bare soil noted at the 5m quadrant and 0% at 25m and 45m. Ferns and leaf litter and fine woody debris <10cm diameter were the dominant forms of groundcover across all quadrants. Visual estimates of the canopy cover ranged from 40% at 45m through to 50% at 5m. While canopy height estimates across all three points were 8m to 10m. Special life forms were noted within each quadrant, with vines (slender stem <5cm diameter) and ground ferns recorded.

2018 Summary

Groundcover was strong, with no bare soil recorded within any of the quadrants. Leaf litter and ferns were again the dominant forms of ground cover. Visual estimates of canopy cover ranged from 30% at the 45m point to 60% at the 5m point. Canopy height estimates ranged from 10m to 13m. Special life forms were noted within the 25m quadrant, being vines (slender stem <5cm diameter).

Similar results were obtained during the 2017 and 2018 monitoring period, with no major declines across groundcover, canopy height or cover noted. This indicates that the monitoring plot has not deteriorated in condition and continues to be on good track for rehabilitation.

Zone 2: Form C 2017 Summary Groundcover was strong within the Zone 2 monitoring plot; no bare soil was noted within any quadrant. Grass, tree seedlings and shrubs, leaf litter and fine woody debris <10cm diameter were the dominant forms of groundcover. Canopy foliage was estimated to be between 40% and 50% across the plot and canopy height reaching up to 10m. Special life forms were noted within each quadrant, this was limited to ground ferns.

2018 Summary

Groundcover was strong, with no bare soil noted within any quadrant. Grass was the dominant form of groundcover. Canopy foliage was estimated to be 30% while canopy height was reaching up to 10m. No special life forms were noted within the quadrants.

Results from the 2017 period differ to those of 2018, a key influencer of these results is the assisted plantings beginning to establish within the zone. As these plants have begun to mature, they are no longer recorded as seedlings. The reduction in leaf litter and perceived increase in grass cover should not greatly influence the strike rate of tree and shrub seedlings. It is noted that the area has a strong seedbank and together with previous and potential future assisted plantings will continue to ensure the uptake of a range of species of trees and shrubs. Groundcovers will continue to diversify into the future as the layers of the rehabilitation begin to mature and change the conditions on the ground level of the forest structure.

Zone 3: Form C

2017 Summary

Groundcover was strong within Zone 3; no bare soil was recorded within any quadrant. Grass and leaf litter were the dominant forms of groundcover. Canopy cover was estimated to range between 45% to 60%, with canopy height reaching up to 15m. Special life forms were noted within each quadrant, including vines (slender <5cm diameter) and ground ferns.

2018 Summary

Groundcover was strong during the 2018 monitoring, with no bare soil noted within any quadrant. Grass was the dominant form of groundcover. Canopy foliage was estimated to be 60% within the 25m and 45m plots. While canopy height was estimated to be between 9m to 12m. Vines (slender stem <5cm diameter) were the special life form noted within each quadrant.

Results from the 2017 and 2018 period demonstrate that rehabilitation zone 3 continues to mature. Although data suggests canopy cover and height have decline from 2017 to 2018, it is imperative to note that the data is only an estimate as such the results are subjective.

Zone 1: Form D

Paperbarks and swamp mahogany were noted to be the largest trees within the canopy. While coast geebung and wattle are present within the mid-story. A brown kurrajong was noted within the mid-story during 2018 monitoring. Bracken fern and leaf litter are dominant in the understory/groundcover. Recruitment of swamp mahogany and banksia are common to the site. Two weeds were noted (1 x lantana and 1 x camphor) within the site.

Zone 2: Form D

Sheoak and banksia are noted to be the two most dominant trees within Zone 2. The trees planted in the assisted generation effort (assorted variety of gum trees) are currently the mid-story, along with coast geebungs – however as these plantings continue to mature, they will move into the canopy layer. Grass was the dominant ground cover with regular occurrences of bracken fern. Banksia and coastal wattles are the most common recruits within the site. No weed or maintenance issues were noted.

Zone 3: Form D

Sheoak and banksia are noted to be the two most dominant trees, with coast geebung occurring within the mid-story. A cheese tree was also noted within the mid-story during 2018 monitoring. The understory and ground covers within Zone 3 are dominated by grass and bracken fern, with good levels of leaf litter and little to no bare dirt noted. No major weed or Maintenace issues were noted, with one camphor laurel found and removed during the inspection.

2.0 - Comparison of 2018 monitoring results against rehabilitation and revegetation objectives

Performance Requirements: Assisted Natural Regeneration Areas

There are four performance requirements (canopy coverage, diversity and groundcover coverage) for the rehabilitation zones as set out in the EMP. If these performance requirements are not achieved, supplementary plantings are triggered within the according zone.

1. <u>Canopy Coverage</u>

Requirement:

'Canopy coverage will not be considered achieved for any one area if it does not contain a canopy or small tree typical to the community (refer Section 4.3.1 modules) within an area equal or greater than 4sqm'.

Response:

Monitoring indicates that each of the rehabilitation zones have achieved this performance requirement in 2018, an example of a canopy or small tree that is present within each zone that is listed within the modules for each respective zone is detailed in Table 7 below.

Zone	Canopy or Small Tree
1A	Paperbark
1B	Swamp Mahogany
1C	Paperbark
2A	Coastal Banksia
2B	N/A - Wetland Community
2C	Coastal Banksia
3	Black Sheoak

Table 7: Canopy or Small Trees that occur within each of the Rehabilitation Zones at the Dunloe Park Sand Project

2. <u>Diversity</u>

Requirement:

'Diversity within the upper strata (trees, small trees and shrubs) of natural regeneration shall be required to achieve the following' *note coastal wetland communities (zones 1A and 2B) are exempt from this requirement.

Community Type	Canopy Tree minimum diversity	Small Tree/Shrubs minimum diversity	Applicable Rehabilitation
	per 100sqm	per 100sqm	Zones
Swamp Sclerophyll	3	3	1B, 1C, 2C
Swamp Sclerophyll, Swamp She-oak, Banksia	3	3	2A
Swamp Sclerophyll, Swamp Oak	3	3	3

Table 8: Diversity requirements as included in the Dunloe Park Sand Project Environmental Management Plan Revision July 2012

Response:

Table 9 displays examples of canopy and small trees found within each respective rehabilitation zone during the 2018 monitoring period. An in-depth biodiversity study was voluntarily undertaken for the whole of Zone 1 (A, B and C) in 2016 – this has previously been provided to the Department of Planning and Environment but has again been included in Appendix Two provide supporting evidence of the rehabilitation area meeting the diversity requirements of the EMP.

