Strength. Performance. Passion

ANNUAL REVIEW 1 January 2019 – 31 December 2019

Dunloe Sand Quarry

TABLE OF CONTENTS

1		STA	TEMENT OF COMPLIANCE	. 7
2		INTR	RODUCTION	. 9
	2.	1	Name and Contact Details	13
3		APP	ROVALS	14
4		OPE	RATIONS SUMMARY	15
	4.	1	Exploration	15
	4.	2	Land Preparation	15
	4.	3	Construction Activities	15
	4.	4	Quarry Operations	15
	4.	5	Next Reporting Period	15
5		ACT	IONS REQUIRED FROM PREVIOUS ANNUAL REVIEW	16
6		ENV	IRONMENTAL PERFORMANCE	17
	6.	1	Meteorological Monitoring	17
	6.	2	Noise	17
		6.2.1	1 EIS Predictions	17
		6.2.2	2 Approved Criteria	17
		6.2.3	3 Key Environmental Performance	18
		6.2.4	4 Management Measures	18
		6.2.5	5 Proposed Improvements	19
	6.	3	Air Quality	21
		6.3.1	1 EIS Predictions	21
		6.3.2	2 Approved Criteria	21
		6.3.3	3 Key Environmental Performance	21
		6.3	3.3.1 Depositional Dust	21
		6.3	3.3.2 PM ₁₀ Monitoring	23
		6.3.4	4 Management Measures	24
		6.3.5	5 Proposed Improvements	24
	6.	4	Traffic Management	25
		6.4.1	1 EIS Predictions	25
		6.4.2	2 Approved Criteria	25
		6.4.3	3 Key Environmental Performance	25
		6.4.4	4 Management Measures	26
		6.4.5	5 Proposed Improvements	26
	6.	5	Biodiversity	26
		6.5.1	1 EIS Predictions	26
		6.5.2	2 Approved Criteria	26
		6.5.3	3 Key Environmental Performance	26

	6	.5.4	Management Measures	26
	6	.5.5	Proposed Improvements	27
	6.6		Heritage	27
	6	.6.1	EIS Predictions2	27
	6	.6.2	Approved Criteria	27
	6	.6.3	Key Environmental Performance	27
	6	.6.4	Management Measures	27
	6	.6.5	Proposed Improvements	27
	6.7		Acid Sulphate Soils Management and Management of Fines	27
	6	.7.1	Acid Sulphate Soils Sampling	28
	6	.7.2	Extraction	28
	6	.7.3	Stockpiling & Sales	29
	6.8		Summary of Environmental Performance	30
7	V	VAT	ER MANAGEMENT	32
	7.1		EIS Predictions	32
	7.2		Criteria	32
	7.3		Surface Water Monitoring	36
	7.4		Groundwater Results	39
	7.5		Water Take	42
8	R	REH/	ABILITATION AND LANDSCAPE MANAGEMENT	43
	8.1		Rehabilitation Performance during the Reporting Period	43
	8.2		Summary of Current Rehabilitation and Performance	44
	8.3		Actions for the Next Reporting Period	46
9	С	юм	MUNITY	47
	9.1		Community Engagement Activities	47
	9.2		Community Contributions	47
	9.3		Complaints	47
1()	INE		48
11	1	INC	CIDENTS AND NON-COMPLIANCE	49
12	2	AC	TIVITIES TO BE COMPLETED IN THE NEXT REPORTING PERIOD	50
13	3	RE	FERENCES	51
14	1	AP	PENDICES	52

TABLES

Table 1: Statement of Commitments	7
Table 2: DPIE Compliance Status Key	7
Table 3: Non-Compliances of PA 06-0030 for 2019	8
Table 4: Annual Review Requirements	12
Table 5: Approvals for the Dunloe Sand Quarry Operations	14
Table 6: EPL Fee-Based Activity at the Dunloe Sand Quarry	14
Table 7: Total Product Distributed (Dunloe Sand Quarry)	15
Table 8: Actions required from Annual Review – Holcim Proposed Actions	16
Table 9: Weather Observations at Teven Quarry 2019 (Ballina Airport AWS 058198)	17
Table 10: Noise Impact Criteria for the Dunloe Sand Quarry (PA 06_0030)	18
Table 11: Noise Monitoring Assessment for the Dunloe Sand Quarry (MAC, 2019)	20
Table 12: Long Term Impact Assessment Criteria for Deposited Dust	21
Table 13: Short Term Impact Assessment Criteria for Particulate Matter	21
Table 14: Long Term Impact Assessment Criteria for Particulate Matter	21
Table 15: 2019 Dust Monitoring (Depositional Dust) at Dunloe Sand Quarry	22
Table 16: Depositional Dust Monitoring Summary (2016-2019)	22
Table 17: PM ₁₀ Monitoring Trends	24
Table 18: Estimated Operational Times, Periods and Truck Movements (EIS 2007)	25
Table 19: Operational Times, Periods and Truck Movements	25
Table 20: Environmental Performance at the Dunloe Sand Quarry in 2019	30
Table 21: Discharge Criteria – LDP001 and LDP002	32
Table 22: LDP001 and LDP002 monitoring requirements	33
Table 23: Monthly Surface Water Quality Criteria – Dam 1 and Dam 2	33
Table 24: Quarterly Surface Water Quality Criteria – Dam 1 and Dam 2	33
Table 25: Quarterly Vertical Profile Water Quality Criteria – Dam 1 and Dam 2	34
Table 26: Monthly Monitoring Criteria – Blue Green Algae	34
Table 27: Quarterly Surface Water Quality Criteria – Surrounding Environment	35
Table 28: Groundwater monitoring requirements (DLP3-DLP7)	35
Table 29: Monthly Groundwater Quality Criteria – Surrounding Environment	35
Table 30: Quarterly Groundwater Quality Criteria – Surrounding Environment	36
Table 31: Monthly Dredge Pond (Dam 1) Water Quality Monitoring 2019 Results	36
Table 32: Quarterly Chemical Analysis Monitoring 2019 Results	37
Table 33: Quarterly Northern Creek Water Quality Monitoring 2019 Results	37
Table 34: Quarterly Southern Creek Water Quality Monitoring 2019 Results	38
Table 35: Surface Water Quality Monitoring 2019 Results – Blue Green Algae	38
Table 36: Monthly Groundwater Quality Monitoring 2019 Results	40
Table 37: Quarterly Groundwater Quality Monitoring 2019 Results	41
Table 38: Rehabilitation Performance in 2019	43
Table 39: Rehabilitation and Disturbance Status	44

Table 40: Rehabilitation and Closure Actions for the Next Reporting Period (2020)	46
Table 41: Summary of Incidents and Non-Compliances	49
Table 42: Improvement Actions for 2020	50

FIGURES

Figure 1: Aerial view of the Dunloe Sand Quarry located at Dunloe Park, Pottsville (Source: Near ma November 2019)	
Figure 2: Site Location and Layout (Source GHD: 2017)	10
Figure 3: Environmental Monitoring Locations (Source: VGT)	11
Figure 4: Rehabilitation and Disturbance	45

APPENDICES

Appendix 1	Dunloe Sand Quarry Noise Monitoring 2019
Appendix 2	Dunloe Sand Quarry Long term Environmental Monitoring
Appendix 3	Dunloe Sand Quarry Truck Movement Summary 2019
Appendix 4	Dunloe Sand Quarry Acid Sulphate Soil Monitoring Results
Appendix 5	Dunloe Sand Quarry 2019 Rehabilitation and Revegetation Monitoring Report
Appendix 6	Dunloe Sand Quarry 2018 - 2019 Return for Extractive Materials Form

SITE DETAILS

Name of operation	Dunloe Sand Quarry	
Name of operator	Holcim (Australia) Pty Ltd	
Project Approval	Project Approval 06- 0030	
Name of holder of Project Approval	Holcim (Australia) Pty Ltd	
Annual review start date	January 1, 2019	
Annual review end date	December 31, 2019	
I, Garth Stacey, certify that this audit report is a true and accurate record of the compliance status of the DUNLOE		

I, Garth Stacey, certify that this audit report is a true and accurate record of the compliance status of the DUNLOE SAND QUARRY for the period of 1 JANUARY 2019 - 31 DECEMBER 2019 and that I am authorised to make this statement on behalf of HOLCIM (AUSTRALIA) PTY LTD.

- Note.
- a) The Annual Review is an 'environmental audit' for the purposes of section 122B(2) of the Environmental Planning and Assessment Act 1979. Section 122E provides that a person must not include false or misleading information (or provide information for inclusion in) an audit report produced to the Minister in connection with an environmental audit if the person knows that the information is false or misleading in a material respect. The maximum penalty is, in the case of a corporation, \$1 million and for an individual,\$250,000.
- b) The Crimes Act 1900 contains other offences relating to false and misleading information: section 192G (Intention to defraud by false or misleading statement—maximum penalty 5 years imprisonment); sections 307A, 307B and 307C (False or misleading applications/information/documents—maximum penalty 2 years imprisonment or \$22,000, or both).

Name of authorised reporting officer	Garth Stacey
Title of authorised reporting officer	Quarry Manager
Signature of authorised reporting officer	gsha.
Date	30 March 2020

1 STATEMENT OF COMPLIANCE

The statement of commitments for the 2019 reporting period for the Dunloe Sand Quarry is provided in **Table 1. Table 3** details the non-compliances of Project Approval (PA) 06-0030 identified within the 2019 reporting period, with the compliance status key provided in **Table 2**.

Table 1:	Statement of	Commitments
----------	--------------	-------------

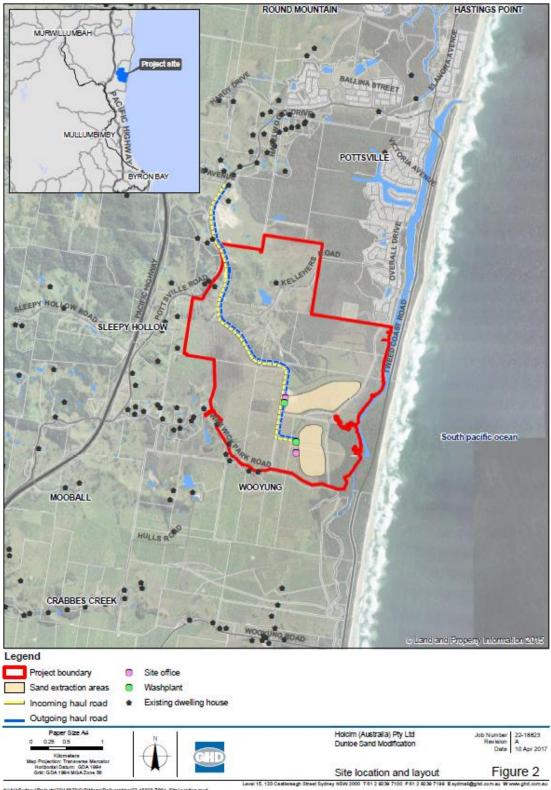
Were all conditions of the relevant approval(s) complied with?				
PA 06_0030 NO - see Table 3 for further details.				
EPL 13077	Yes			

Table 2: DPIE Compliance Status Key

Risk level	Colour code	Description		
High	Non-compliant	Non-compliance with potential for significant environmental consequences, regardless of the likelihood of occurrence		
Medium Non-compliant		 Non-compliance with: potential for serious environmental consequences, but is unlikely to occur; or potential for moderate environmental consequences, but is likely to occur 		
Low	Non-compliant	 Non-compliance with: potential for moderate environmental consequences, but is unlikely to occur; or potential for low environmental consequences, but is likely to occur 		
Admin NC	Non-compliant	Only to be applied where the non-compliance does not result in any risk of environmental harm (e.g. submitting a report to government later than required under approval conditions)		

Table 3: Non-Compliances of PA 06-0030 for 2019

Relevant approval	Condition	Condition Description	Compliance Status	Section addressed in Annual Review
PA 06_ 0030	Schedule 3, Condition 22	Schedule 3 Condition 22 Blue Green Algae Management Plan (a) be prepared by a suitably qualified blue-green algae expert, whose appointment has been approved by the Secretary; (b) be consistent with extant guidelines for blue-green algae management including the NHMRC's <i>Guidelines for Managing Risks in Recreational Water</i> ; (c) describe the measures that would be implemented to prevent and control the sources of algal blooms over the short, medium and long term; and (d) define procedures for the management and notification of identified algal blooms.	Non- compliant	Non-compliance relating to missed monitoring of Blue Green Algae in 2019. Section 7 (Water Management) Section 11
PA 06_ 0030	Schedule 3, Condition 23	Schedule 3 Condition 23The Surface Water Monitoring Program must include:(a) detailed baseline data on surface water quality;(b) surface water impact assessment criteria;(c) a program to monitor surface water flows and quality;(d) a program to manage water releases from the site;(e) a program to monitor bank and bed stability; and(f) a protocol for the investigation, notification and mitigation of identified exceedances of the surface water impact assessment criteria.	Non- compliant	Non-compliance relating to missed water quality monitoring of vertical profile of extraction ponds. Section 7 (Water Management) Section 11


2 INTRODUCTION

The Dunloe Sand Quarry was granted Project Approval (PA06_0030) on 24 November 2008, with subsequent modifications to this approval granted on 28 August 2009 (Mod 1) and 6 November 2018 (Mod 2).

The Dunloe Sand Quarry operations are located approximately 4.5 km south-southwest of Pottsville on the Pottsville Mooball Road, New South Wales (NSW). The site is located adjacent to Mooball Creek, and is approximately 4 km upstream of the creek mouth. Surrounding properties are currently used for agricultural purposes including sugar cane farming and grazing.

Figure 1: Aerial view of the Dunloe Sand Quarry located at Dunloe Park, Pottsville (Source: Near maps November 2019).

N: AUGydney/Projects/22110023/GIS/Maps/Deliverables/22-18823-2001_SiteLocation.med

© 2017. Which every use has been search properties the map, GHO (and Borneys, LA) proce no specaritations or wantities about its sources, relating, completeness or watching for any performance and performan

Figure 2: Site Location and Layout (Source GHD: 2017)

Figure 3: Environmental Monitoring Locations (Source: VGT)

Holcim commenced operations on the site on August 1, 2016 with all previous responsibilities falling under the management of Ramtech Pty Ltd (Ramtech). Ramtech have previously been responsible for the commencement and operation of the site since Project Approval was granted in 2007.

In accordance with Schedule 5, Condition 5 of the modified Project Approval (PA 06_0030) the site is required to undertake an Annual Review of the site in accordance with the conditions provided in **Table** 4.

	Condition	Section Addressed in Annual Review				
Wit	5. ANNUAL REVIEW Within 12 months of the date of this approval, and annually thereafter, the Proponent shall submit an Annual Review to the Secretary and relevant agencies. This report must:					
a)	identify the standards and performance measures that apply to the project;	Section 4 and 6				
b)	describe the works carried out in the last 12 months;	Section 4 and 6				
c)	describe the works that will be carried out in the next 12 months;	Section 13				
d)	include a summary of the complaints received during the past year, and compare this to the complaints received in previous years;	Section 9.3				
e)	include a summary of the monitoring results for the project during the past year;	Section 6 and 7				
f)	include an analysis of these monitoring results against the relevant: • impact assessment criteria/limits; • monitoring results from previous years; and • predictions in the documents listed in condition 2 of Schedule 2.	Section 6 and 7				
g)	identify any trends in the monitoring results over the life of the project;	Section 6 and 7 Appendix 2				
h)	identify any non-compliance during the previous year; and	Section 6, 7 and 11				
i)	describe what actions were, or are being, taken to ensure compliance.	Section 6, 7 and 11				

Table 4: Annual Review Requirements

This Annual Review has also been prepared in accordance with the Annual Review Guideline: Postapproval requirements for State significance mining developments (October 2015). This report documents the environmental performance of the site from 1 January to 31 December 2019.