Zone 1C is strongly influenced by tidal and freshwater flooding inundation, influencing the occurrence and uptake of trees and species in the area. It has not met the canopy tree minimum diversity, as such appropriately placed supplementary plantings should be explored in this area. Zone 3 has also not achieved the canopy and small tree diversity, again supplementary plantings should be planned for this zone during the 2019 period.

Zone	Canopy Tree	Small Tree/Shrub
1A	N/A - Wetland Community	N/A
1B	Swamp Mahogany	Casuarina
	Paper Bark	Brown Kurrajong
	Pink Bloodwood	Coastal Banksia
1C	Paperbark	Mangrove
		Coast Wattle
		Casuarina
2A	Paperbark	Broad-leaved Lillipilli
	Coastal Banksia	Coast Wattle
	Eucalyptus Robusta	Black Sheoak
2B	N/A - Wetland Community	N/A
2C	Paperbark	Black Sheoak
	Coastal Banksia	
	Swamp Box	
3	Paperbark	Coast Geebung
		Cheese Tree

Table 9: Data on diversity within the Dunloe Sand Park Project Rehabilitation Zones 2018

3. <u>Groundcover Coverage</u>

Requirement:

'Groundcover coverage will not be considered achieved for any one area if it does not contain native ground cover or leaf litter from the upper state within an area equal to or great than 2.25sqm... this performance requirement does not apply to Rehabilitation Zones 1A and 2B'.

Response:

No areas equal or greater than 2.25sqm without native ground cover or leaf litter noted during monitoring in any of the zones.

4. <u>General Coverage/Success of Natural Regeneration</u>

Requirement:

'Coverage will not be considered achieved for any one area if it contains a bare or denuded area greater than 6.25sqm'.

Response:

No areas greater than 6.25sqm denude of any general coverage noted within any areas of the rehabilitation zones during monitoring.

Maintenance Objectives

Table 10: Maintenance Requirements for the Dunloe Park Sand Project as Detailed in the EMP Section 4.4 displays the maintenance objectives for the rehabilitation zones and how these were achieved during the 2018 monitoring period.

Requirement	Notes
Planting areas are to be regularly	No plantings were undertaken in the 2018
watered for a period of twelve weeks. If	period across the 3 rehabilitation and
during quarterly routine inspections of	revegetation zones. Monitoring of previous
the rehabilitation zones there is	years (2016) plantings continued to occur, no
evidence of plant poor health due to	plants exhibited signs of poor health due to
drought stress than additional watering	drought stress due to consistent rainfall
shall be undertaken;	throughout the year therefore no watering
	was undertaken or required.
Recurrent weeds within rehabilitation	Any weeds identified during quarterly
zones are to be removed as they occur	monitoring are recorded on Form A: Routine
quarterly for the first five years of	Quarterly Rehabilitation Monitoring Sheet.
assisted regeneration for each	Following any identification of weeds
rehabilitation stage and quarterly	management occurs – all weed maintenance
thereafter for the life of the	work has been recorded within the
development;	Renabilitation and Revegetation Work Log
	2018 Which is attached in Appendix 1 of this
Fonces (where required due to cattle	Teport.
grazing in adjacent haddocks) are to be	relice inspection occurs quarterly alongside
inspected quarterly for structural	during the 2018 period and all works of these
integrity and maintained as necessary:	have been recorded within the Rehabilitation
integrity and maintained as necessary,	and Revegetation Work Log 2018 which is
	attached in Annendix 1 of this report
Location survey pegs of the	N.C. White and Associated Land and
rehabilitation zones boundaries are to	Engineering Surveyors re-surveyed the area in
be inspected guarterly and	2016. Copies of this have been previously
maintained/replaces as necessary;	provided to the Department in relation to the
	establishment of covenants over the
	rehabilitation and revegetation zones.
Replacement planting of stock loss;	No plantings occurred during the 2018 period,
	as such no stock loss occurred and no
	replacement planting was required.
Existing 4WD tracks within the	Inspection and assessment of 4WD tracks
environmental protection zones are to	occur quarterly alongside routine monitoring.
be maintained quarterly to allow	Slashing of 4WD tracks did occur during the

Table 10: Maintenance

continued vehicle access for	2018 period and all works have been recorded
maintenance and emergency rural fire	within the Rehabilitation and Revegetation
brigade vehicles;	Work Log 2018 which is attached in Appendix
	1 of this report.
A slashed/grazed zone of 25-30m is to	Areas adjacent to rehabilitation zones are
be maintained on the development side	constantly grazed year-round and slashed
of the rehabilitation zones to reduce	when required. No slashing of these areas was
risk of bushfire spread from the pasture	deemed necessary during the 2018 period.
grasslands.	

3.0 - Summary of Nest Box Monitoring Results

In accordance with the Project Approval, 11 fauna nest boxes have been installed across the rehabilitation zones in a bid to increase potential nesting options for fauna. Routine fauna box monitoring forms are completed for each nest box on an annual basis. During the 2018 monitoring period, one nest box was being actively utilized at the time of inspection. A mountain brushtail possum was inspected within a cockatoo box located in Zone 1B. A photograph of the possum is included below. No other animals were located within the remaining nest boxes. All boxes were noted to be in a good condition. Spider webs covering the entrance hole of the glider box within Zone 1B were removed. The possum box located within Zone 2C was found to have minor exterior damage – with evidence of pecking around the entrance hole, however no signs of bird or other fauna use was noted inside of the box.

4.0 - Mapping identifying monitoring location photograph points The Map below displays the location of the permanent monitoring locations for the 3 rehabilitation zones of the Dunloe Park Sand Project.

Appendix One: Work Log 2018

Date: 05/01/2018

Activities Performed:

- Maintenance slashing of Zone 1 Northern access trail
- Removal of fallen debris from Zone 1 Northern access trail

Work Performed By:

Sasha Peterson – Ramtech Pty Ltd

Date: 08/01/2018

Activities Performed:

- Repair of Northern boundary fence in Zone 1
- Stem Injection of 2 small camphor laurel trees identified during December 2017 monitoring.
- Spot spray of 1 lantana bush identified during December 2017 monitoring

Work Performed By:

Kiiandra Kearney – Ramtech Pty Ltd

Date: 22/01/2018

Activities Performed:

Maintenance on Zone 1C boundary fencing

Work Performed By:

Kiiandra Kearney - Ramtech Pty Ltd

Date: 26/04/2018

Activities Performed:

- Removal of guards from suitable trees in Zone 2
- Installing guards on suitable trees in Zone 2
- Attaching trees to stakes where needed in Zone 2

Work Performed By:

Sasha Peterson – Ramtech Pty Ltd Casual Employee – Ramtech Pty Ltd

Date: 31/07/2018

Activities Performed:

• Slashing of access trails in Zone 1A and 1B

Work Performed By:

Sasha Peterson – Ramtech Pty Ltd

Date: 28/11/2018

Activities Performed:

• Slashing of trails in Zone 2A and B

Work Performed By:

Contractor – Ramtech Pty Ltd

Date: 28/12/2018

Activities Performed:

• Slashing of access trails in Zone 1A, 1B and 1C

Work Performed By:

Sasha Peterson – Ramtech Pty Ltd

Appendix Two: Zone One Biodiversity Study 2016

Biodiversity Study

<u>PROPERTY:</u> DUNLOEPARK LOT 1 POTTSVILLE MOOBALL RD NSW

STUDY CONDUCTED – 06/02/2016 BY DAVE WOODLEE FROM BUSH TO SEA <u>E: bushtosea@gmail.com</u>P: 0488 626 502

BIODIVERSITY STUDY OF REHABILITATION ZONE 1

A TOTAL OF **55 TREES AND SHRUBS SPECIES** WERE RECORDED AS WELL AS **10 SPECIES OF GRASSES AND SEDGES AND 4 SPECIES OF VINES 1 FERN SPECIES**

THE STUDY FOUND THAT 80% OF THE AREA WAS MADE UP MAINLY OF 8 SPECIES WITH THE OTHER 47 SPECIES DESPERSED THROUGHT THE ZONE .

AMOUNG THE 8 PROMINENT SPECIES, OTHER REGENERATING SPECIES WERE FOUND TO RANGE IN HEIGHT FROM 300MM TO 1500MM. THIS SHOWS THAT THE BIRDS ARE BRINGING IN SEEDS FROM AROUND THE AREA AND DISPERSING THEM THROUGH OUT THE REHABILITATION ZONE.

NOW THAT THE AREA IS FENCED AND ALLOWED TO NATURALLY REGENERATE, THE COASTAL LITERAL RAINFOREST AND MELALUCA SWAMP SPECIES ARE COMING UP IN ABUNDANCE.

WE RECORDED:

3140 INDIVIDUAL NATIVE PLANTS IN REHABILITATION ZONE 1

SPECIES RECORDED:

TREES AND SHRUBS

ACACIA FALCATA ACACIA MELANOXYLON ACACIA SUAVEOLENS ACACIA SOPHORA ACMENA SMITHI ACMENA HEMILAMPRA ACRONYCHIA IMPERFIRATA ALPHITONIA EXCELSA AUSTROMYRTUSDULCIS

BANKSIA INTEGRIFOLIA BREYNIAOBLONGIFOILA

CALLISTEMON PACHYPHYLLUS CALLISTEMON SALIGNUS CASSINE AUSTRALIS CASUARINA GLAUCA CLERODENDRON TOMENTOSUM COMMERSONIA BARTRAMIA CUPANIOPSISANACARDIOIDES

DUBOISIA MYOPOROIDES

ELAEOCARPUS OBOVATUS ELAEOCARPUS RETICULATUS ENDIANDRA SIEBERI EUCALYPTUS INTERMEDIA EUCALYPTUS MACULATA EUCALYPTUS RESINIFERA EUCALYPTUS ROBUSTA EUCALYPTUS TERICORNIS EUROSCHINUS FALCATA

GLOCHIDION FERDINANDI GLOCHIDION SUMATRANUM GUIOASEMIGLAUCA

HIBISCUS DIVERSIFOLIUS HOVEAACUTIFOLIA

JAGERA PSEUDORHUS

LEPTOSPERMUM LIVERSAIDGEI LEPTOSPERMUM POLYGALIFOLIUM LEPTOSPERMUM SEMIBACCATUM

LITSEA AUSTRALIS LOPHOSTEMON CONFERTUS LOPHOSTEMON SUAVEOLENS

MACARANGA TANARIUS MAYTENUS SILVESTRIS MELALEUCA QUINQUINERVIA MELASTOMA AFFINE

NOTELAEA LONGIFOLIA

PERSOONIA CORNIFOLIA PITTOSPORUM REVOLUTUM PITTOSPORUM UNDULATUM POLYSCIAS ELEGANS POUTERIA CHARTACEA PULTENAEA VILLOSA

RHODOMYRTUS PSIDIOIDES

SYMPLOCUS THWAITESII SYNCARPIA GLOMULIFERA

ZIERIA SMITHII

GRASSES AND SEDGES

BAUMEA RUBIGINOSA CYMBOPOGON REFACTUS DIANELLA CERULEA IMPERATA CYLINDRICA JUNCUS USITATUS JUNCUS POLYANTHEMOS LEPIRONIAARTICUTA PHILYDRUM LANUGINOSUM SCHOENOPLECTUS MUCRONATUS THEMEDAAUSTRALIS