2.1 Name and Contact Details

The key contact details for the site are outlined below:

Quarry Supervisor

Daniel Dwyer 0411 795 060 daniel.dwyer@lafargeholcim.com

QLD Aggregates Manager

Martin Halliday Work: +61 2 6656 8620 martin.halliday@lafargeholcim.com

Environmental Manager OLD

Evan Smith Mob: +61 429 790 950 Work: 0732 591 766 Evan.smitt@lafargeholcim.com

Quarry Manager

Garth Stacey Work: +61 2 6687 8566 Mob: +61 429 790 217 garth.stacey@lafargeholcim.com

Planning & Environment Manager NSW / ACT

Luke Edminson Holcim (Australia) Pty Ltd Mob +61 429 790 756 Email: luke.edminson@lafargeholcim.com

Planning and Environment Coordinator NSW / ACT Shilpa Shashi Mob: +61 (0)429 790 756 Email: <u>shilpa.shashi@lafargeholcim.com</u>

3 APPROVALS

The site operates under the approvals listed in Table 5.

Table 5: Approvals for the Dunloe Sand Quarry Operations

Approval	Regulatory Authority
PA 06_0300	NSW Department of Planning, Industry & Environment (DPIE)
EPL No. 13077	NSW Environment Protection Authority (EPA)
Bore Licence 30BL183076, 30BL183077, 30BL183078, 30BL183079, 30BL183080, 30BL183081, 30BL183082, 30BL183084 and 30BL183086	NSW Department of Industry - Water

Holcim holds Environment Protection Licence **(EPL) 13077** which covers its activities at the Dunloe Sand Quarry. **Table 6** outlines these licensing limits.

Table 6: EPL Fee-Based Activity at the Dunloe Sand Quarry

Scheduled Activity	Fee Based Activity	Scale
Extractive Activities	Land-based extractive activity	>100,000 – 500,000 T annual capacity to extract, process or store

4 OPERATIONS SUMMARY

4.1 Exploration

There was no exploration undertaken at the Dunloe Sand Quarry during the 2019 reporting period.

4.2 Land Preparation

There was no land preparation (clearing) the Dunloe Sand Quarry in 2019.

4.3 Construction Activities

There were no construction activities undertaken at the Dunloe Sand Quarry during the 2019 reporting period.

4.4 Quarry Operations

The Dunloe Sand Quarry officially commenced operations under Holcim on August 1, 2016.

Activities undertaken in 2019 included:

- Stripping of topsoil and overburden within the existing extraction limit boundary;
- Load and haul activities;
- Washing, screening and stockpiling of product;
- Overburden removal and stockpiling;
- Maintenance of rehabilitation undertaken in the north and eastern areas of the site; and
- Load out and sales of topsoil, brickies loam and concrete sands to the local market.

Operating hours in 2019 were undertaken between 7am to 5pm, Monday to Friday and 7am-12pm on Saturdays. These timeframes were applied for all operations on-site with no works occurring outside the approved operating hours. All activities took place within the approved operating hours in 2019.

Table 7 includes a summary of the operations undertaken during the reporting period against the Project Approval conditions regarding product transported from the Dunloe Sand Quarry.

Table 7: Total Product Distributed (Dunloe Sand Quarry)

Material	Approval Limit	2018 Reporting	2019 Reporting
	(Tonnes/Annum)	Period (Tonnes)	Period (Tonnes)
Product Distributed- Total	300,000	174,583	186,280

Total product tonnes in 2019 were well below the approved limit.

4.5 Next Reporting Period

Development activities proposed at the Dunloe Sand Quarry in 2020, include:

- Stripping of topsoil and overburden within the existing extraction limit boundary;
- Load and haul activities;
- Washing, screening and stockpiling of product;
- Overburden removal and stockpiling;
- Maintenance of rehabilitation undertaken north eastern area; and
- Load out and sales of topsoil, brickies loam and concrete sands to the local market.

No exploration, land preparation or construction activities are proposed to occur in the 2020 reporting period.

5 ACTIONS REQUIRED FROM PREVIOUS ANNUAL REVIEW

The DPIE reviewed the 2018 Annual Review and provided an approval letter to Holcim on 21 06.2019

The status of proposed actions from Holcim that were outlined in the 2018 Annual Review are shown in **Table 8**.

-

Commitment	Compliance Status
Development Application (Truck Movements Modification) - Application to modify the current Project Approval condition limiting truck movement to 4 (in and out) per hour.	Complete. New limit of 24 per hour.
Water Quality Monitoring - Ensure water quality monitoring is completed in accordance with the EMP.	Areas of water quality monitoring not completed in 2019. See Section 7 .
Dust Monitoring - Ensure dust monitoring is completed in accordance with the EMP.	Dust monitoring for depositional dust and PM ¹⁰ were completed at site.
Biodiversity - Weed spraying will continue at site during the next Annual Review period.	Continued in 2019
Biodiversity - Conduct fauna box monitoring annually.	Not completed in 2019. To be completed in the next report period.

6 ENVIRONMENTAL PERFORMANCE

6.1 Meteorological Monitoring

Condition M4 of the EPL requires the installation of rainfall depth measuring device for Dunloe Sands Quarry. This was not completed in 2019 resulting in a non-compliance with Condition M4, however a meteorological station was installed in February 2020. The nearby Bureau of Meteorology Ballina Airport Weather Station (Station ID 058198) has been used for this Annual Review. Monthly rainfall, wind and temperature data for 2019 has been provided in **Table 9**.

	Tempe	erature		Rain		Wind
Month	Min Temp (°C)	Max Temp (°C)	Total (mm)	Max Daily (mm)	No rain days > 1 mm	Max Wind Gust (km/h)
Jan-19	27.6	33.7	2.4	1.2	1	59
Feb-19	24.7	35.2	70.2	25.2	9	76
Mar-19	23.3	33	139.2	37.6	11	55
Apr-19	22.5	28.6	158.8	34.4	15	48
May-19	18.5	26.8	94.0	25.8	15	-
Jun-19	16.7	24	268.2	51.4	14	61
Jul-19	15	24.5	74.8	15.2	8	61
Aug-19	18.4	27.3	52.0	34.8	4	63
Sep-19	19.3	32.1	4.2	1.4	1	-
Oct-19	19.2	32.4	5.0	1.8	2	63
Nov-19	24.6	38	6.2	3.0	2	67
Dec-19	26.6	36.2	96.6	38.0	9	63

Table 9: Weather Observations at Teven Quarry 2019 (Ballina Airport AWS 058198)

There was a total of 972 mm of rain at the Ballina Airport Weather Station in 2019.

6.2 Noise

6.2.1 EIS Predictions

The EIS (2007) stated that based on noise modelling the operations within the south west corner of the southern extraction pond (stage 2) may generate levels which exceed the relevant noise impact requirements.

The EIS (2007) stated that to mitigate this minor impact, the dredge is to have acoustical treatment when operating within the southern extraction pond.

6.2.2 Approved Criteria

In accordance with Schedule 3, Condition 2 of PA 06_0030, the approved noise criteria for the Dunloe Sand Quarry are outlined in **Table 10**.

Table 10: Noise Impact Criteria for the Dunloe Sand Quarry (PA 06_0030)

2. The Proponent must ensure that the noise generated by the project does not exceed the criteria in Table 1 at any residence on privately-owned land.

Receiver Location	Day LAeq (15 min) dB(A)
R6 and R7	42
R8	48
All other residences	41

Table 1: Noise Impact Assessment Criteria

Noise generated by the project must be monitored and measured in accordance with the relevant procedures and exemptions (including certain meteorological conditions) of the NSW Noise Policy for Industry (EPA, 2017).

The noise criteria in Table 1 do not apply if the Proponent has an agreement with the owner/s of the relevant residence or land to exceed the noise criteria, and the Proponent has advised the Department in writing of the terms of this agreement.

6.2.3 Key Environmental Performance

Attended noise monitoring was undertaken quarterly at the Dunloe Sand Quarry in 2019 by Muller Acoustic Consulting on the following dates:

- 7 March 2019;
- 18 June 2019;
- 20 August 2019; and
- 28 November 2019.

The compliance assessments for each residential receiver (R1, R2, R3 and R4) are presented in **Table 11**.

The assessments identified that noise emissions generated by the Dunloe Sand Quarry were in compliance with relevant statutory noise criteria specified in the Project Approval on all occasion's at all assessed residential receivers. Copies of the quarterly noise monitoring reports for 2019 are attached as **Appendix 1**.

Long-term Trends:

Noise monitoring completed over a number of years for this project has generally been inaudible and within criteria. This trend continued for noise monitoring in 2019.

Comparison to EIS Predictions:

As noise levels were within criteria in 2019, results were within the EIS predictions.

6.2.4 Management Measures

Management measures relating to noise are outlined within the Dunloe Sand *Environmental Management Plan* and the *Noise Management and Monitoring Program*. These include:

- Restriction of operation hours of the Dunloe Sand Quarry to Monday to Friday 7.00 am to 5.00 pm and Saturday 7.00 to 12.00 pm;
- No work on Sundays or Public Holidays;
- All trucks to be well maintained and fitted with residential mufflers;
- Acoustic testing at commencement of quarry operations to ensure compliance with noise limit criteria;

- •
- ٠
- Dredge to be fitted with suitable mufflers if noise limit criteria is exceeded; Trucks to be limited to a speed of 25km/h on internal roads; and Prescribed buffer zones around the extraction ponds to be planted and maintained. •

6.2.5 Proposed Improvements

There are no proposed improvements related to noise management.

		Querning	Q	1	Q2		Q2 Q3		Q3		Q4	
Assessment Period	Receiver No.	Quarrying Noise Criteria LAeq _(15min)	Quarry Noise Contribution LAeq _(15min)	Compliant								
	R1	48	<31	\checkmark	<25	\checkmark	<25	\checkmark	<30	\checkmark		
	R2	48	<43	\checkmark	<38	\checkmark	<37	\checkmark	<30	\checkmark		
Day	R3	48	<32	\checkmark	<27	\checkmark	<35	\checkmark	<30	\checkmark		
	R4	48	<30	\checkmark	<18	\checkmark	<30	\checkmark	<30	\checkmark		

Table 11: Noise Monitoring Assessment for the Dunloe Sand Quarry (MAC, 2019)

6.3 Air Quality

6.3.1 EIS Predictions

The EIS (2017) Executive Summary states the following:

Airborne particulate matter concentrations and dust deposition from the proposed development were predicted to exceed the relevant requirements prescribed by the Office of Environment and Heritage (OEH) at three of the eight monitoring locations.

In particular, exceedances are expected as a result of dust generated from the use of unsealed access roads by haul vehicles. In order to meet prescribed requirements, proposed dust controls include sealing of the entire internal roadway length, planting of a vegetated buffer along the southern boundary adjoining Warwick Park Road and the proposed outbound internal road.

6.3.2 Approved Criteria

Air Quality monitoring conducted at Dunloe Sand Quarry is compared to the monitoring criteria stipulated in PA 06-0030 and listed in **Table 12, Table 13** and **Table 14.**

Table 12: Long Term Impact Assessment Criteria for Deposited Dust

Pollutant	Averaging Period Maximum increase in deposited dust level		Maximum total deposited dust level	
Deposited Dust	Annual	2 g/m ² /month	4 g/m ² /month	

Table 13: Short Term Impact Assessment Criteria for Particulate Matter

Pollutant	Averaging Period	Criterion	
Particulate Matter < 10 μ m (PM ₁₀)	24 Hour	50 μg/m³	

Table 14: Long Term Impact Assessment Criteria for Particulate Matter

Pollutant	Averaging Period	Criterion
Total suspended particulate (TSP) matter	Annual	90 μg/m³
Particulate Matter < 10 µm (PM ₁₀)	Annual	30 µg/m³

6.3.3 Key Environmental Performance

6.3.3.1 Depositional Dust

Dust deposition monitoring was undertaken at 4 locations during the 2019 reporting period (see **Table 15**). All four monitoring points were found to be well below the annual average $(4g/m^2/month)$ and in compliance with the Project Approval.

	DDG1	DDG2	DDG3	DDG4			
Date Sampled	(g/m²/month)						
08-01-2019	0.5	0.6	0.5	0.3			
05-02-2019	0.2	0.2	0.2	0.2			
08-03-2019	1.1	1	1.2	0.9			
05-04-2019	0.5	0.2	0.2	0.9			
07-05-2019	0.1	0.4	0.2	1.2			
04-06-2019	0.2	0.4	0.7	0.2			
04-07-2019	0.3	0.3	0.2	1.1			
29-08-2019	0.5	0.5	0.4	1.8			
26-09-2019	0.7	0.6	0.5	1.5			
24-10-2019	1.2	0.7	0.5	1.4			
22-11-2019	0.8	0.5	0.8	0.5			
20-12-2019	1.8	1.8	1.6	1.0			
Minimum Insoluble Solids	0.1	0.2	0.2	0.2			
Maximum Insoluble Solids	1.8	1.8	1.6	1.8			
Annual Average (4g/m²/year)	0.7	0.6	0.6	0.9			
Result	Within Criteria	Within Criteria	Within Criteria	Within Criteria			

Table 15: 2019 Dust Monitoring (Depositional Dust) at Dunloe Sand Quarry

A comparison of results from 2016 - 2019 has been undertaken in **Table 16**. The monthly average at all gauges remained below the allowable maximum increase of 2 g/m²/month and below the annual average of 4 g/m²/month. The 2019 results for the annual average were very similar to the 2018 results.

Table 16: Depositional Dust Monitoring Summary (2016-2019))
--	---

Dust			Monitori	ng Period	
Depositional	Monitoring Summary for Annual Review Period	2019	2018	2017	2016
Gauge			(g/m²/ı	nonth)	
	Min. Insoluble Solids	0.1	0.1	0.1	0.13
DDG1	Max. Insoluble Solids	1.8	2.7	0.8	0.8
	Insoluble Solids Reporting Period Average	0.7	0.6	0.4	0.4
	Min. Insoluble Solids	0.2	0.1	<0.1	0.4
DDG2	Max. Insoluble Solids	1.8	0.7	0.9	4.7
	Insoluble Solids Reporting Period Average	0.6	0.31	0.32	1.23
	Min. Insoluble Solids	0.2	0.1	0.2	0.2
DDG3	Max. Insoluble Solids	1.6	1.6	2.4	1.6
	Insoluble Solids Reporting Period Average	0.6	0.8	0.8	0.5
	Min. Insoluble Solids	0.2	0.1	<0.1	0.3
DDG4	Max. Insoluble Solids	1.8	0.7	0.9	1.6
	Insoluble Solids Reporting Period Average	0.9	0.4	0.4	0.6

Long term Trends:

The annual average depositional dust levels recorded in the 2019 reporting period at all monitoring locations are generally consistent with those recorded in 2016-2018. Annual averages for depositional dust were well below the Project Approval criteria.

Comparison to EIS Predictions:

The results for depositional dust were below the predicted limits of the EIS predictions (see **Section 6.3.1**).

6.3.3.2 PM₁₀ Monitoring

 PM_{10} monitoring is required to be undertaken in accordance with the criteria provided in **Table 13** and **Table 14**.

During 2016, the DPIE advised Holcim of the requirement to undertake monitoring at the Dunloe Sand Quarry, unless changes were made to the site *Air Quality Management Plan*.

The updated *Dust Monitoring Program*, proposing PM_{10} monitoring only be required once extraction on the site exceeded 200,000 tonnes per annum, was submitted to the DPIE for approval on 23 October 2016. During this time, Holcim worked to procure a mobile PM_{10} monitor whilst an updated management plan was under review by DPIE.

On 15 November 2016, Holcim received what was mistakenly understood by the former Holcim Planning & Environment Coordinator, to be approval of the *Dust Monitoring Program*, subject to the comment from DPIE being noted and complied with. This happened prior obtaining the mobile PM₁₀ monitor on site.

Holcim provided DPIE a letter on 22 September 2017 detailing the reasons behind the site's failure to monitor PM₁₀. Holcim were issued with an Official Caution from DPIE on 4 October 2017.

In 2018, PM₁₀ monitoring was completed from 1 January 2018 until 18 July 2018.

It should be noted that with the revision and approval of the *Dust Monitoring Program* by the DPIE on 27 July 2018, Holcim is no longer required to monitor for PM₁₀ unless the annual production rates increase to 200,000 tonnes or above.

Annual production rates were below 200,000 tonnes during 2019 (production 165,562 tonnes in 2019), therefore no PM_{10} monitoring was undertaken.

Trends

Trends relating to PM₁₀ monitoring is outlined in **Table 17**.

Table 17: PM₁₀ Monitoring Trends

Monitoring Summary for Annual Review Period	Monitoring Results 2019 Period (µg/m³)	Monitoring Results January – July 2018 Period (µg/m ³)	Monitoring Results November and December 2017 Period (µg/m³)
PM ₁₀ Reporting Period Average	NS	24.9	10.97
Max. PM ₁₀	NS	125	35.9
Min. PM ₁₀	NS	2	1.2

NS – Not Sampled

During the 2019 reporting period extraction remained below 200,000 tonnes per annum, therefore no monitoring was undertaken. The site has maintained dust suppression techniques throughout the reporting period in accordance with the requirements of the EMP.

6.3.4 Management Measures

Management measures relating to air quality are outlined within the *Dunloe Sand Quarry Environmental Management Plan* and *Dust Monitoring Program*. These include:

- Sealing access and egress road from the Quarry to Pottsville Road;
- The wheel shaker screen is to be utilised by all traffic leaving the quarry;
- The route for trucks within the quarry will be wet down daily by a water sprinkler/spray system;
- Additional vegetation rehabilitation areas throughout the site contributing as a buffer to Mooball Creek and surrounding areas;
- Loaded trucks will be covered before exiting the site;
- Dust that is transported onto the access road immediately outside the active quarry area will be removed from the road at least once per month using a local street sweeper;
- Visual daily inspections of all stockpiles will be undertaken to ensure that dust emissions do not occur;
- Visual review of exposed areas, and whether these areas are generating dust, should be undertaken daily;
- Dust generation is generally limited to freshly disturbed areas. To facilitate dampening, a portable hose or water spray/sprinkler system has been installed. The system installed is capable of servicing the entire site;
- Topsoil will not be stripped during windy weather conditions; and
- Six monthly audits of dust levels are to be undertaken by management.

6.3.5 **Proposed Improvements**

Completion of monitoring as per the EMP and Project Approval requirements.

6.4 Traffic Management

6.4.1 EIS Predictions

The proposed operational times outlined within the EIS are outlined below:

Table 18: Estimated Operational Times, Periods and Truck Movements (EIS 2007)

Yearly Operation	Days Per Week	Hours per Week	Daily Times Operating	Truck Movements per Hour
50 weeks/year	5.5	46	Mon-Fri: 7:30am -5:00pm Sat: 7:30am -12:30pm	4

6.4.2 Approved Criteria

As per the Project Approval (Schedule 3 Condition 3), operations will be conducted Monday to Saturday. No operations are to be undertaken on Sunday or public holidays.

Table 19: Operational Times, Periods and Truck Movements

Yearly Operation	Days Per Week	Hours per Week	Daily Times Operating	Truck Movements per Hour
52 weeks/year	5.5	55	Mon-Fri: 7:30am -5:00pm Sat: 7:30am -12:00pm	8*

* Not to exceed more than 8 heavy vehicle movements (in and out) per hour

Internal roads are signposted to a 25-30km/h speed limit.

6.4.3 Key Environmental Performance

Holcim staffs were notified during due diligence activities by representatives of Ramtech that operations prior to the acquisition by Holcim were based on a maximum of 8 movements per hour (i.e. - 8 in, 8 out). The DPIE compliance team has since notified Holcim that this interpretation is incorrect, and the site is only allowed 4 movements per hour (i.e. - 4 in, 4 out).

Holcim has operated in accordance with revised truck movements since direction was given by the DPIE on October 20, 2016. An application to modify this condition to allow greater flexibility to hourly and daily movements of trucks entering and exiting the site was approved in November 2018. Schedule 2 Condition 8 of the Project Approval allows 24 movements per hour.

Daily records of truck movements are recorded by Holcim. Based on the records, all truck movements were 4 movements per hour or below. A summary of the daily truck movements is provided in **Appendix 3.**

Traffic travelling to and from the site continued to make use of the Pacific Highway, via the Cudgera Creek interchange during the 2019 reporting period.

In summary:

- There was a total of 5251 trucks recorded leaving site during 2019. This is a decrease from the 5320 trucks recorded leaving site during 2018;
- There were 248 haulage days during 2019; and
- Haulage occurred at an average of 21.2 trucks during haulage days during 2019. This is an increase on the average from 2018, which had 20.6 trucks.

6.4.4 Management Measures

Management measures relating to air quality are outlined within the *Dunloe Sand Quarry Environmental Management Plan* and the *Traffic Management Procedure*, including:

- Construction of a dedicated haulage road (sealed) to provide vehicular access between the sand extraction area and Pottsville-Mooball Road;
- Average truck movements limited to 24 movements per hour (24 in, 24 out);
- All vehicles to observe speed limits for public roads;
- No trucks are to leave the site via Warwick Park Road;
- Appropriate advisory signage placed on public roads to notify of trucks entering Pottsville Mooball Road;
- Appropriate relevant advisory signage placed along the haulage road (especially approaches to the intersections with Kelleher's Road and Pottsville – Mooball Road);
- Truck speed on the internal roads is to be limited to a maximum of 25km/h;
- All loaded vehicles entering or leaving the site are to have their loads covered; and
- Holcim shall ensure that all loaded vehicles leaving the site are cleaned of materials that may fall on the road before they leave the site.

6.4.5 **Proposed Improvements**

There are no proposed changes to transport management. Truck movements will continue to be monitored and recorded in the oncoming reporting period to ensure that they remain within the approved criteria.

6.5 Biodiversity

6.5.1 EIS Predictions

As part of the EIS (2007), a number of threatened species were identified within the surrounding vegetated areas of the site with none being found, or expected to occur, within the previously disturbed areas of the site (including proposed extraction areas).

Rehabilitation and revegetation measures proposed will provide improved flora and fauna links, additional food resources for identified threatened species, improved opportunities for breeding through the installation of breeding boxes and other benefits associated with visual screening and the like.

No clearing of vegetation is required in respect of the proposal, inclusive of haulage routes and operational areas. There is no proposed clearing for 2019.

6.5.2 Approved Criteria

There are no specific criteria associated with biodiversity management for the site. Activities need to be completed in accordance with the EIS.

6.5.3 Key Environmental Performance

There were no biodiversity issues identified during the Annual Review period. There was no clearing during 2019. There was some weed spraying at the site in 2019.

In accordance with the Project Approval, 11 fauna nest boxes have been installed across the rehabilitation zones in a bid to increase potential nesting options for fauna.

During the 2019 monitoring period, fauna was found within all zones including a wedge tail eagle located in Zone 1A and a Brahming Kite in Zone 1B and 2A. Nil or minor weeds were found across zones. Tree height ranged from 6–16m with Paperbark and She Oak the predominant species present. The 2019 Rehabilitation and Revegetation Monitoring Report is provided in **Appendix 5**.

6.5.4 Management Measures

Management measures relating to biodiversity are outlined within the *Dunloe Sand Quarry Rehabilitation and Revegetation Management Plan* and the *Dunloe Sand Vegetation Management Plan*. These include:

- Detailed clearing protocol as per Section 5.1 of the *Dunloe Sand Quarry Rehabilitation and Revegetation Management Plan;*
- Weed management;
- Installation of next boxes; and
- Rehabilitation/Ecological monitoring.

6.5.5 Proposed Improvements

Continuation of weed management in 2020. Undertake fauna box monitoring during 2020 report period in accordance with the *Dunloe Sand Quarry Rehabilitation and Revegetation Management Plan* and the *Dunloe Sand Vegetation Management Plan*.

6.6 Heritage

6.6.1 EIS Predictions

A heritage assessment focusing on both Aboriginal and non-Aboriginal heritage was completed for the EIS (2007). An area of potential Aboriginal heritage significance was cordoned off.

6.6.2 Approved Criteria

There are no specific criteria associated with heritage relating to the project.

6.6.3 Key Environmental Performance

There were no issues relating to Aboriginal and historic heritage during the reporting period. An area was previously identified as having potential Aboriginal heritage significance. During 2018 the area was reviewed for potential artefacts with the assistance of Aboriginal Groups. The Aboriginal Groups did not find any items of heritage significance as part of the survey. Holcim can now complete quarrying activities within the area that was previously demarcated. No quarrying activities were completed within this area in 2019.

The Dunloe Sand Quarry Aboriginal Cultural Heritage Management Plan was updated in December 2019.

The approved excavation strategy was completed in late 2018 and early 2019 in accordance with Condition 32(c) of Schedule 3 of the development consent.

The implementation of the excavation strategy identified no Aboriginal objects or places as a result of the pedestrian survey and subsequent archaeological test excavations. It was determined that the project area possesses nil archaeological significance. The outcomes of the excavation strategy are reported in the *Aboriginal Cultural Heritage Assessment Report – Dunloe Sand Quarry, Pottsville, NSW* (RPS 2019).

6.6.4 Management Measures

Management measures relating to heritage are outlined within the *Dunloe Sand Quarry Aboriginal Cultural Heritage Management Plan.* These include:

- Training of all staff and contractors through the induction process;
- Detailed excavation strategy and control of any finds; and
- Procedure for impacts of unexpected finds.

6.6.5 **Proposed Improvements**

No proposed improvements.

6.7 Acid Sulphate Soils Management and Management of Fines

Holcim undertakes fines management in accordance with Schedule 3 of Conditions 10 and 11, Project Approval 06_0030, in the following manner:

10. The Proponent shall ensure that all excavated potential acid sulfate soil fines material is returned back to below the water table as soon as possible to prevent oxidation. No potential acid sulfate soil shall be removed from the site, unless adequately neutralised in accordance with methods approved under the Soil and Water Management Plan.

11. The Proponent shall ensure that all potential acid sulfate soil fines material is discharged into the pond at a depth of no less than 3 metres from the water surface, and that all fines are deposited to a final depth of at least 8 metres from the water surface, unless an alternative method(s) is approved by OOW and the Director-General.

Under the operation of Holcim, the site has undertaken a number of improvement works to ensure the effective management of **Acid Sulphate Soils (ASS) and Potential Acid Sulphate Soils (PASS)** during extraction, processing and sales operations. Details of specific management measures are outlined below.

6.7.1 Acid Sulphate Soils Sampling

Holcim undertakes acid sulphate soils sampling in advance of extraction. A sand core drilling program was undertaken in 2016, in accordance with the site's Environmental Management Plan (EMP), for an area of extraction required for the following 2-3 years. The drilling program was developed and undertaken in line with the following activities:

- 1. A minimum of 2 sand cores are drilled per hectare;
- 2. All samples are sent to Soil Surveys Australia Pty Ltd for immediate testing in accordance with the ASSMAC Guidelines;
- 3. Soil Surveys Australia Pty Ltd (NATA Accredited lab) test results provided a volume per m² for lime to be seeded across each hectare before stripping takes place;
- 4. Lime was spread across the reserve and then stripped to expose the loam and sand product; and
- 5. Stockpiled topsoil is tested by a NATA accredited laboratory to confirm there is no presence of PASS.
- 6. A minimum of 2 sand cores are drilled per hectare;
- 7. All samples are sent to Soil Surveys Australia Pty Ltd for immediate testing in accordance with the ASSMAC Guidelines;
- 8. Soil Surveys Australia Pty Ltd (NATA Accredited lab) test results provided a volume per m² for lime to be seeded across each hectare before stripping takes place;
- 9. Lime was spread across the reserve and then stripped to expose the loam and sand product; and
- 10. Stockpiled topsoil is tested by a NATA accredited laboratory to confirm there is no presence of PASS.

The ongoing management of acid sulphate soils during extraction in the sampled area is undertaken in accordance with the site's EMP. Further to the monitoring program that was completed in 2016, ongoing acid sulphate soils monitoring were completed during 2019, with no acid sulphate soils determined during the 2019 testing. A selection of monitoring results is attached in **Appendix 4**.

6.7.2 Extraction

Excavation of loam, dredging and washing activities is undertaken in accordance with the EMP and has been developed in line with the following activities:

 Excavated loam is stockpiled and tested by NATA accredited laboratory to confirm there is no presence of PASS;

- In the event that PASS is present in loam stockpiles a NATA accredited laboratory will provide a detailed report with liming rates for lime to be added by Holcim staff to screened loam to ensure no presence of PASS;
- 3. All dredged material is sent through the plant with fines re-interned below the 3 meter water mark at a depth of 8 metres in the returns pond; and
- 4. Testing of stockpiles to ensure that no PASS are present in concrete sands.

6.7.3 Stockpiling & Sales

Holcim have developed and implemented a testing regime using a NATA accredited laboratory to ensure compliance with PASS requirements for all sales of sand materials. This process includes:

- 1. Routine sampling of sales material stockpiles at designated locations; and
- Implementation of a series of sales and production stockpiles to ensure any materials that have not been tested are isolated until tests confirm no presence of PASS thereafter sales loading occurs.

6.8 Summary of Environmental Performance

A summary of the performance of environmental management measures and sampling results for 2019 are detailed in Table 20.

Table 20: Environmental Performance at the Dunloe Sand Quarry in 2019

Aspect	Approval Criteria / EIS Prediction	Performance during 2019 reporting period	Trend / key management implications	Implemented / proposed management actions
Meteorology	EIS predictions are all below Project Approval criteria.	Non-compliance as no meteorological station data for 2019.	Non-compliance	The meteorological station was fixed in February 2020.
Noise	EIS predictions are all below Project Approval criteria.	Quarterly monitoring has met the Project Approval Criteria.	Consistently meets criteria.	None Required.
Air Quality	EIS predictions are all below Project Approval criteria.	Dust deposition results are within criteria of EPL, EIS and Project Approval. PM ₁₀ monitoring is no longer required at the site (when production remains below 200,000T/annum). Therefore, no PM ₁₀ monitoring was undertaken in 2019.	Improvement from previous years with no issues relating to monitoring. PM ₁₀ not required in 2019	None Required.
Traffic Management	EIS predictions are all below Project Approval criteria.	Met operating criteria (number of trucks per day).	This is an improvement on some past years.	None Required.
Water Management	EIS predictions are all below Project Approval criteria.	Criteria meets EIS, EPL and Project Approval criteria. There were some inconsistencies with testing of monitoring parameters (including	Groundwater consistent with trend data. Water monitoring generally consistent with trend data.	Ensure water quality monitoring and analysis is completed in accordance with the EMP.