FERNS AND VINES

BLECHNUM CARTLAGINEUM DROSERA PYGMAEA

CISSUS ANTRACTICA EUSTREPHUS LATIFOLIUS SMILAX AUSTRALIS STEPHANIA JAPONICA

APPENDIX 4

DUNLOE SAND QUARRY TRUCK MOVEMENT SUMMARY

Date	Total Truck	Max Truck Visits per	Operational Hours	Max Truck Visits per
	Movements per day	hour		day
Monday, 1 January 2018	0	0	0	0
Tuesday, 2 January 2018	0	4	10	40
Wednesday, 3 January 2018	0	4	10	40
Thursday, 4 January 2018	0	4	10	40
Friday, 5 January 2018	0	4	10	40
Saturday, 6 January 2018	0	4	5	20
Sunday, 7 January 2018	0	0	0	0
Monday, 8 January 2018	1/	4	10	40
Tuesday, 9 January 2018	22	4	10	40
Thursday, 11 January 2018	8	4	10	40
Friday, 12 January 2018	15	4	10	40
Saturday, 13 January 2018	6	4	5	20
Sunday, 14 January 2018	0	0	0	0
Monday, 15 January 2018	21	4	10	40
Tuesday, 16 January 2018	17	4	10	40
Wednesday, 17 January 2018	22	4	10	40
Thursday, 18 January 2018	16	4	10	40
Friday, 19 January 2018	16	4	10	40
Saturday, 20 January 2018	4	4	5	20
Sunday, 21 January 2018	0	0	0	0
Monday, 22 January 2018	22	4	10	40
Tuesday, 23 January 2018	18	4	10	40
Wednesday, 24 January 2018	23	4	10	40
Thursday, 25 January 2018	18	4	10	40
Friday, 26 January 2018	0	0	0	0
Saturday, 27 January 2018	0	4	5	20
Monday, 20 January 2018	20	0	10	40
Tuesday, 30 January 2018	16	4	10	40
Wednesday, 31 January 2018	13	4	10	40
Thursday, 1 February 2018	17	4	10	40
Friday, 2 February 2018	8	4	10	40
Saturday, 3 February 2018	0	4	5	20
Sunday, 4 February 2018	0	0	0	0
Monday, 5 February 2018	19	4	10	40
Tuesday, 6 February 2018	17	4	10	40
Wednesday, 7 February 2018	18	4	10	40
Thursday, 8 February 2018	19	4	10	40
Friday, 9 February 2018	18	4	10	40
Saturday, 10 February 2018	5	4	5	20
Sunday, 11 February 2018	0	0	0	0
Tuesday, 13 February 2018	23	4	10	40
Wednesday, 14 February 2018	16	4	10	40
Thursday, 15 February 2018	15	4	10	40
Friday, 16 February 2018	22	4	10	40
Saturday, 17 February 2018	0	4	5	20
Sunday, 18 February 2018	0	0	0	0
Monday, 19 February 2018	29	4	10	40
Tuesday, 20 February 2018	17	4	10	40
Wednesday, 21 February 2018	20	4	10	40
Thursday, 22 February 2018	18	4	10	40
Friday, 23 February 2018	4	4	10	40
Saturday, 24 February 2018	0	4	5	20
Sunday, 25 February 2018	0	0	0	0
Monday, 26 February 2018	17	4	10	40
Wednesday, 28 February 2018	21	4	10	40
Thursday, 1 March 2018	14	4	10	40
Friday, 2 March 2018	18	4	10	40
Saturday, 3 March 2018	0	4	5	20
Sunday, 4 March 2018	0	0	0	0
Monday, 5 March 2018	20	4	10	40
Tuesday, 6 March 2018	14	4	10	40
Wednesday, 7 March 2018	7	4	10	40
Thursday, 8 March 2018	8	4	10	40
Friday, 9 March 2018	12	4	10	40
Saturday, 10 March 2018	0	4	5	20
Sunday, 11 March 2018	0	0	0	0
ivionday, 12 March 2018	23	4	10	40

Tuesday, 13 March 2018	15	1	10	40
Wednesday, 14 March 2018	15	4	10	40
	15	4	10	40
Thursday, 15 March 2018	22	4	10	40
Friday, 16 March 2018	23	4	10	40
Saturday, 17 March 2018	0	4	5	20
Sunday, 18 March 2018	0	0	0	0
Monday, 19 March 2018	26	4	10	40
Tuesday, 20 March 2018	15	4	10	40
Wednesday, 21 March 2018	21	4	10	40
Thursday, 22 March 2018	10	4	10	40
	10	4	10	40
Friday, 23 March 2018	12	4	10	40
Saturday, 24 March 2018	0	4	5	20
Sunday, 25 March 2018	0	0	0	0
Monday, 26 March 2018	29	4	10	40
Tuesday, 27 March 2018	27	4	10	40
Wednesday, 28 March 2018	26	4	10	40
Thursday, 29 March 2018	17	4	10	40
Friday, 30 March 2018	0	0	0	0
Caturday, 30 March 2010	0	0	0	0
Saturuay, SI March 2018	0	0	0	0
Sunday, 1 April 2018	0	0	0	0
Monday, 2 April 2018	0	0	0	0
Tuesday, 3 April 2018	18	4	10	40
Wednesday, 4 April 2018	13	4	10	40
Thursday, 5 April 2018	25	4	10	40
Friday, 6 April 2018	12	4	10	40
Saturday, 7 April 2018	0		5	20
Sunday, 7 April 2018	0	4	5	20
Sunday, 8 April 2018	0	0	0	0
Monday, 9 April 2018	16	4	10	40
Tuesday, 10 April 2018	21	4	10	40
Wednesday, 11 April 2018	19	4	10	40
Thursday, 12 April 2018	17	4	10	40
Friday, 13 April 2018	25	4	10	40
Saturday, 14 April 2018	0	4	5	20
Sunday, 15 April 2018	0	0	0	0
Monday, 16 April 2018	21	1	10	40
Tuesday, 10 April 2018	21	4	10	40
Tuesday, 17 April 2018	26	4	10	40
Wednesday, 18 April 2018	13	4	10	40
Thursday, 19 April 2018	29	4	10	40
Friday, 20 April 2018	16	4	10	40
Saturday, 21 April 2018	0	4	5	20
Sunday, 22 April 2018	0	0	0	0
Monday, 23 April 2018	13	4	10	40
Tuesday, 24 April 2018	18	4	10	40
Wednesday, 25 April 2018	0	0	0	40
Thursday, 25 April 2018	20	0	10	0
Thursday, 20 April 2018	20	4	10	40
Friday, 27 April 2018	23	4	10	40
Saturday, 28 April 2018	4	4	5	20
Sunday, 29 April 2018	0	0	0	0
Monday, 30 April 2018	25	4	10	40
Tuesday, 1 May 2018	26	4	10	40
Wednesday, 2 May 2018	20	4	10	40
Thursday, 3 May 2018	21	4	10	40
Friday 4 May 2018	20	۵	10	40
Saturday, 5 May 2018	0			20
	0	4	5	20
	0	U	0	0
Monday, 7 May 2018	15	4	10	40
Tuesday, 8 May 2018	18	4	10	40
Wednesday, 9 May 2018	20	4	10	40
Thursday, 10 May 2018	27	4	10	40
Friday, 11 May 2018	27	4	10	40
Saturday, 12 May 2018	0	4	5	20
Sunday, 12 May 2018	0	0	0	0
Monday, 14 May 2010		0	10	40
Tuesday, 14 Ividy 2018	23	4	10	40
Tuesday, 15 May 2018	21	4	10	40
Wednesday, 16 May 2018	25	4	10	40
Thursday, 17 May 2018	37	4	10	40
Friday, 18 May 2018	23	4	10	40
Saturday, 19 May 2018	0	4	5	20
Sunday, 20 May 2018	0	0	0	0
Monday 21 May 2018	18	4	10	40
Tuesday, 22 May 2010	20		10	40
Na da andre 22 May 2010	20	4	10	40
weanesday, 23 May 2018	21	4	10	40
Thursday, 24 May 2018	25	4	10	40