Aspect	Approval Criteria / EIS Prediction	Performance during 2019 reporting period	Trend / key management implications	Implemented / proposed management actions
		algae and vertical profile of extraction ponds).		
Biodiversity	No impacts to threatened species. No Project Approval criteria.	Biodiversity monitoring was not undertaken in 2019.	Non-compliance	Biodiversity monitoring is to be completed in accordance with the Dunloe Sands Quarry Rehabilitation and Revegetation Plan in 2020.
Heritage	No impacts to Aboriginal Heritage. No Project Approval criteria.	No impacts. See Section 6.6 for an update on Heritage surveys.	Consistently no impacts.	None required.

7 WATER MANAGEMENT

7.1 EIS Predictions

The site is located within the Mooball Creek catchment and Sheens Creek sub-catchment areas. Detailed flood modelling confirms that the proposal will have no significant impact upon existing drainage regimes within the catchment.

Extraction operations have been designed in conformity with best practice environmental management procedures, including the use of appropriate sediment and water quality devices and the retention of ground cover in areas outside of the extraction ponds.

No negative impacts predicted to water quality with controls in place.

7.2 Criteria

The site has the requirement to monitor discharges from the two Licenced Discharge Points (LDP) as per the criteria listed in EPL 13077 and reproduced in **Table 21.** LDP001 refers to Silt Pond discharge and monitoring point and LDP002 refers to Dredge Pond discharge and monitoring point.

Table 21: Discharge Criteria – LDP001 and LDP002

POINT 1

Pollutant	Units of Measure	50 Percentile concentration limit	90 Percentile concentration limit	3DGM concentration limit	100 percentile concentration limit
Oil and Grease	Visible				nil
pН	рH				6.5 - 8.5
TSS	milligrams per litre				50

POINT 2

Pollutant	Units of Measure	50 Percentile concentration limit	90 Percentile concentration limit	3DGM concentration limit	100 percentile concentration limit
Oil and Grease	Visible				nil
рН	рН				6.5 - 8.5
TSS	milligrams per litre				50

Exceedance of a quality limit specified in EPL 13077 (**Table 21**) for the discharge of TSS, pH or Oil and Grease from LDP001 or LDP002 is permitted if the discharge from LDP001 or LDP002 occurs solely as the result of rainfall on site exceeding a total of 82.5 mm over any consecutive five day period. Holcim must take all practical measures to avoid or minimise TSS, pH and Oil and Grease exceedances in wet weather discharges.

Table 22: LDP001 and LDP002 monitoring requirements

Р	O	NT	1	2
				,

Pollutant	Units of measure	Frequency	Sampling Method
Oil and Grease	Visible	Special Frequency 1	Visual Inspection
pН	pН	Special Frequency 1	Probe
TSS	milligrams per litre	Special Frequency 1	Grab sample

Special Frequency 1 means: sampling once <24hours prior to; and sampling the discharge daily during, each discharge event arising from rainfall of less than 82.5 mm falling in total over a period of up to five days duration.

The site also has criteria outlined within the EMP. This includes commitments to undertaking monthly and quarterly monitoring at the Dredge Pond (Dam 1) and Silt Pond (Dam 2) (see **Table 23, Table 24, Table 25**). Other sampling criteria and commitments from the EMP are outlined within **Tables 26-29**.

Table 23: Monthly Surface Water Quality Criteria – Dam 1 and Dam 2

Pa ra me te r	Interim Target Criteria	Baseline monitoring 9/06-8/07
pН	5.0 - 8.5	3.55-8.44 (6.49)
Electrical Conductivity (EC)	<5.50 mS/cm	0.286 - 45mS/cm (11.930mS/cm)
Dissolved Oxygen (DO)	>4.oo mg/L	0.81-7.49 (4.34)mg/L
Turbidity	<20 (NTU)	3-67 (14.4) NTU
Oil and Grease	10 mg/L	

Table 24: Quarterly Surface Water Quality Criteria – Dam 1 and Dam 2

Quarterly monitoring

Quarterly monitoring shall include the above parameters as well as the parameters listed in the table below.

Parameter	Interim Target Criteria	Baseline monitoring 9/06-8/07
Manganese	0.15 mg/L	0.01 – 0.56 mg/L
Magnesium	40 mg/L	0.8 – 173.0 (20) mg/L

Sodium	280 mg/L	7-1770 (213) mg/L
Potassium	17.5 mg/L	0 – 71 (12) mg/L
Bicarbonate	400 mg/CaCo3	-
Chloride	285 mg/L	15-3500 (356)mg/L
Sulphate	175 mg/L	9-753 (100) mg/L
Aluminium	0.75 mg/L	<0.01-4.96 (0.50) mg/L
Arsenic	<0.005 mg/L	<0.005 - 0.027 (0.01) mg/L
Iron	<7.5 ug/L	0.03-43 (6.12) ug/L
Chlorophyll a	2-10 ug/L	2-10 ug/L

Pollutant	Unit of Measure	Water Quality Objectives
Turbidity	NTU	5 – 20 NTU
рН	рН	6.5 - 8.5
Oil and Grease	mg/L	10 mg/L
Salinity	μS/cm	<3,000 μ5/cm
Dissolved oxygen	mg/L	>6 mg/L
Chorophyll-a	μg/L	2-10 μg/L
Faecal coliforms	Median No./100mL	<1000 cfu/100mL
Enterococci	Median No./100mL	<230 cfu/100mL
	No.cells/mL (M.aeruginosa)	<50,000 cells/mL
Algae and blue-green algae	mm ³ /L (total biovolume)	<4 mm3/L
Sodium	mg/L	500mg/L
Potassium ion	mg/L	40mg/L
Magnesium ion	mg/L	100mg/L
Chloride ion	mg/L	1000mg/L
Sulphate ion	mg/L	800mg/L
Bicarbonate ion	mg/L	400mg/L
Soluble iron	mg/L	20mg/L
Soluble aluminium ion	mg/L	o.5mg/L

Table 25: Quarterly Vertical Profile Water Quality Criteria - Dam 1 and Dam 2

Ammonium ion	mg/L	20mg/L
 The Department acknowledge 	ges that short term exceedances of the	se objectives may occur during natural events such

as flooding.
2) The Department acknowledges that pre-existing water quality may not meet the objectives for some analytes, including salinity. The proponent shall strive to meet the water quality objectives through implementation of the Soil and Water Management Plan (see condition 18 below), as far as is reasonable and feasible and within the

The site has a commitment to Blue Green Algae monitoring within the extraction ponds at the site in accordance with the criteria listed in **Table 26**.

Table 26: Monthly Monitoring Criteria – Blue Green Algae

Proponent's control, to the satisfaction of the Secretary.

Algae and Blue-green algae	No.cells/mL (M.aeruginosa)	<50,000
	mm ³ /L (total biovolume)	<4

The site has a commitment to complete quarterly creek water monitoring within the surrounding environment in accordance with the criteria listed in **Table 27**.

Pollutant	Unit of Measure	Interim Target Criteria	Baseline Monitoring 9/06-8/07
pН	рН	5.5-7.5	3.55-8.44 (6.49)
Electrical Conductivity	uS/cm	1800-24000	286-45000 (11930)
Dissolved Oxygen	mg/L	>6	0.81-7.49 (4.34)
Turbidity	NTU	<20	3-67 (14.4)
Suspended Solids	mg/L	<25	1.5-48 (19)

Table 27: Quarterly Surface Water Quality Criteria – Surrounding Environment

Groundwater

The site has the requirement to monitor water quality from the five groundwater bores installed on site annually as per the criteria listed in EPL 13077 and reproduced in **Table 28**.

Table 28: Groundwater monitoring requirements (DLP3-DLP7)

POINT 3,4,5,6,7

Pollutant	Units of measure	Frequency	Sampling Method
Ammonia	milligrams per litre	Yearly	Grab sample
Chloride	milligrams per litre	Yearly	Grab sample
Electrical conductivity	microsiemens per centimetre	Yearly	Grab sample
Oil and Grease	milligrams per litre	Yearly	Grab sample
pH	рH	Yearly	Grab sample
Standing Water Level	metres (Australian Height Datum)	Yearly	No method specified
Sulfate	milligrams per litre	Yearly	Grab sample

The site also has a commitment to complete monthly groundwater monitoring within the surrounding environment in accordance with the criteria listed in **Table 29**.

Table 29: Monthly Groundwater Quali	ty Criteria – Surrounding Environment
-------------------------------------	---------------------------------------

Parameter	Interim Target Criteria	Baseline Monitoring 9/06-8/07
		Range (mean)
рН	4.2 - 7.0	3.58-7.54 (5.43)
Electrical Conductivity	<2.0 mS/cm	0.07-6.47 (1.24)
(EC)		
Dissolved Oxygen (DO)	>1.50 mg/L	0.16 - 4.83 (0.84)
REDOX Potential	Maximum (mg/L)	
Groundwater level	M (AHD)	0.25-1.52 (0.68)

The site has a commitment to complete quarterly groundwater monitoring within the surrounding environment in accordance with the criteria listed in **Table 30**.

Parameter	Interim Target Criteria	Baseline monitoring 9/06-8/07
Calcium	55	0.7-114 (26)
Manganese	0.15	0.01 - 0.56
Magnesium	40	0.8 – 173.0 (20)
Sodium	280	7-1770 (213)
Potassium	17.5	0-71 (12)
Bicarbonate	400	-
Chloride	285	15-3500 (356)
Alkalinity	185	0-534 (109)
Sulphate	175	9-753 (100)
Aluminium	0.75	<0.01-4.96 (0.50)
Arsenic	0.005	<0.005 - 0.027 (0.01)
Iron	7.5	0.03-43 (6.12)

Table 30: Quarterly Groundwater Quality Criteria – Surrounding Environment

7.3 Surface Water Monitoring

It should be noted that there were no surface water discharges in 2019 therefore criteria related to **Table 21** have not been triggered. A summary of results obtained from monthly sampling in the ponds is provided in **Table 31**.

Parameter	Unit	Interim Target Criteria	Baseline (2006/07)	Dredge Pond (Dam 1)				Silt Pond (Dam 2)		
				Min	Max	2019 Average	2018 Average for Comparison	Min	Max	2019 Average
рН	-	6.5-8.5	3.55-8.44	4.0	5.5	4.4	4.2	3.94	9.85	6.94
EC	uS/cm	<2000	286-450	120	783	545	388	130	719	508
DO	mg/L	>4.00	0.81-7.49	1.2	116	35.7	22.4	0.5	111.3	33.3
Turbidity	NTU	<20	3-67	0	50.8	7.5	5.3	0	57.3	12.2
Oil and Grease	mg/L	10	-	<5	<5	<5	<5	<5	8	5

Table 31: Monthly Dredge Pond (Dam 1) Water Quality Monitoring 2019 Results

A comparison of the 2019 results compared to 2018 results for the Ponds are outlined below:

- pH results there was a slight increase in average pH from 4.2 in 2018 to 4.4 in 2019 in the Dredge Pond (Dam 1);
- EC results there was a significant increase in average EC from 388 uS/cm in 2018 to 545 uS/cm in 2019:
- DO Results there was an increase in DO from 22.4 mg/L in 2018 to 35.7 mg/L in 2019;
- Turbidity Results there was an increase in the average turbidity level from 5.3 NTU in 2018 to 7.5 NTU in 2019; and
- Oil and Grease were <5 Mg/L in 2018 and 5 mg/L in 2019.

There are no long-term trends available for the Silt Pond (Dam 2).

A summary of results obtained from quarterly chemical analysis in the ponds is provided in Table 32.

Parameter	Interim	Baseline	Dredge Pond (Dam 1)				Silt Pond (Dam 2)		
(mg/L)	Target Criteria	(2006/07)	2019 Min	2019 Max	2019 Average	2018 Average for comparison	2019 Min	2019 Max	2019 Average
Manganese	0.15	0.01-0.56	0.235	0.278	0.258	0.247	0.076	0.203	0.142
Magnesium	40	0.8-173.0	9	11	10	6	9	11	10
Sodium	280	7-1,770	37	53	45	24	36	46	42
Potassium	17.5	0-71	4	5	4.8	3.7	4	5	4
Bicarbonate	400	-	1	1	1	-	5	22	12
Chloride	285	15-3,500	66	95	79	42	65	80	72
Sulphate	175	9-753	164	174	170	114	158	164	163
Aluminium	0.75	<0.01- 4.96	0.68	0.92	0.80	0.74	0	0.58	0.16
Arsenic	0.005	<0.005- 0.027	0.001	0.001	0.001	Not detected	0.001	0.003	0.0015
Iron (Dissolved)	7.5	0.03-43	0.2	0.55	0.30	0.086	0.05	0.05	0.05
Chlorophyll a	2-10	2-10	1	2	1	-	1	8	4

Table 32: Quarterly Chemical Analysis Monitoring 2019 Results

Results obtained from quarterly chemical analysis of extraction pond water shows the results to be generally in accordance with the baseline criteria and interim target criteria of the EMP. The largest change between 2018 and 2019 was in relation to Chloride which increased from an average of 42mg/L to 79mg/L.

Manganese in the Dredge Pond (Dam 1) was above interim criteria in 2017, 2018 and 2019.

The site has also committed to completing quarterly creek monitoring within the surrounding environment in accordance with the EMP. A summary of results obtained from quarterly water quality monitoring is provided in **Table 32** and **Table 33**.

				SW3			SW4	
Parameter (mg/L)	Interim Target Criteria	Baseline (2006/07)	Min	Мах	Avg	Min	Мах	Avg
рН	5.5-7.5	3.55-8.44	6.4	6.9	6.7	6.9	7.6	7.2
EC	1800- 24000	286-45000	41	43000	19988	51	45300	23298
DO	>6	0.81-7.49	3.0	108.0	32.2	4.7	103.0	31.3
Turbidity	<20	3-67	0	18	9	0	7	3
Suspended Solids	<25	1.5-48	5	10	7	5	8	6

				SW9			SW10	
Parameter (mg/L)	Interim Target Criteria	Baseline (2006/07)	Min	Мах	Avg	Min	Мах	Avg
рН	5.5-7.5	3.55-8.44	6.8	7.5	7.1	5.8	7.0	6.6
EC	1800- 24000	286-45000	38	44300	12907	42	38700	15138
DO	>6	0.81-7.49	3.6	71.1	22.9	4.3	54.8	18.3
Turbidity	<20	3-67	0	3	2	11	20	17
Suspended Solids	<25	1.5-48	5	10	6	8	15	10

Table 34: Quarterly Southern Creek Water Quality Monitoring 2019 Results

Results obtained from quarterly water quality monitoring shows the results to be generally in accordance with the baseline criteria and interim target criteria of the EMP. However, maximum EC at all monitoring site was above interim target criteria but within the baseline criteria. Similarly, minimum DO was below interim criteria at all sites.