Friday, 25 May 2018	27	4	10	40
Saturday, 26 May 2018	0	4	5	20
Sunday, 27 May 2018	0	0	0	0
Monday, 28 May 2018	19	4	10	40
Tuesday, 29 May 2018	28	4	10	40
Wednesday, 30 May 2018	24	4	10	40
Thursday, 31 May 2018	27	4	10	40
Friday, 1 June 2018	25	4	10	40
Saturday 2 June 2018	6	4	5	20
Sunday, 3 June 2018	0	0	0	0
Monday 4 June 2018	24	4	10	40
Tuesday, 5 June 2018	22	4	10	40
Wednesday, 6 June 2018	22	4	10	40
Thursday, 7 June 2018	16	4	10	40
Friday 8 June 2018	27	4	10	40
Saturday, 9 June 2018	5	4	5	20
Sunday, 10 June 2018	0		0	0
Monday, 11 June 2018	0	0	0	0
Tuesday, 12 June 2018	10	0	10	40
Mednesday, 12 June 2018	19	4	10	40
Thursday, 14 June 2018	20	4	10	40
Friday, 15 June 2018	14	4	10	40
Caturday, 15 Julie 2010	14 6	4	10	40
Sunday, 17 June 2018	0	4	5	20
Monday, 17 June 2016		0	10	40
Tuesday, 10 June 2018	32	4	10	40
Nedposday, 20 June 2018	32	4	10	40
The web and the second se	30	4	10	40
Thursday, 21 June 2018	31	4	10	40
Friday, 22 June 2018	40	4	10	40
Saturday, 23 June 2018	0	4	5	20
Sunday, 24 June 2018	0	0	0	0
Monday, 25 June 2018	29	4	10	40
Tuesday, 26 June 2018	25	4	10	40
Wednesday, 27 June 2018	26	4	10	40
Thursday, 28 June 2018	29	4	10	40
Friday, 29 June 2018	1/	4	10	40
Saturday, 30 June 2018	0	4	5	20
Sunday, 1 July 2018	0	0	0	0
Monday, 2 July 2018	35	4	10	40
Tuesuay, 3 July 2018	22	4	10	40
Wednesday, 4 July 2018	28	4	10	40
Thursday, 5 July 2018	40	4	10	40
Friday, 6 July 2018	27	4	10	40
Saturday, 7 July 2018	0	4	5	20
Sunday, 8 July 2018	0	0	0	0
	26	4	10	40
	22	4	10	40
Wednesday, 11 July 2018	23	4	10	40
Friday, 12 July 2018	20	4	10	40
Friudy, 13 July 2018	15	4	10	40
Saturudy, 14 July 2018	0	4	5	20
Monday, 15 July 2018	10	0	10	0
Tuosday, 17 July 2018	13	4	10	40
Nedposday, 12 July 2010	22	4	10	40
Thursday, 10 July 2018	20	4	10	40
Thursday, 19 July 2018	27	4	10	40
Friday, 20 July 2018	10	4	10	40
Saturudy, 21 July 2018	0	4	5	20
Sunday, 22 July 2018	0	0	0	0
Monuay, 23 July 2018	28	4	10	40
Tuesday, 24 July 2018	25	4	10	40
Thursday, 25 July 2018	22	4	10	40
Friday, 27 July 2019	24	4	10	40
Friday, 27 July 2016	24	4	10	40
Saturday, 28 July 2018	0	4	5	20
Manday, 29 July 2018	10	0	10	0
Tuosday, 21 July 2018	19	4	10	40
Nedposday, 1 August 2019	20	4	10	40
Thursday, 1 August 2018	28	4	10	40
Triday, 2 August 2018	33	4	10	40
Friday, 3 August 2018	16	4	10	40
Saturday, 4 August 2018	0	4	5	20
Sunday, 5 August 2018	0	0	0	0

		1		
Monday, 6 August 2018	24	4	10	40
Tuesday, 7 August 2018	20	4	10	40
Wednesday & August 2018	21	4	10	40
Thursday, 0 August 2018	22	4	10	10
Thursday, 9 August 2018	22	4	10	40
Friday, 10 August 2018	20	4	10	40
Saturday, 11 August 2018	4	4	5	20
Sunday, 12 August 2018	0	0	0	0
Monday, 13 August 2018	15	4	10	40
Tuesday, 14 August 2018	12	4	10	40
Wednesday, 15 August 2018	22	4	10	40
Wednesday, 15 August 2018	23	4	10	40
Thursday, 16 August 2018	22	4	10	40
Friday, 17 August 2018	22	4	10	40
Saturday, 18 August 2018	6	4	5	20
Sunday, 19 August 2018	0	0	0	0
Monday, 20 August 2018	25	4	10	40
Tuesday, 21 August 2018	18	1	10	10
Tuesday, 21 August 2018	10	4	10	40
wednesday, 22 August 2018	15	4	10	40
Thursday, 23 August 2018	25	4	10	40
Friday, 24 August 2018	23	4	10	40
Saturday, 25 August 2018	0	4	5	20
Sunday, 26 August 2018	0	0	0	0
Monday 27 August 2018	2/	Л	10	40
Tuesday, 20 August 2010	24	4	10	40
Tuesuay, 28 August 2018	24	4	10	40
Wednesday, 29 August 2018	38	4	10	40
Thursday, 30 August 2018	25	4	10	40
Friday, 31 August 2018	11	4	10	40
Saturday, 1 September 2018	0	4	5	20
Sunday 2 Sentember 2018	0	0	0	0
Monday, 2 September 2019			10	40
wonday, 5 September 2018	38	4	10	40
Tuesday, 4 September 2018	23	4	10	40
Wednesday, 5 September 2018	15	4	10	40
Thursday, 6 September 2018	15	4	10	40
Friday, 7 September 2018	22	4	10	40
Saturday & Sentember 2018	0	4	5	20
Sunday, 9 September 2018	0	0	0	0
Manday, 5 September 2010	25	0	10	0
Wonday, 10 September 2018	25	4	10	40
Tuesday, 11 September 2018	28	4	10	40
Wednesday, 12 September 2018	29	4	10	40
Thursday, 13 September 2018	32	4	10	40
Friday, 14 September 2018	19	4	10	40
Saturday, 15 September 2018	8	4	5	20
Sunday, 16 September 2019	0	0	0	0
Sunday, 10 September 2018	0	0	0	0
Monday, 17 September 2018	25	4	10	40
Tuesday, 18 September 2018	21	4	10	40
Wednesday, 19 September 2018	27	4	10	40
Thursday, 20 September 2018	24	4	10	40
Friday 21 September 2018	24	4	10	40
Saturday, 22 September 2018	24	4	10 F	-+0 20
Saturuay, 22 September 2018	2	4	5	20
Sunday, 23 September 2018	0	0	0	0
Monday, 24 September 2018	23	4	10	40
Tuesday, 25 September 2018	24	4	10	40
Wednesday, 26 September 2018	18	4	10	40
Thursday, 27 September 2018	14	4	10	40
Friday, 28 September 2018	22	4	10	40
Saturday, 20 September 2019	0		E 10	20
Saturday, 29 September 2018	0	4	5	20
Sunday, 30 September 2018	0	0	0	0
Monday, 1 October 2018	0	0	0	0
Tuesday, 2 October 2018	23	4	10	40
Wednesday, 3 October 2018	20	4	10	40
Thursday, 4 October 2018	21	4	10	40
Friday 5 October 2018	23		10	40
Caturday, 6 October 2010	2.5			
	2	4	5	20
Sunday, 7 October 2018	0	0	0	0
Monday, 8 October 2018	31	4	10	40
Tuesday, 9 October 2018	13	4	10	40
Wednesday, 10 October 2018	18	4	10	40
Thursday, 11 October 2018	17	4	10	40
Friday, 12 October 2018	10	Л	10	40
Caturday, 12 October 2010	10	4	10	40
Saturday, 13 October 2018	U	4	5	20
Sunday, 14 October 2018	0	0	0	0
Monday, 15 October 2018	9	4	10	40
Tuesday, 16 October 2018	8	4	10	40
Wednesday, 17 October 2018	13	4	10	40

Thursday, 10 October 2010	13	4	10	10
Thursday, 18 October 2018	13	4	10	40
Friday, 19 October 2018	19	4	10	40
Saturday, 20 October 2018	0	4	5	20
Sunday, 20 October 2010				
Sunday, 21 October 2018	0	0	0	0
Monday, 22 October 2018	18	4	10	40
Tuesday, 23 October 2018	18	4	10	40
Mada and av. 24 Ontables 2010	20		10	10
wednesday, 24 October 2018	22	4	10	40
Thursday, 25 October 2018	23	4	10	40
Friday 26 October 2018	21	4	10	40
	21	4	10	40
Saturday, 27 October 2018	0	4	5	20
Sunday, 28 October 2018	0	0	0	0
Manday, 20 October 2018	20	1	10	10
Wollday, 29 October 2018	29	4	10	40
Tuesday, 30 October 2018	27	4	10	40
Wednesday, 31 October 2018	17	4	10	40
Thursday, 1 Nevershar 2010	24	4	10	10
Thursday, 1 November 2018	24	4	10	40
Friday, 2 November 2018	38	4	10	40
Saturday, 3 November 2018	0	4	5	20
Sunday, A Navambar 2010				
Sunday, 4 November 2018	0	0	0	0
Monday, 5 November 2018	26	4	10	40
Tuesday, 6 November 2018	25	4	10	40
	23		10	40
weunesday, 7 November 2018	14	4	10	40
Thursday, 8 November 2018	24	4	10	40
Friday, 9 November 2018	2/	Δ	10	40
Caturday, 5 November 2010		+	- 10	
Saturday, 10 November 2018	0	4	5	20
Sunday, 11 November 2018	0	0	0	0
Monday, 12 November 2019	22	Λ	10	10
	22	4	10	40
Tuesday, 13 November 2018	23	4	10	40
Wednesday, 14 November 2018	25	4	10	40
Thursday, 15 November 2019	10	4	10	10
Thursday, 15 November 2018	18	4	10	40
Friday, 16 November 2018	19	4	10	40
Saturday, 17 November 2018	0	4	5	20
Sunday, 19 November 2010				20
Sunday, 18 November 2018	0	0	0	0
Monday, 19 November 2018	23	4	10	40
Tuesday, 20 November 2018	24	4	10	40
	24		10	40
wednesday, 21 November 2018	24	4	10	40
Thursday, 22 November 2018	22	4	10	40
Friday 23 November 2018	23	4	10	40
	25		10	40
Saturday, 24 November 2018	0	4	5	20
Sunday, 25 November 2018	0	0	0	0
Monday, 26 November 2018	24	Λ	10	40
	24	4	10	40
Tuesday, 27 November 2018	16	4	10	40
Wednesday, 28 November 2018	29	4	10	40
Thursday, 29 November 2018	22	4	10	40
	23	4	10	40
Friday, 30 November 2018	13	4	10	40
Saturday, 1 December 2018	6	4	5	20
Sunday 2 December 2018	0	0	0	0
	0	0	0	0
Monday, 3 December 2018	24	4	10	40
Tuesday, 4 December 2018	35	4	10	40
Wednesday, 5 December 2018	24	Λ	10	10
	24	+	10	40
Inursday, 6 December 2018	20	4	10	40
Friday, 7 December 2018	30	4	10	40
Saturday 8 December 2018	0	4	5	20
Curden O December 2010	0	+	5	20
Sunday, 9 December 2018	0	0	0	0
Monday, 10 December 2018	40	4	10	40
Tuesday, 11 December 2018	32	1	10	40
	32		10	40
Wednesday, 12 December 2018	27	4	10	40
Thursday, 13 December 2018	27	4	10	40
Friday, 14 December 2019		1	10	40
	21	4	10	40
Saturday, 15 December 2018	0	4	5	20
Sunday, 16 December 2018	0	0	0	0
Monday, 17 December 2019	24	Λ	10	40
	24	4	10	40
Tuesday, 18 December 2018	32	4	10	40
Wednesday, 19 December 2018	24	4	10	40
Thursday, 20 December 2019	15		10	40
	12	4	10	40
Friday, 21 December 2018	6	4	10	40
Saturday, 22 December 2018	0	4	5	20
Sunday, 32 December 2010	C C		<u>,</u>	
Sunuay, 25 December 2018	0	0	0	0
Monday, 24 December 2018	0	4	10	40
Tuesday, 25 December 2018	0	0	0	0
Wednesday, 26 December 2010		0	0	
wednesday, 26 December 2018	0	0	0	0
Thursday, 27 December 2018	0	4	10	40
Friday, 28 December 2018	0	Δ	10	40
	-		- 10	
Saturday, 29 December 2018	U	4	5	20
Sunday, 30 December 2018	0	0	0	0
--------------------------	---	---	----	----
Monday, 31 December 2018	0	4	10	40