Creek monitoring was not undertaken in the 2018 reporting period.

A copy of all creek monitoring water quality data is included in Appendix 2 of this report.

The results of the monthly algae monitoring for the 2019 reporting period are displayed within Table 35.

Dredge Pond (Dam 1)			Silt Pond	I (Dam 2)
Date	Total Algae Count (cells/ml) Criteria: <50,000	Total Biovolume (mm³/L)	Total Algae Count (cells/ml) Criteria: <50,000	Total Biovolume (mm³/L)
January 2019	-	-	-	-
February 2019	-	-	-	-
8 March 2019	<5	<0.001	<5	<0.001
April 2019	-	-	-	-
May 2019	-	-	-	-
4 June 2019	550	<0.001	500	<0.001
July 2019	-	-	-	-
29 August 2019	30900	0.002	525	<0.001
September 2019	-	-	-	-
October 2019	-	-	-	-
22 November 2019	900	0.002	10800	2.13
December 2019	-	-	-	-

Table 35: Surface Water Quality Monitoring 2019 Results - Blue Green Algae

It is noted that there were some months where total algae count and total biovolume were not recorded. This is a non-compliance with the frequency outlined in the EMP. Holcim aims to improve data analysis in 2020.

When tested, the total biovolume results remained below the detection limit throughout the 2019 reporting period. The maximum total algae count in 2019 (30900 cells/ml) was higher than the maximum from 2018 (16,000 cells/ml) but within historical trends.

The total algae count results gathered at site across several years have illustrated a large degree of variability. It is noted that variations in total algae count results are not identified as exceedances of the monitoring criteria listed in the EMP and the key to monitoring Blue Green Algae activity generally lies with total algae count readings.

Long-term Trends:

Appendix 2 outlined the long-term monitoring data, including a summary of minimum, maximum and average for key parameters. Key parameters continued to follow long-term trends, including:

- There was no surface water discharge in 2019;
- Generally acidic pH readings;
- High variability of turbidity;
- Low levels of oil and grease;
- Variable levels of total algae, but within long-term trends; and
- EC was highly variable, but within long-term trends.

Comparison to EIS Predictions:

There was no evidence of any detrimental impact from the Quarry on surface water. This is consistent with the EIS predictions.

7.4 Groundwater Results

Monthly groundwater monitoring was undertaken at 5 locations (DLP 1, DLP 3, DLP 5, DLP 6 and DLP 7) during the 2019 reporting period. Results obtained at each bore in 2019 have been generally consistent at each location with previous results.

DLP3, DLP6 and DLP 7 present conductivity levels above the maximum interim target of 2000 μ S/cm stated within the EMP, with this also being the case in previous years. These sites have also expressed similar levels of electrical conductivity (EC) within legacy background testing and are not causing any environmental impacts outside of the existing environment.

DLP 7 sits immediately adjacent to the existing wetland, which act as a 'drawer' of permanently saline conditions in order to sustain its dominant vegetative makeup. It is therefore considered likely that some localised salinisation of surficial groundwater has occurred within the vicinity of DLP3 and DLP 7 due to tidal influences within these nearby waterways and wetlands. This trend has previously been identified in Annual Reports prepared under the previous operator and is considered to be consistent with the natural salinity levels in the local environment.

A summary of monthly groundwater results for pH and EC is provided in **Table 36**. A copy of all monthly groundwater monitoring has been provided in **Appendix 2** of this report.

Location	Parameter	Interim Target Criteria	Minimum	Maximum	2019 Average	2018 Average for comparison	2017 Average for Comparison
	pН	4.2-7.0	4.1	6.6	4.9	4.4	4.3
DLP1	EC (uS/cm)	<2000	38	3570	698	146	134
	pН	4.2-7.0	3.88	6.4	5.5	5.9	6
DLP3	EC (uS/cm)	<2000	568	10400	6731	7320	7464
	pН	4.2-7.0	4.4	9.89	5.4	4.7	5.1
DLP5	EC (uS/cm)	<2000	22	5623	1782	847.5	406
	pН	4.2-7.0	3.9	5.78	4.6	3.9	3.8
DLP6	EC (uS/cm)	<2000	109	10190	2561	607.5	1270
	рН	4.2-7.0	4.4	7.51	6.3	7.0	6.9
DLP7	EC (uS/cm)	<2000	367	3820	3039	3379	3125

Table 36: Monthly Groundwater Quality Monitoring 2019 Results

There was a large degree in variability across the sites for the 2019 monitoring, with this also being the case in 2018. Generally, the pH has been acidic to neutral. The EC has a high variability across sites ranging from 22 uS/cm to 10190 uS/cm.

A summary of quarterly monitoring for Manganese and Magnesium is outlined in Table 37.

Location	Parameter	Interim Target Criteria	Q1	Q2	Q3	Q4	2019 Average	2018 Average for comparison	2017 Average for comparison
DLP1	Manganese (mg/L)	0.15	0.05	0.038	0.033	0.034	0.039	0.014	0.024
DLPT	Magnesium (mg/L)	40	2	1	<1	<1	1.25	0.87	0.65
DLP3	Manganese (mg/L)	0.15	0.988	0.789	0.797	1.11	0.92	0.65	0.63
DLP3	Magnesium (mg/L)	40	193	142	130	236	175.3	131.2	126.7
DLP5	Manganese (mg/L)	0.15	0.02	0.127	0.212	0.16	0.13	0.031	0.060
DLP5	Magnesium (mg/L)	40	5	41	56	55	39.3	11.2	14.5
DLP6	Manganese (mg/L)	0.15	0.576	0.54	0.538	0.225	0.47	0.49	1.12
DLP6	Magnesium (mg/L)	40	8	8	6	6	7.0	6.8	14.45
DLP7	Manganese (mg/L)	0.15	0.072	0.078	0.082	0.074	0.077	0.21	0.068
	Magnesium (mg/L)	40	39	40	38	39	39.00	39.25	37.3

Table 37: Quarterly Groundwater Quality Monitoring 2019 Results

Note: Where results are below the detectable limit (i.e. <0.5) the average has been calculated by removing the <.

When comparing the 2019 annual average for Manganese and Magnesium to 2018 totals, there is a large degree of similarity. However annual averages for Manganese and Magnesium have increase at DLP1, DLP3, and DLP5. The largest change is the Manganese level at DLP5 which increased from 0.031 mg/L to 0.13 mg/L in 2019. DLP3 was once again above the interim criteria, as per 2017 and 2018 results. Manganese levels at DPL6 were also above interim criteria in 2019.

Long-term Trends:

Results for Manganese and Magnesium are similar to previous years. DLP3 has been consistently above the interim target criteria, with this a trend across several years.

A copy of all Quarterly groundwater monitoring has been attached as Appendix 2 to this report.

Comparison to EIS Predictions:

There was no evidence of any detrimental impact from the Quarry on groundwater. This is consistent with the EIS predictions.

7.5 Water Take

There is no water take associated with the Dunloe Sand Quarry.

8 REHABILITATION AND LANDSCAPE MANAGEMENT

8.1 Rehabilitation Performance during the Reporting Period

As part of the site's approved EMP, re-vegetation and regenerative landscaping is required (Appendix C of the EMP). Ongoing management of the surrounding vegetation is being carried out by Ramtech Pty Ltd over the lifetime of the Dunloe Sand Quarry operations.

The regenerative works have been undertaken via a combination of assisted and natural regrowth and all areas have been fenced so as to limit the intrusion of cattle. In this regard, depending on soil types and topography, each of the areas has been very successful in establishing quality regrowth.

The only limiting factors have been some cattle getting in and around existing fences (primarily at low tide where they have been able to traverse the creek lines.

Quarterly rehabilitation monitoring was undertaken during 2019. A copy of all rehabilitation works, checklist and photos showing work areas have been attached as **Appendix 5** to this report.

A summary of rehabilitation at the Dunloe Sand Quarry is outlined in Table 38.

Table 38: Rehabilitation Performance in 2019

Guideline Requirement	Site Comment
Extent of the operations and rehabilitation at completion of the reporting period	There was no rehabilitation at site in 2019.
Agreed post- rehabilitation land use	The proposed rehabilitation aims to return the land to an endangered ecological community (EEC) Swamp Sclerophyll plus Eucalypt Open Forest species and EEC Coastal Wetland within the localised soaks.
Key rehabilitation performance indicators	Criteria are outlined in the <i>Rehabilitation and Revegetation Management Plan.</i>
Renovation or removal of buildings	None during reporting period
 Any other Rehabilitation taken including: Exploration activities; Infrastructure; Dams; and The installation or maintenance of fences, bunds and any other works. 	No rehabilitation of these features was completed.
Any rehabilitation areas which have received formal sign off from the Resources Regulator.	None.
Variations to activities undertaken to those proposed (including why there were variations and whether Resources Regulator was notified)	No variations to the <i>Rehabilitation and Revegetation Management Plan.</i>
Outcomes of trials, research projects and other initiatives	No specific trials.
Key issues that may affect successful rehabilitation	There are several potential issues including availability of material, seed stock, climatic events, tidal inundation and rehabilitation methodology.

8.2 Summary of Current Rehabilitation and Performance

A summary of the rehabilitation and disturbance status is outlined in **Table 39**. This is also shown in **Figure 4**.

	Previous Reporting Period (Actual)	This Reporting Period (Actual)	Next Reporting Period (Forecast)				
Quarry Area Type	2018	2019	2020				
	(ha)						
A. Total Quarry Footprint	32.2	32.2	32.2				
B. Total Active Disturbance	18.8	18.8	18.8				
C. Land Being Prepared for Rehabilitation	0	0	0				
D. Land Under Active Rehabilitation	13.4	13.4	13.4				
E. Completed Rehabilitation	0	0	0				

Table 39: Rehabilitation and Disturbance Status

At the end of 2019 there was approximately 18.8 Ha of active disturbance and 13.4 Ha of active rehabilitation (see **Figure 4**). There is no rehabilitation proposed in 2020.

Rehabilitation monitoring of established rehabilitation has shown:

- Most of the rehabilitation has been from natural regeneration;
- Dominant species are paper bark, melaleuca, banksia, casuarina and brackern fern;
- Evidence of grass and leaf litter; and
- Some tree species greater than 15 metres high, shrub species greater than 5 m high and groundcover to 2 m.

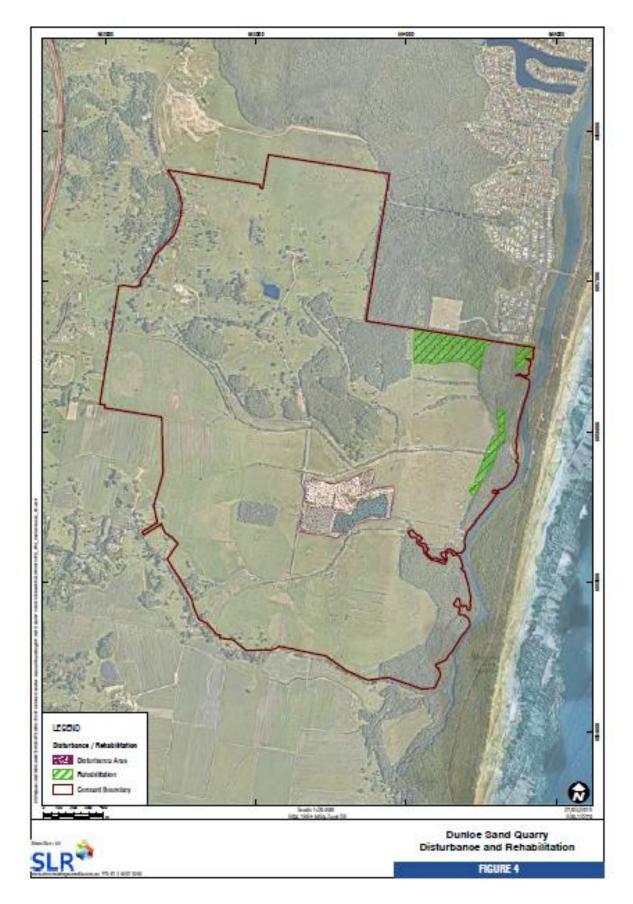


Figure 4: Rehabilitation and Disturbance

8.3 Actions for the Next Reporting Period

The DPIE 2015 Annual Review Guidelines require the Annual Review to outline the rehabilitation actions proposed during the next reporting period (1 January 2020 to 31 December 2020). These actions are detailed in **Table 40**.

Table 40: Rehabilitation and Clos	sure Actions for the	Next Reporting Period	(2020)

Requirement	Site Comment
Describe the steps to be undertaken to progress agreement during next reporting period, where final rehabilitation outcomes have not yet been agreed between stakeholders.	No rehabilitation proposed in 2020.
Outline proposed rehabilitation trials, research projects and other initiatives to be undertaken during next reporting period.	Rehabilitation inspections/monitoring to continue. An update will be provided in the 2020 Annual Review.
Summary of rehabilitation activities proposed for next report period.	No specific rehabilitation proposed for 2020. The three rehabilitation zones will continue to be managed and worked on in accordance with the approved EMP including invasive species removal and monitoring.

9 COMMUNITY

9.1 Community Engagement Activities

The site implemented a Community Consultative Committee (CCC) when under the operation of Ramtech as part of the conditions of consent. CCC meetings were undertaken on 15 February 2019 and 27 September 2019. All minutes from each of the meetings undertaken in 2019, along with a copy of the complaints register and all publicly listed information including contacts for locals in the community is available on the Dunloe Sand Quarry webpage in accordance with the Project Approval requirements

https://www.holcim.com.au/dunloe-sand-quarry-pottsville-nsw

Holcim has maintained community engagement measures, including:

- Maintenance of a website (containing publicly available documents);
- A telephone number, email and postal address (on the website) for community complaints and feedback;
- A copy of the Complaints Register is maintained on the company website; and
- All documents and items displayed on the website are regularly updated by Holcim staff.

9.2 Community Contributions

Holcim supplied some sand free of charge to local schools during the Annual Review period.

9.3 Complaints

There were no community complaints at site during 2019. This trend continues from 2018. Community complaints reports are published on the Holcim website quarterly.

10 INDEPENDENT AUDIT

The site undertook an expansion of Independent Environmental Audit (IEA) in 2016 in accordance with the timeframes of the Project Approval. All actions raised in the IEA have been undertaken in accordance with the recommendations made by Consultants Mark Rigby & Associates. All actions were closed out in 2016. The next audit is due in 2021.

11 INCIDENTS AND NON-COMPLIANCE

 Table 41 summarises the incidents and non-compliances at the Dunloe Sand Quarry in 2019.

Date	Incident/ Non – Compliance	Action
Overall report period	Schedule 3 Condition 22 It is noted that there were some months where total algae count and total bio volume were not recorded. This is a non - compliance with the frequency outlined in the Blue – Green Algae Management (Component of the EMP). It is noted that vertical profile water quality monitoring was not undertaken in 2019 (Component of the EMP).	Improve monitoring of surface water for 2020.

12 ACTIVITIES TO BE COMPLETED IN THE NEXT REPORTING PERIOD

Holcim staff will undertake the following works and improvement measures and projects in 2020 to ensure compliance with the consent and to ensure that effective environmental management controls are in place and operating in accordance with the requirements of the Consent.