APPENDIX 5

DUNLOE SAND QUARRY ACID SULPHATE SOIL MONITORING RESULTS

Construction Sciences Pty Ltd ABN: 74 128 806 735

Address:

32 Hi-Tech Drive

Kunda Park Qld 4556

Laboratory: Sunshine Coast Laboratory

Telephone: (07) 5452 0100 Facsimile: (07) 5452 0133

Email: sunshinecoast@constructionsciences.net Website: www.constructionsciences.net

CHROMIUM SUITE TEST REPORT

Client:	Holcim (Australia)							Report Numb	er:	3740/S/95070	OCRS		
Client Address:	Level 2, 18 Little Cribb Street, Milton QLD 4064	Project No:		3740/P/1333									
Project:	Ballina NSW - Holcim Dunloe Sands							Lot Number:		-			
Sub Project:	-		Internal Test	Request:	3740/T/18957								
Location:	Supplied Sample		Client Refere	nce:	22373/CC/185								
Component:	- Purchase Order No: -												
Area Description:	- Date Sampled: 5/02/2018												
Sampled by:	Construction Sciences-Ballina Date Tested: 20/02/2018												
Sampling Method:	AS1141.3.1 CI 8.4.3 Report Date: 21/02/2018												
Test Procedures:	AS 4969.0, .1, .2, .4, .7, .8, .11, .13, .14							-					
Laboratory Number	Sample Location	рН _{ксі}	TAA	TAA	SKCI	S _{Cr}	S _{NAS}	ANC _{BT}	ANC _{BT}	Net Acidity	Net Acidity	Recommended Liming Rate	
	units:	-	(H*mol/t)	(% S)	(% S) ^a	(% S)	(% S)	(%CaCO ₃) #	(%S) [#]	(H [*] mol/t)	(% S)	(kg of lime per cubic metre)	
	LOR:	0.1	1	0.001	0.007	0.02	0.001	0.01	0.01	1	0.001	0.1	
3740/S/95070	553524.42 E 6855631.56 S MGA94 White Sand Location 1	6.5	0	0.000	0.018	0.021	nr	0.05	0.02	6	0.010	No Liming Required	
3740/S/95071	553505.13 E 6855632.54 S MGA94 White Sand Location 2	6.6	0	0.000	0.029	0.026	nr	0.07	0.02	7	0.011	No Liming Required	
3740/S/95072	553564.42 E 6855619.64 S MGA94 Loam Location 1	8.8	0	0.000	0.011	<0.02	nr	0.24	0.08	-32	-0.051	No Liming Required	
3740/S/95073	553483.80 E 6855595.30 S MGA94 Concrete Sand Location 1	9.3	0	0.000	0.014	0.027	nr	0.47	0.15	-46	-0.073	No Liming Required	
3740/S/95074	553472.77 E 6855581.06 S MGA94 Concrete Sand Location 2	9.4	0	0.000	<0.007	0.025	nr	0.57	0.18	-60	-0.096	No Liming Required	
Blank		64	2.0	0.003						1			

Notes:

nr: not required, pH trigger not met.

LOR: Limit of Reporting

[#] if pH_{KCI} <6.5 it must be assumed that effective ANC is zero.

Effective ANC is ANC_{BT}/Fineness Factor of 1.5.

^a S_{KCI} determined as sulfate by turbidimetric method.

Where liming is specified, lime should be fine grained agricultural lime of at least 90% purity.

Any liming rate provided is a recommended rate only, and is based on the total of TAA Equivalent % Oxidisable Sulphur plus

Potential Acidity (S_{Cr}) plus Retained Acidity (S_{NAS}) minus effective ANC; with a factor of safety of 1.5.

Any recommended liming rate is based on the 0.03%S action criteria.

A placed dry density of 1.7 tonnes/cubic metre has been used in calculating liming rate/s.

The recommended liming rate is derived from a mathematical equation and will need to be field validated.

Construction Sciences accepts no responsibility for any loss associated with use of the calculated liming rate/s.

The test results contained within this report relate only to the samples as they were received.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

> Accreditation No.: 1986 Corporate Site Number: 3740

APPROVED SIGNATORY: Paul Mayes Form Number: REP CRS-Holcim-1 29/06/17

Construction Sciences Pty Ltd ABN: 74 128 806 735

Address:

32 Hi-Tech Drive

Kunda Park Qld 4556

Laboratory: Sunshine Coast Laboratory

Telephone: (07) 5452 0100 Facsimile: (07) 5452 0133

Email: sunshinecoast@constructionsciences.net Website: www.constructionsciences.net