Table 42: Improvement	Actions	for 2020
-----------------------	---------	----------

Improvement Measure	Activities
Water Quality Monitoring	Ensure water quality monitoring is completed in accordance with the EMP.
Dust Monitoring	Ensure dust monitoring is completed in accordance with the EMP.
Biodiversity	Weed spraying will continue at site during the next Annual Review period.
	Conduct fauna box monitoring annually.

13 REFERENCES

DPI Water (2017) Water Access Licence Usage EPA (Ongoing) Environment Protection Licence) – 13077 GHD (2020) Environmental Management Strategy GHD (2020) Environmental Monitoring Program GHD (2019) Traffic Management Plan Holcim (2018) CCC Minutes Planit Consulting (2007) Environmental Assessment – Dunloe Park RPS (2019) Aboriginal Cultural Heritage Assessment Report – Dunloe Sands Quarry, Pottsville, NSW

14 APPENDICES

APPENDIX 1

DUNLOE SAND QUARRY NOISE MONITORING 2018

Noise Monitoring Assessment

Dunloe Quarry, Pottsville, NSW Quarter 1 Ending March 2019.

Prepared for: Holcim (Australia) Pty Ltd March 2019 MAC180611-07RP3

Document Information

Noise Monitoring Assessment

Dunloe Quarry, Pottsville, NSW

Quarter 1 Ending March 2019

Prepared for: Holcim (Australia) Pty Ltd

Prepared by: Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com

Document ID	Status	Date	Prepared By	Signed	Reviewed By	Signed
MAC180611-07RP3	Final	18 March 2019	Nicholas Shipman	N.Shp	Rod Linnett	RHLAH

DISCLAIMER

All documents produced by Muller Acoustic Consulting Pty Ltd (MAC) are prepared for a particular client's requirements and are based on a specific scope, circumstances and limitations derived between MAC and the client. Information and/or report(s) prepared by MAC may not be suitable for uses other than the original intended objective. No parties other than the client should use or reproduce any information and/or report(s) without obtaining permission from MAC. Any information and/or documents prepared by MAC is not to be reproduced, presented or reviewed except in full.

CONTENTS

1	IN	ITRODUCTION	5
2	Ν	OISE CRITERIA	7
3	Μ	IETHODOLOGY	9
	3.1	LOCALITY	9
	3.2	NOISE MONITORING LOCATIONS	9
	3.3	ASSESSMENT METHODOLOGY	9
4	R	ESULTS	11
	4.1	ASSESSMENT RESULTS - LOCATION R1	11
	4.2	ASSESSMENT RESULTS - LOCATION R2	11
	4.3	ASSESSMENT RESULTS - LOCATION R3	12
	4.4	ASSESSMENT RESULTS - LOCATION R4	12
5	Ν	OISE COMPLIANCE ASSESSMENT	13
6	D	ISCUSSION	15
	6.1	DISCUSSION OF RESULTS - LOCATION R1	15
	6.2	DISCUSSION OF RESULTS - LOCATION R2	15
	6.3	DISCUSSION OF RESULTS - LOCATION R3	15
	6.4	DISCUSSION OF RESULTS - LOCATION R4	15
7	С	ONCLUSION	17

APPENDIX A - GLOSSARY OF TERMS

This page has been intentionally left blank

1 Introduction

Muller Acoustic Consulting Pty Ltd (MAC) has been commissioned by Holcim (Australia) Pty Ltd (Holcim) to complete a Noise Monitoring Assessment (NMA) for the quarterly period ending March 2019 for Dunloe Quarry (the 'quarry'), Pottsville, NSW.

The monitoring has been conducted in accordance with the Dunloe Project Approval and Noise Management Plan at four representative monitoring locations. This assessment represents the operations undertaken during Quarter 1, ending March 2019 and forms part of the annual noise monitoring program to address conditions of the project approval.

The assessment has been conducted in accordance with the following documents:

- NSW Environment Protection Authority (EPA), Noise Policy for Industry (NPI), 2017;
- Dunloe Noise Management Plan (NMP), 2016; and
- Australian Standard AS 1055:2018- Acoustics Description and measurement of environmental noise - General Procedures.

A glossary of terms, definitions and abbreviations used in this report is provided in Appendix A.

This page has been intentionally left blank

2 Noise Criteria

Schedule 3 Section 2 of the sites Project Approval outlines the applicable noise criteria for residential receivers surrounding the quarry site.

The noise criteria are applicable when the site undertakes quarrying operations with the site permitted to operate Monday to Friday 7am – 5pm, Saturday 7am – 12pm with no operations on Sunday.

 Table 1 presents the noise criteria for each of the receivers as outlined in the Project Approval.

Table 1 Noise Criteria					
Location	Day Criteria dB LAeq(15min) ²				
All privately-owned receivers ¹	48				

Note 1: Receiver locations are shown in Figure 1.

Note 2: Criteria applicable between Monday to Friday 7am – 5pm, Saturday 7am – 12pm with no operations on Sunday as the Table 2 of the Project Approval.

This page has been intentionally left blank

3 Methodology

3.1 Locality

The quarry is approximately 2.5km south west of Pottsville, NSW. Receivers surrounding the quarry are primarily rural/residential situated in coastal bushland with elevated and undulating topography. The monitoring locations with respect to the quarry and assessed receivers are presented in the locality plan shown in **Figure 1**.

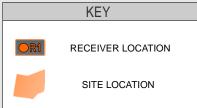
3.2 Noise Monitoring Locations

Four monitoring locations have been selected as part of the NMA and are listed below:

- R1 is located at the property on Kellehers Road situated north of the quarry;
- R2 is located west of the quarry on the boundary of 574 Pottsville Road;
- R3 is located to the south-west of the quarry at the address of 122 Warwick Park Road; and
- R4 is located at 265 Warwick Park Road, south of the quarry.

3.3 Assessment Methodology

Attended noise surveys were conducted in general accordance with the procedures described in Australian Standard AS 1055:2018, "Acoustics - Description and Measurement of Environmental Noise and Dunloe Quarry's Project Approval. Measurements were carried out using a Svantek Type 1, 971 noise analyser on Thursday 7 March 2019. Acoustic instrumentation used carries current NATA calibration and complies with AS NZS IEC 61672.1-2019-Electroacoustics - Sound level meters - Specifications. Calibration of all instrumentation was checked prior to and following measurements. Drift in calibration did not exceed ±0.5dBA.


One measurement was conducted at each monitoring location during the daytime period. Measurements were of 15 minutes in duration and where possible, throughout each survey the operator quantified the contribution of each significant noise source.

Extraneous noise sources were excluded from the analysis to determine the LAeq(15min) quarry noise contribution for comparison against the relevant criteria. Where the quarry was inaudible, the contribution is estimated to be at least 10dB below the ambient noise level.

4 Results

4.1 Assessment Results - Location R1

The monitored noise level contributions and observed meteorological conditions for R1 for are presented in **Table 2**.

Table 2 Ope	erator-Attend	ed Noise	Survey R	esults – Lo	cation R1	
Date	Time (hrs)	Descript	or (dBA re	20 µPa)	Meteorology	
Date	Time (Tits)	LAmax	LAeq	LA90	Meteorology	Description and SPL, dBA
						Birds 38-46
		83 55		41	WD: S WS: 2m/s Rain: Nil	Wind in grass 38-42
07/03/19	09:47		55			Local residential noise 36-42
07/03/19	1//03/19 09.47		55			Distant traffic <36
						Local traffic 38-83
						Quarry Inaudible
	Dunk	be Quarry L	Aeq(15min)	Contribution		<31

4.2 Assessment Results - Location R2

The monitored noise level contributions and observed meteorological conditions for R2 are presented in **Table 3.**

Table 3 Operator-Attended Noise Survey Results – Location R2									
Dete	Description and CDL dDA								
Date	Time (hrs)	LAmax	LAeq	LA90	Meteorology	Description and SPL, dBA			
					WD: S	Highway traffic 48-60			
	/19 10:09	82 64			WD: S WS: 2m/s	Local traffic 46-82			
07/03/19			64	53		Wind in trees <48			
				Rain: Nil	Quarry Inaudible				
	Dunk	be Quarry L	Aeq(15min)	Contribution		<43			

4.3 Assessment Results - Location R3

The monitored noise level contributions and observed meteorological conditions R3 are presented in Table 4.

Table 4 Operator-Attended Noise Survey Results – Location R3									
Date	Time (hrs)	Descript	Meteorology	Description and CDL dDA					
Dale	Time (fils)	LAmax	LAeq	LA90	Meteorology	Description and SPL, dBA			
					WD: S	Wind in trees 38-48			
07/00/40	10.01		10	46 42 WS: 2m/s Rain: Nil	-	Birds 42-46			
07/03/19	10:31	62	46			Distant traffic <38			
					Rain: Nii	Quarry Inaudible			
	Dunk	<32							

4.4 Assessment Results - Location R4

The monitored noise level contributions and observed meteorological conditions for R4 are presented in **Table 5**.

T:	Descript	or (dBA re	20 µPa)		
nme (nrs)	LAmax	LAeq	LA90	Meteorology	Description and SPL, dBA
					Aircraft 38-53
10:53	64			WD: S WS: 2m/s	Wind in grass 36-46
		46	40		Birds 48-62
				Rain: Nil	Quarry Inaudible
	Time (hrs)	Time (hrs) LAmax	Time (hrs) LAmax LAeq	LAmax LAeq LA90	Time (hrs)IIIMeteorologyLAmaxLAeqLA90WD: S10:53644640WS: 2m/s

5 Noise Compliance Assessment

The compliance assessment for each residential receiver R1, R2, R3 and R4 are presented in **Table 6** for day assessment periods.

Table 6 Daytime Noise Compliance Summary										
Receiver No.	Quarry Noise Contribution	Quarry Noise Criteria	Compliant							
Receiver no.	dB LAeq(15min)	dB LAeq(15min)	Compliant							
R1	<31	48	\checkmark							
R2	<43	48	\checkmark							
R3	<32	48	\checkmark							
R4	<30	48	\checkmark							

This page has been intentionally left blank

6 Discussion

6.1 Discussion of Results - Location R1

Quarry noise emissions were inaudible during noise monitoring conducted on Thursday 7 March 2019 at location R1, satisfying the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources included birds, wind in grass, local residential noise, distant traffic, local traffic and were generally constant throughout the measurement.

6.2 Discussion of Results - Location R2

Quarry noise emissions were inaudible during noise monitoring conducted on Thursday 7 March 2019 at location R2, satisfying the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources included the continuous noise of the wind in trees, highway traffic and intermittent sources such as passing local traffic.

6.3 Discussion of Results - Location R3

Quarry noise emissions were inaudible during noise monitoring conducted on Thursday 7 March 2019 at location R3, satisfying the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources included highway traffic, local traffic and wind in trees. All extraneous noises were generally constant during the 15 minute measurement at R3.

6.4 Discussion of Results - Location R4

Quarry noise emissions were inaudible during noise monitoring conducted on Thursday 7 March 2019 at location R4, satisfying the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources included aircraft passby, wind in grass and birds were audible throughout the measurement.

This page has been intentionally left blank

7 Conclusion

Muller Acoustic Consulting Pty Ltd (MAC) has completed a Noise Monitoring Assessment (NMA) on behalf of Holcim (Australia) Pty Ltd at Dunloe Quarry, Pottsville, NSW. The assessment was completed to determine the quarry's compliance with the relevant criteria outlined in their Project Approval for relevant surrounding residential receivers for the Quarter 1, ending March 2019.

Attended noise monitoring was undertaken on Thursday 7 March 2019 at representative monitoring locations, with quarry noise contributions compared against the relevant criteria. The assessment has identified that noise emissions generated by Dunloe Quarry comply with relevant noise criteria specified in the Project Approval at all assessed residential receivers.

This page has been intentionally left blank

Appendix A - Glossary of Terms

 Table A1 provides a number of technical terms have been used in this report.

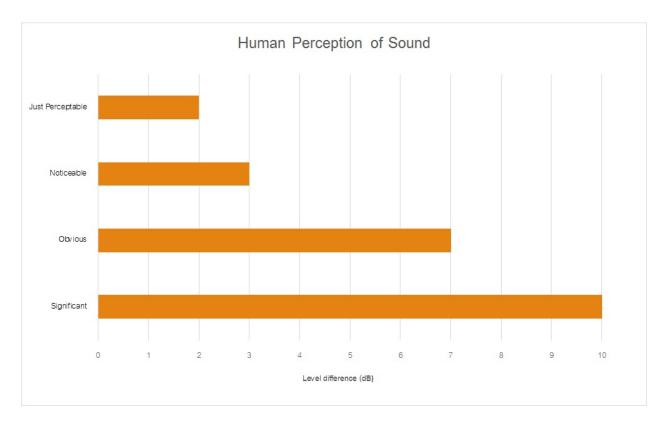

Term	Description					
1/3 Octave	Single octave bands divided into three parts					
Octave	A division of the frequency range into bands, the upper frequency limit of each band being twice					
	the lower frequency limit.					
ABL	Assessment Background Level (ABL) is defined in the NPI as a single figure background level for					
	each assessment period (day, evening and night). It is the tenth percentile of the measured LA90					
	statistical noise levels.					
Adverse Weather	Weather effects that enhance noise (that is, wind and temperature inversions) that occur at a site					
	for a significant period of time (that is, wind occurring more than 30% of the time in any					
	assessment period in any season and/or temperature inversions occurring more than 30% of the					
	nights in winter).					
Ambient Noise	The noise associated with a given environment. Typically a composite of sounds from many					
	sources located both near and far where no particular sound is dominant.					
A Weighting	A standard weighting of the audible frequencies designed to reflect the response of the human					
	ear to noise.					
dBA	Noise is measured in units called decibels (dB). There are several scales for describing noise, the					
	most common being the 'A-weighted' scale. This attempts to closely approximate the frequency					
	response of the human ear.					
dB(Z), dB(L)	Decibels Linear or decibels Z-weighted.					
Hertz (Hz)	The measure of frequency of sound wave oscillations per second - 1 oscillation per second					
	equals 1 hertz.					
LA10	A noise level which is exceeded 10 % of the time. It is approximately equivalent to the average of					
	maximum noise levels.					
LA90	Commonly referred to as the background noise, this is the level exceeded 90 % of the time.					
LAeq	The summation of noise over a selected period of time. It is the energy average noise from a					
	source, and is the equivalent continuous sound pressure level over a given period.					
LAmax	The maximum root mean squared (rms) sound pressure level received at the microphone during a					
	measuring interval.					
RBL	The Rating Background Level (RBL) is an overall single figure background level representing					
	each assessment period over the whole monitoring period. The RBL is used to determine the					
	intrusiveness criteria for noise assessment purposes and is the median of the ABL's.					
Sound power level (LW)	This is a measure of the total power radiated by a source. The sound power of a source is a					
	fundamental location of the source and is independent of the surrounding environment. Or a					
	measure of the energy emitted from a source as sound and is given by :					
	= 10.log10 (W/Wo)					
	Where : W is the sound power in watts and Wo is the sound reference power at 10-12 watts.					

Table A2 Common Noise Sources and Their Typical Sound Pressure Levels (SPL), dBA						
Source	Typical Sound Level					
Threshold of pain	140					
Jet engine	130					
Hydraulic hammer	120					
Chainsaw	110					
Industrial workshop	100					
Lawn-mower (operator position)	90					
Heavy traffic (footpath)	80					
Elevated speech	70					
Typical conversation	60					
Ambient suburban environment	40					
Ambient rural environment	30					
Bedroom (night with windows closed)	20					
Threshold of hearing	0					

 Table A2 provides a list of common noise sources and their typical sound level.

Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com

Noise Monitoring Assessment

Dunloe Quarry, Pottsville, NSW Quarter 2 Ending June 2019.

Prepared for: Holcim (Australia) Pty Ltd July 2019 MAC180611-07RP4

Document Information

Noise Monitoring Assessment

Dunloe Quarry, Pottsville, NSW

Quarter 2 Ending June 2019

Prepared for: Holcim (Australia) Pty Ltd

Prepared by: Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com

Document ID	Status	Date	Prepared By	Signed	Reviewed By	Signed
MAC180611-07RP4	Final	9 July 2019	Robin Heaton	Roben Heaton	Rod Linnett	RHLA

DISCLAIMER

All documents produced by Muller Acoustic Consulting Pty Ltd (MAC) are prepared for a particular client's requirements and are based on a specific scope, circumstances and limitations derived between MAC and the client. Information and/or report(s) prepared by MAC may not be suitable for uses other than the original intended objective. No parties other than the client should use or reproduce any information and/or report(s) without obtaining permission from MAC. Any information and/or documents prepared by MAC is not to be reproduced, presented or reviewed except in full.

CONTENTS

1	١N	ITRODUCTION	5
2	N	OISE CRITERIA	7
3	M	ETHODOLOGY	9
	3.1	LOCALITY	9
	3.2	NOISE MONITORING LOCATIONS	9
	3.3	ASSESSMENT METHODOLOGY	9
4	R	ESULTS	11
	4.1	ASSESSMENT RESULTS - LOCATION R1	11
	4.2	ASSESSMENT RESULTS - LOCATION R2	11
	4.3	ASSESSMENT RESULTS - LOCATION R3	12
	4.4	ASSESSMENT RESULTS - LOCATION R4	12
5	N	OISE COMPLIANCE ASSESSMENT	13
6	D	ISCUSSION	15
	6.1	DISCUSSION OF RESULTS - LOCATION R1	15
	6.2	DISCUSSION OF RESULTS - LOCATION R2	15
	6.3	DISCUSSION OF RESULTS - LOCATION R3	15
	6.4	DISCUSSION OF RESULTS - LOCATION R4	15
7	С	ONCLUSION	17

APPENDIX A - GLOSSARY OF TERMS

1 Introduction

Muller Acoustic Consulting Pty Ltd (MAC) has been commissioned by Holcim (Australia) Pty Ltd (Holcim) to complete a Noise Monitoring Assessment (NMA) for the quarterly period ending June 2019 for Dunloe Quarry (the 'quarry'), Pottsville, NSW.

The monitoring has been conducted in accordance with the Dunloe Project Approval and Noise Management Plan at four representative monitoring locations. This assessment represents the operations undertaken during Quarter 2, ending June 2019 and forms part of the annual noise monitoring program to address conditions of the project approval.

The assessment has been conducted in accordance with the following documents:

- NSW Environment Protection Authority (EPA), Noise Policy for Industry (NPI), 2017;
- Dunloe Noise Management Plan (NMP), 2016; and
- Australian Standard AS 1055:2018- Acoustics Description and measurement of environmental noise - General Procedures.

A glossary of terms, definitions and abbreviations used in this report is provided in Appendix A.

2 Noise Criteria

Schedule 3 Section 2 of the Project Approval outlines the applicable noise criteria for residential receivers surrounding the quarry site.

The noise criteria are applicable when the site undertakes quarrying operations within the permitted operating hours Monday to Friday 7am – 5pm, Saturday 7am – 12pm with no operations on Sunday.

 Table 1 presents the noise criteria for each of the receivers as outlined in the Project Approval.

Table 1 Noise Criteria					
Location	Day Criteria dB LAeq(15min) ²				
All privately-owned receivers ¹	48				

Note 1: Receiver locations are shown in Figure 1.

Note 2: Criteria applicable between Monday to Friday 7am – 5pm, Saturday 7am – 12pm with no operations on Sunday as the Table 2 of the Project Approval.

3 Methodology

3.1 Locality

The quarry is approximately 2.5km south west of Pottsville, NSW. Receivers surrounding the quarry are primarily rural/residential situated in coastal bushland with elevated and undulating topography. The monitoring locations with respect to the quarry and assessed receivers are presented in the locality plan shown in **Figure 1**.

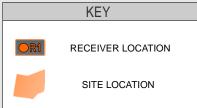
3.2 Noise Monitoring Locations

Four monitoring locations have been selected as part of the NMA and are listed below:

- R1 is located at the property on Kellehers Road situated north of the quarry;
- R2 is located west of the quarry on the boundary of 574 Pottsville Road;
- R3 is located to the south-west of the quarry at the address of 122 Warwick Park Road; and
- R4 is located at 265 Warwick Park Road, south of the quarry.

3.3 Assessment Methodology

Attended noise surveys were conducted in general accordance with the procedures described in Australian Standard AS 1055:2018, "Acoustics - Description and Measurement of Environmental Noise and Dunloe Quarry's Project Approval. Measurements were carried out using a Svantek Type 1, 971 noise analyser on Tuesday 18 June 2019. Acoustic instrumentation used carries current NATA calibration and complies with AS/NZS IEC 61672.1-2019-Electroacoustics - Sound level meters - Specifications. Calibration of all instrumentation was checked prior to and following measurements. Drift in calibration did not exceed ±0.5dBA.


One measurement was conducted at each monitoring location during the daytime period. Measurements were of 15 minutes in duration and where possible, throughout each survey the operator quantified the contribution of each significant noise source.

Extraneous noise sources were excluded from the analysis to determine the LAeq(15min) quarry noise contribution for comparison against the relevant criteria. Where the quarry was inaudible, the contribution is estimated to be at least 10dB below the ambient noise level.

4 Results

4.1 Assessment Results - Location R1

The monitored noise level contributions and observed meteorological conditions for R1 for are presented in **Table 2**.

Data	Time (bre)	Descriptor (dBA re 20 µPa)			Matagralami	Description and CDL dDA
Date Tin	Time (hrs)	LAmax	LAeq	LA90	Meteorology	Description and SPL, dBA
	13:00	13:00 89 61		61 35	WD: NW WS: 1.6m/s	Cars on Farm 40-89
10/00/0010			0.4			Residents Talking 45-55
18/06/2019			61			Cows 63-80
				Rain: Nil	Quarry Truck (5 Secs) 43	
	Dunk	e Quarry L	Aeq(15min)	Contribution	Rain: Nil	

4.2 Assessment Results - Location R2

The monitored noise level contributions and observed meteorological conditions for R2 are presented in **Table 3.**

Table 3 Operator-Attended Noise Survey Results – Location R2							
Dete	T:	Descript	or (dBA re	20 µPa)	N de tre en el el en u		
Date Time (hrs)	time (nrs)	LAmax	LAeq	LA90	Meteorology	Description and SPL, dBA	
	13:25	87 66	00	48	WD: NW	Traffic 50-87	
18/06/2019					WS: 1.3m/s Rain: Nil	Construction pumps in	
10/00/2019			00			adjacent field 45-48	
					IXAIII. INII	Quarry Inaudible	
	Dunk	be Quarry L	Aeq(15min)	Contribution		<38	

4.3 Assessment Results - Location R3

The monitored noise level contributions and observed meteorological conditions R3 are presented in Table 4.

Table 4 Operator-Attended Noise Survey Results – Location R3							
Date	T: (1)	Descriptor (dBA re 20 µPa)			Meteorology	Description and SPL, dBA	
Date Time (hr	Time (fills)	LAmax	LAeq	LA90	Meteorology	Description and SFE, dBA	
						Chainsaw 40-45	
					WD: NW	Distant Traffic 35-40	
18/06/2019	13:45	63	44	37	WS: 0.5m/s	Birds 50-63	
					Rain: Nil	Wind in Trees 30-35	
						Quarry Inaudible	
	Dunk	<27					

4.4 Assessment Results - Location R4

The monitored noise level contributions and observed meteorological conditions for R4 are presented in **Table 5**.

Table 5 Operator-Attended Noise Survey Results – Location R4							
Date Time (hr		Descriptor (dBA re 20 µPa)				Description and SPL, dBA	
	nine (nis)	LAmax	LAeq	LA90	Meteorology	Description and SPL, dBA	
	14:04	65 36		00	WD: NW	Distant Traffic 30-34	
10/00/0010					WS: 0.1m/s	Aircraft 36-44	
18/06/2019			30	28		Birds 40-65	
					Rain: Nil	Quarry Inaudible	
	Dunk	<18					

5 Noise Compliance Assessment

The compliance assessment for each residential receiver R1, R2, R3 and R4 are presented in **Table 6** for day assessment periods.

Table 6 Daytime Noise Compliance Summary								
Receiver No.	Quarry Noise Contribution	Quarry Noise Criteria	Compliant					
Receiver no.	dB LAeq(15min)	dB LAeq(15min)	Compliant					
R1	<25	48	\checkmark					
R2	<38	48	\checkmark					
R3	<27	48	\checkmark					
R4	<18	48	\checkmark					

6 Discussion

6.1 Discussion of Results - Location R1

Quarry noise emissions were briefly audible during noise monitoring conducted on Tuesday 18 June 2019 at location R1 however satisfied the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources included birds, wind in grass, local residential noise, distant traffic, farm vehicles and were generally constant throughout the measurement.

6.2 Discussion of Results - Location R2

Quarry noise emissions were inaudible during noise monitoring conducted on Tuesday 18 June 2019 at location R2, satisfying the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources included the continuous noise of the wind in trees, traffic noise and pumps operating in the adjacent field.

6.3 Discussion of Results - Location R3

Quarry noise emissions were inaudible during noise monitoring conducted on Tuesday 18 June 2019 at location R3, satisfying the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources included distant traffic, birds and wind in trees. All extraneous noises were generally constant during the 15 minute measurement at R3.

6.4 Discussion of Results - Location R4

Quarry noise emissions were inaudible during noise monitoring conducted on Tuesday 18 June 2019 at location R4, satisfying the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources included aircraft passby, distant traffic and birds were audible throughout the measurement.

7 Conclusion

Muller Acoustic Consulting Pty Ltd (MAC) has completed a Noise Monitoring Assessment (NMA) on behalf of Holcim (Australia) Pty Ltd at Dunloe Quarry, Pottsville, NSW. The assessment was completed to determine the quarry's compliance with the relevant criteria outlined in their Project Approval for relevant surrounding residential receivers for the Quarter 2, ending June 2019.

Attended noise monitoring was undertaken on Tuesday 18 June 2019 at representative monitoring locations, with quarry noise contributions compared against the relevant criteria. The assessment has identified that noise emissions generated by Dunloe Quarry complies with the relevant noise criteria specified in the Project Approval at all assessed residential receivers.

Appendix A - Glossary of Terms

 Table A1 provides a number of technical terms have been used in this report.


Term	Description						
1/3 Octave	Single octave bands divided into three parts						
Octave	A division of the frequency range into bands, the upper frequency limit of each band being twice						
	the lower frequency limit.						
ABL	Assessment Background Level (ABL) is defined in the NPI as a single figure background level for						
	each assessment period (day, evening and night). It is the tenth percentile of the measured LA90						
	statistical noise levels.						
Adverse Weather	Weather effects that enhance noise (that is, wind and temperature inversions) that occur at a site						
	for a significant period of time (that is, wind occurring more than 30% of the time in any						
	assessment period in any season and/or temperature inversions occurring more than 30% of the						
	nights in winter).						
Ambient Noise	The noise associated with a given environment. Typically a composite of sounds from many						
	sources located both near and far where no particular sound is dominant.						
A Weighting	A standard weighting of the audible frequencies designed to reflect the response of the human						
	ear to noise.						
dBA	Noise is measured in units called decibels (dB). There are several scales for describing noise, the						
	most common being the 'A-weighted' scale. This attempts to closely approximate the frequency						
	response of the human ear.						
dB(Z), dB(L)	Decibels Linear or decibels Z-weighted.						
Hertz (Hz)	The measure of frequency of sound wave oscillations per second - 1 oscillation per second						
	equals 1 hertz.						
LA10	A noise level which is exceeded 10 % of the time. It is approximately equivalent to the average of						
	maximum noise levels.						
LA90	Commonly referred to as the background noise, this is the level exceeded 90 % of the time.						
LAeq	The summation of noise over a selected period of time. It is the energy average noise from a						
	source, and is the equivalent continuous sound pressure level over a given period.						
LAmax	The maximum root mean squared (rms) sound pressure level received at the microphone during a						
	measuring interval.						
RBL	The Rating Background Level (RBL) is an overall single figure background level representing						
	each assessment period over the whole monitoring period. The RBL is used to determine the						
	intrusiveness criteria for noise assessment purposes and is the median of the ABL's.						
Sound power level (LW)	This is a measure of the total power radiated by a source. The sound power of a source is a						
	fundamental location of the source and is independent of the surrounding environment. Or a						
	measure of the energy emitted from a source as sound and is given by :						
	= 10.log10 (W/Wo)						

Table A2 Common Noise Sources and Their Typical Sound Pressure Levels (SPL), dBA						
Source	Typical Sound Level					
Threshold of pain	140					
Jet engine	130					
Hydraulic hammer	120					
Chainsaw	110					
Industrial workshop	100					
Lawn-mower (operator position)	90					
Heavy traffic (footpath)	80					
Elevated speech	70					
Typical conversation	60					
Ambient suburban environment	40					
Ambient rural environment	30					
Bedroom (night with windows closed)	20					
Threshold of hearing	0					

 Table A2 provides a list of common noise sources and their typical sound level.

Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com

Noise Monitoring Assessment

Dunloe Quarry, Pottsville, NSW Quarter 3 Ending September 2019.

Prepared for: Holcim (Australia) Pty Ltd August 2019 MAC180611-07RP5

Document Information

Noise Monitoring Assessment

Dunloe Quarry, Pottsville, NSW

Quarter 3 Ending September 2019

Prepared for: Holcim (Australia) Pty Ltd

Prepared by: Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com

Document ID	Status	Date	Prepared By	Signed	Reviewed By	Signed
MAC180611-07RP5	Final	27 August 2019	Rod Linnett	RH Lat	Oliver Muller	æ

DISCLAIMER

All documents produced by Muller Acoustic Consulting Pty Ltd (MAC) are prepared for a particular client's requirements and are based on a specific scope, circumstances and limitations derived between MAC and the client. Information and/or report(s) prepared by MAC may not be suitable for uses other than the original intended objective. No parties other than the client should use or reproduce any information and/or report(s) without obtaining permission from MAC. Any information and/or documents prepared by MAC is not to be reproduced, presented or reviewed except in full.