CHROMIUM SUITE TEST REPORT

Client:	Holcim (Australia)		Report Numb	er:	3740/S/105666CRS							
Client Address:	Level 2, 18 Little Cribb Street, Milton (64		Project No:		3740/P/1333						
Project:	Ballina NSW - Holcim Dunloe Sands			Lot Number:		-						
Sub Project:	-			Internal Test	Request:	3740/T/20564	ļ.					
Location:	Supplied Sample			Client Refere	nce:	22373/CC/226						
Component:	-			Purchase Ord	der No:	-						
Area Description:	-			Date Sampleo	d:	21/06/2018						
Sampled by:	Construction Sciences - Ballina			Date Tested: 5/07/2018								
Sampling Method:	AS1141.3.1 CI 8.4.3				Report Date:		5/07/2018					
Test Procedures:	AS 4969.0, .1, .2, .4, .7, .8, .11, .13, .14				•							
Laboratory Number	Sample Location	рН _{ксі}	TAA	TAA	Sĸci	S _{Cr}	S _{NAS}	ANC _{BT}	ANC _{BT}	Net Acidity	Net Acidity	Recommended Liming Rate
	units:	-	(H [*] mol/t)	(% S)	(% S) ^a	(% S)	(% S)	(%CaCO ₃) #	(%S) #	(H [*] mol/t)	(% S)	(kg of lime per cubic metre)
	LOR:	0.1	1	0.001	0.007	0.02	0.001	0.01	0.01	1	0.001	0.1
3740/S/105666	Sand #1	9.1	0	0.000	0.007	0.047	nr	0.66	0.21	-59	-0.095	No Liming Required
3740/S/105667	Sand #2	9.3	0	0.000	0.007	0.035	nr	0.72	0.23	-74	-0.119	No Liming Required
3740/S/105668	Sand #1	6.8	0	0.000	0.022	0.020	nr	0.11	0.03	-2	-0.003	No Liming Required
3740/S/105669	Sand #2	6.8	0	0.000	0.007	<0.02	nr	0.03	0.01	-4	-0.006	No Liming Required
3740/S/105670	Sand	7.7	0	0.000	<0.007	<0.02	nr	0.23	0.07	-30	-0.049	No Liming Required
Blank		5.7	5.0	0.008								

Notes:

nr: not required, pH trigger not met.

LOR: Limit of Reporting

[#] if pH_{KCI} <6.5 it must be assumed that effective ANC is zero.

Effective ANC is ANC_{BT}/Fineness Factor of 1.5.

^a S_{KCI} determined as sulfate by turbidimetric method.

Where liming is specified, lime should be fine grained agricultural lime of at least 90% purity.

Any liming rate provided is a recommended rate only, and is based on the total of TAA Equivalent % Oxidisable Sulphur plus

Potential Acidity (S_{cr}) plus Retained Acidity (S_{NAS}) minus effective ANC; with a factor of safety of 1.5.

Any recommended liming rate is based on the 0.03%S action criteria.

A placed dry density of 1.7 tonnes/cubic metre has been used in calculating liming rate/s.

The recommended liming rate is derived from a mathematical equation and will need to be field validated.

Construction Sciences accepts no responsibility for any loss associated with use of the calculated liming rate/s.

The test results contained within this report relate only to the samples as they were received.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/hational standards. Accredited for compliance with ISO/IEC 17025 - Testing

> Accreditation No.: 1986 Corporate Site Number: 3740

APPROVED SIGNATORY: Paul Mayes Form Number: REP CRS 29/06/2017 Revision 11

Construction Sciences Pty Ltd ABN: 74 128 806 735

Address: 32 Hi-Tech Drive Kunda Park Qld 4556 Laboratory: Sunshine Coast Laboratory

Telephone: (07) 5452 0100

Email:

sunshinecoast@constructionsciences.net

Website: www.constructionsciences.net

Facsimile:

(07) 5452 0133

CHROMIUM SUITE TEST REPORT

Client: Client Address: Project: Sub Project: Location: Component: Area Description: Sampled by: Sampling Method: Test Procedures:	Holcim (Australia) Level 2, 18 Little Cribb Street, Milton QLD 4064 Ballina NSW - Holcim Dunloe Sands - Supplied Sample Holcim Dunloe Sands Dunloe Sand Quarry, Pottsville Construction Sciences - Ballina AS1141.3.1 Cl 8.4.3 AS 4969.0, 1, 2, 4, 7, 8, 11, 13, 14								ber: Request: nce: der No: d:	3740/S/111409CRS 3740/P/1333 N/A 3740/T/21413 22373/CC/238 - 28/08/2018 4/09/2019 4/09/2018		
Laboratory Number	Sample Location	рН _{ксі}	TAA	TAA	S _{KCI}	S _{Cr}	S _{NAS}	ANC _{BT}	ANC _{BT}	Net Acidity	Net Acidity	Recommended Liming Rate
	units	-	(H⁺mol/t)	(% S)	(% S) ^a	(% S)	(% S)	(%CaCO ₃) #	(%S) [#]	(H [*] mol/t)	(% S)	(kg of lime per cubic metre)
	LOR	0.1	1	0.001	0.007	0.02	0.001	0.01	0.01	1	0.001	0.1
3740/S/111409	Concrete Sand #1	9.6	0	0.000	0.007	0.032	nr	0.60	0.19	-60	-0.095	No Liming Required
3740/S/111410	Concrete Sand #2	9.2	0	0.000	<0.007	0.028	nr	0.52	0.17	-52	-0.083	No Liming Required
3740/S/111411	White Sand #1	7.2	0	0.000	0.019	0.038	nr	0.12	0.04	7	0.012	No Liming Required
3740/S/111412	White Sand #2	7.2	0	0.000	0.011	0.037	nr	0.21	0.07	-4	-0.007	No Liming Required
3740/S/111413	Brickies Loam	7.6	0	0.000	0.011	<0.02	nr	0.24	0.08	-32	-0.052	No Liming Required
Blank		6.3	1.6	0.002								

Notes:

nr: not required, pH trigger not met.

LOR: Limit of Reporting

[#] if pH_{KCI} <6.5 it must be assumed that effective ANC is zero.

Effective ANC is ANC_{BT}/Fineness Factor of 1.5.

^a S_{KCI} determined as sulfate by turbidimetric method.

Where liming is specified, lime should be fine grained agricultural lime of at least 90% purity.

Any liming rate provided is a recommended rate only, and is based on the total of TAA Equivalent % Oxidisable Sulphur plus

Potential Acidity (S_{cr}) plus Retained Acidity (S_{NAS}) minus effective ANC; with a factor of safety of 1.5.

Any recommended liming rate is based on the 0.03%S action criteria.

A placed dry density of 1.7 tonnes/cubic metre has been used in calculating liming rate/s.

The recommended liming rate is derived from a mathematical equation and will need to be field validated.

Construction Sciences accepts no responsibility for any loss associated with use of the calculated liming rate/s.

The test results contained within this report relate only to the samples as they were received.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

> Accreditation No .: 1986 Corporate Site Number: 3740

APPROVED SIGNATORY: Paul Mayes Form Number: REP CRS-Holcim-1 29/06/17