CONTENTS

1	11	ITRODUCTION	5
2	N	OISE CRITERIA	7
3	N	IETHODOLOGY	9
	3.1	LOCALITY	9
	3.2	NOISE MONITORING LOCATIONS	9
	3.3	ASSESSMENT METHODOLOGY	9
4	R	ESULTS	11
	4.1	ASSESSMENT RESULTS - LOCATION R1	11
	4.2	ASSESSMENT RESULTS - LOCATION R2	11
	4.3	ASSESSMENT RESULTS - LOCATION R3	12
	4.4	ASSESSMENT RESULTS - LOCATION R4	12
5	N	OISE COMPLIANCE ASSESSMENT	13
6	D	ISCUSSION	15
	6.1	DISCUSSION OF RESULTS - LOCATION R1	15
	6.2	DISCUSSION OF RESULTS - LOCATION R2	15
	6.3	DISCUSSION OF RESULTS - LOCATION R3	15
	6.4	DISCUSSION OF RESULTS - LOCATION R4	15
7	С	ONCLUSION	17

APPENDIX A - GLOSSARY OF TERMS

1 Introduction

Muller Acoustic Consulting Pty Ltd (MAC) has been commissioned by Holcim (Australia) Pty Ltd (Holcim) to complete a Noise Monitoring Assessment (NMA) for the quarterly period ending September 2019 for Dunloe Quarry (the 'quarry'), Pottsville, NSW.

The monitoring has been conducted in accordance with the Dunloe Project Approval (2008) and Noise Management Plan at four representative monitoring locations. This assessment represents the operations undertaken during Quarter 3, ending September 2019 and forms part of the annual noise monitoring program to address conditions of the project approval.

The assessment has been conducted in accordance with the following documents:

- NSW Environment Protection Authority (EPA), Noise Policy for Industry (NPI), 2017;
- Dunloe Noise Management Plan (NMP), 2016; and
- Australian Standard AS 1055:2018- Acoustics Description and measurement of environmental noise - General Procedures.

A glossary of terms, definitions and abbreviations used in this report is provided in Appendix A.

2 Noise Criteria

Schedule 3 Section 2 of the Project Approval outlines the applicable noise criteria for residential receivers surrounding the quarry site.

The noise criteria are applicable when the site undertakes quarrying operations within the permitted operating hours Monday to Friday 7am – 5pm, Saturday 7am – 12pm with no operations on Sunday.

 Table 1 presents the noise criteria for each of the receivers as outlined in the Project Approval.

Table 1 Noise Criteria					
Location	Day Criteria dB LAeq(15min) ²				
All privately-owned receivers ¹	48				

Note 1: Receiver locations are shown in Figure 1.

Note 2: Criteria applicable between Monday to Friday 7am – 5pm, Saturday 7am – 12pm with no operations on Sunday as the Table 2 of the Project Approval.

3 Methodology

3.1 Locality

The quarry is approximately 2.5km south west of Pottsville, NSW. Receivers surrounding the quarry are primarily rural/residential situated in coastal bushland with elevated and undulating topography. The monitoring locations with respect to the quarry and assessed receivers are presented in the locality plan shown in **Figure 1**.

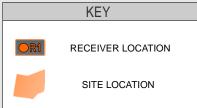
3.2 Noise Monitoring Locations

Four monitoring locations have been selected as part of the NMA and are listed below:

- R1 is located at the property on Kellehers Road situated north of the quarry;
- R2 is located west of the quarry on the boundary of 574 Pottsville Road;
- R3 is located to the south-west of the quarry at the address of 122 Warwick Park Road; and
- R4 is located at 265 Warwick Park Road, south of the quarry.

3.3 Assessment Methodology

Attended noise surveys were conducted in general accordance with the procedures described in Australian Standard AS 1055:2018, "Acoustics - Description and Measurement of Environmental Noise and Dunloe Quarry's Project Approval. Measurements were carried out using a Svantek Type 1, 971 noise analyser on Tuesday 20 August 2019. Acoustic instrumentation used carries current NATA calibration and complies with AS/NZS IEC 61672.1-2019-Electroacoustics - Sound level meters - Specifications. Calibration of all instrumentation was checked prior to and following measurements. Drift in calibration did not exceed ±0.5dBA.


One measurement was conducted at each monitoring location during the daytime period. Measurements were of 15 minutes in duration and where possible, throughout each survey the operator quantified the contribution of each significant noise source.

Extraneous noise sources were excluded from the analysis to determine the LAeq(15min) quarry noise contribution for comparison against the relevant criteria. Where the quarry was inaudible, the contribution is estimated to be at least 10dB below the ambient noise level.

4 Results

4.1 Assessment Results - Location R1

The monitored noise level contributions and observed meteorological conditions for R1 are presented in **Table 2**.

Table 2 Operator-Attended Noise Survey Results – Location R1							
Date	Time (hrs)	Descriptor (dBA re 20 µPa)			Masta ang la ang	Description and CDL dDA	
		LAmax	LAeq	LA90	Meteorology	Description and SPL, dBA	
	13:55	71 46	46	34	WD: SE WS: 1.5m/s	Resident's Car 50-65	
00/00/0040						Aircraft 38-43	
20/08/2019						Birds 38-45	
				Rain: Nil	Quarry briefly audible		
	Dunic	<25					

4.2 Assessment Results - Location R2

The monitored noise level contributions and observed meteorological conditions for R2 are presented in **Table 3.**

Table 3 Operator-Attended Noise Survey Results – Location R2							
Date	Time (hrs)	Descriptor (dBA re 20 µPa)			Motoprology	Description and CDL dDA	
		LAmax	LAeq	LA90	Meteorology	Description and SPL, dBA	
					WD: SE	Traffic 50-87	
20/08/2019	13:28	76	57	47	WS: 1.5-2m/s	Tractor in field 36-41	
					Rain: Nil	Quarry Inaudible	
Dunloe Quarry LAeq(15min) Contribution						<37	

4.3 Assessment Results - Location R3

The monitored noise level contributions and observed meteorological conditions for R3 are presented in **Table 4.**

Table 4 Operator-Attended Noise Survey Results – Location R3						
Date Time (hrs)	Time (bre)	Descriptor (dBA re 20 µPa)			Motoorology	Description and SPL, dBA
	Time (fills)	LAmax	LAeq	LA90	Meteorology	Description and SFE, dBA
						Local Traffic 55-67
					WD: SE	Dog Bark 44-48
20/08/2019	14:21	69	47	41	WS: 1.5-2m/s	Wind in Trees 35-40
					Rain: Nil	Quarry truck just audible
						~38-40 (5 secs)
	Dunk	<35				

4.4 Assessment Results - Location R4

The monitored noise level contributions and observed meteorological conditions for R4 are presented in **Table 5**.

Table 5 Operator-Attended Noise Survey Results – Location R4						
Date Time (hrs)	Time (bre)	Descriptor (dBA re 20 µPa)			Mataaralagu	
	nine (nis)	LAmax	LAeq	LA90	Meteorology	Description and SPL, dBA
					WD: SE	Aircraft 46-49
20/08/2019	14:42	69	47	38	WS: 1.5-2m/s	Birds 40-52
					Rain: Nil	Quarry Inaudible
	Dunic	<30				

5 Noise Compliance Assessment

The compliance assessment for each residential receiver R1, R2, R3 and R4 are presented in **Table 6** for the day assessment period.

Table 6 Daytime Noise	Table 6 Daytime Noise Compliance Summary						
Receiver No.	Quarry Noise Contribution	Quarry Noise Criteria	Compliant				
Receiver no.	dB LAeq(15min)	dB LAeq(15min)	Compliant				
R1	<25	48	\checkmark				
R2	<37	48	\checkmark				
R3	<35	48	\checkmark				
R4	<30	48	\checkmark				

6 Discussion

6.1 Discussion of Results - Location R1

Quarry noise emissions were briefly audible during noise monitoring conducted on Tuesday 20 August 2019 at location R1 however satisfied the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources included birds, local residential noise and aircraft.

6.2 Discussion of Results - Location R2

Quarry noise emissions were inaudible during noise monitoring conducted on Tuesday 20 August 2019 at location R2, satisfying the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources included the continuous operation of farm vehicles in adjacent paddock and local traffic noise.

6.3 Discussion of Results - Location R3

Quarry noise emissions were just audible for a very short period (<5 seconds) during noise monitoring conducted on Tuesday 20 August 2019 at location R3, with the contribution estimated to be <35dB LAeq(15min), satisfying the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources included local traffic, dogs barking and wind in trees. All extraneous noises were generally constant during the 15 minute measurement at R3.

6.4 Discussion of Results - Location R4

Quarry noise emissions were inaudible during noise monitoring conducted on Tuesday 20 August 2019 at location R4, satisfying the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources included aircraft and birds throughout the measurement.

7 Conclusion

Muller Acoustic Consulting Pty Ltd (MAC) has completed a Noise Monitoring Assessment (NMA) on behalf of Holcim (Australia) Pty Ltd at Dunloe Quarry, Pottsville, NSW. The assessment was completed to determine the quarry's compliance with the relevant criteria outlined in their Project Approval for relevant surrounding residential receivers for the Quarter 3, ending September 2019.

Attended noise monitoring was undertaken on Tuesday 20 August 2019 at representative monitoring locations, with quarry noise contributions compared against the relevant criteria. The assessment has identified that noise emissions generated by Dunloe Quarry complies with the relevant noise criteria specified in the Project Approval at all assessed residential receivers.

Appendix A - Glossary of Terms

 Table A1 provides a number of technical terms have been used in this report.

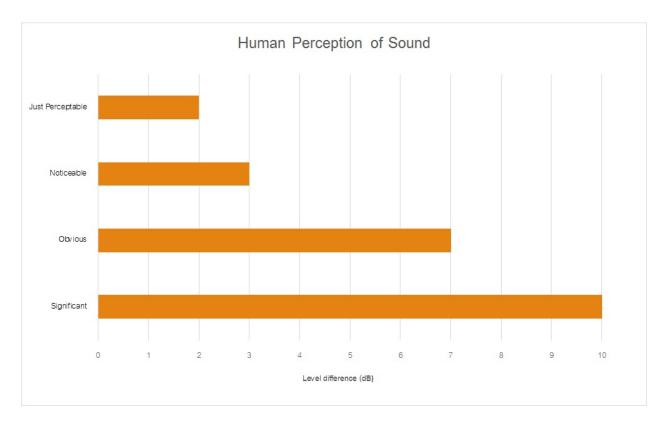

Term	Description						
1/3 Octave	Single octave bands divided into three parts						
Octave	A division of the frequency range into bands, the upper frequency limit of each band being twice						
	the lower frequency limit.						
ABL	Assessment Background Level (ABL) is defined in the NPI as a single figure background level for						
	each assessment period (day, evening and night). It is the tenth percentile of the measured LA90						
	statistical noise levels.						
Adverse Weather	Weather effects that enhance noise (that is, wind and temperature inversions) that occur at a site						
	for a significant period of time (that is, wind occurring more than 30% of the time in any						
	assessment period in any season and/or temperature inversions occurring more than 30% of the						
	nights in winter).						
Ambient Noise	The noise associated with a given environment. Typically a composite of sounds from many						
	sources located both near and far where no particular sound is dominant.						
A Weighting	A standard weighting of the audible frequencies designed to reflect the response of the human						
	ear to noise.						
dBA	Noise is measured in units called decibels (dB). There are several scales for describing noise, the						
	most common being the 'A-weighted' scale. This attempts to closely approximate the frequency						
	response of the human ear.						
dB(Z), dB(L)	Decibels Linear or decibels Z-weighted.						
Hertz (Hz)	The measure of frequency of sound wave oscillations per second - 1 oscillation per second						
	equals 1 hertz.						
LA10	A noise level which is exceeded 10 % of the time. It is approximately equivalent to the average of						
	maximum noise levels.						
LA90	Commonly referred to as the background noise, this is the level exceeded 90 % of the time.						
LAeq	The summation of noise over a selected period of time. It is the energy average noise from a						
	source, and is the equivalent continuous sound pressure level over a given period.						
LAmax	The maximum root mean squared (rms) sound pressure level received at the microphone during a						
	measuring interval.						
RBL	The Rating Background Level (RBL) is an overall single figure background level representing						
	each assessment period over the whole monitoring period. The RBL is used to determine the						
	intrusiveness criteria for noise assessment purposes and is the median of the ABL's.						
Sound power level (LW)	This is a measure of the total power radiated by a source. The sound power of a source is a						
	fundamental location of the source and is independent of the surrounding environment. Or a						
	measure of the energy emitted from a source as sound and is given by :						
	= 10.log10 (W/Wo)						

Table A2 Common Noise Sources and Their Typical Sound Pressure Levels (SPL), dBA						
Source	Typical Sound Level					
Threshold of pain	140					
Jet engine	130					
Hydraulic hammer	120					
Chainsaw	110					
Industrial workshop	100					
Lawn-mower (operator position)	90					
Heavy traffic (footpath)	80					
Elevated speech	70					
Typical conversation	60					
Ambient suburban environment	40					
Ambient rural environment	30					
Bedroom (night with windows closed)	20					
Threshold of hearing	0					

 Table A2 provides a list of common noise sources and their typical sound level.

Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com

Noise Monitoring Assessment

Dunloe Quarry, Pottsville, NSW Quarter 4 Ending December 2019.

Prepared for: Holcim (Australia) Pty Ltd December 2019 MAC180611-07RP6

Document Information

Noise Monitoring Assessment

Dunloe Quarry, Pottsville, NSW

Quarter 4 Ending December 2019

Prepared for: Holcim (Australia) Pty Ltd

Prepared by: Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com

Document ID	Status	Date	Prepared By	Signed	Reviewed By	Signed
MAC180611-07RP6	Final	11 December 2019	Nicholas Shipman	N.Shp	Oliver Muller	al

DISCLAIMER

All documents produced by Muller Acoustic Consulting Pty Ltd (MAC) are prepared for a particular client's requirements and are based on a specific scope, circumstances and limitations derived between MAC and the client. Information and/or report(s) prepared by MAC may not be suitable for uses other than the original intended objective. No parties other than the client should use or reproduce any information and/or report(s) without obtaining permission from MAC. Any information and/or documents prepared by MAC is not to be reproduced, presented or reviewed except in full.

CONTENTS

1	11	NTRODUCTION	5
2	N	OISE CRITERIA	7
3	N	IETHODOLOGY	9
	3.1	LOCALITY	9
	3.2	NOISE MONITORING LOCATIONS	9
	3.3	ASSESSMENT METHODOLOGY	9
4	R	ESULTS	11
	4.1	ASSESSMENT RESULTS - LOCATION R1	11
	4.2	ASSESSMENT RESULTS - LOCATION R2	11
	4.3	ASSESSMENT RESULTS - LOCATION R3	12
	4.4	ASSESSMENT RESULTS - LOCATION R4	. 12
5	D	ISCUSSION	13
	5.1	DISCUSSION OF RESULTS - LOCATION R1	13
	5.2	DISCUSSION OF RESULTS - LOCATION R2	13
	5.3	DISCUSSION OF RESULTS - LOCATION R3	13
	5.4	DISCUSSION OF RESULTS - LOCATION R4	13
6	С	ONCLUSION	. 15

APPENDIX A - GLOSSARY OF TERMS

1 Introduction

Muller Acoustic Consulting Pty Ltd (MAC) has been commissioned by Holcim (Australia) Pty Ltd (Holcim) to complete a Noise Monitoring Assessment (NMA) for the quarterly period ending December 2019 for Dunloe Quarry (the 'quarry'), Pottsville, NSW.

The monitoring has been conducted in accordance with the Dunloe Project Approval (2008) and Noise Management Plan at four representative monitoring locations. This assessment represents the operations undertaken during Quarter 4, ending December 2019 and forms part of the annual noise monitoring program to address conditions of the project approval.

The assessment has been conducted in accordance with the following documents:

- NSW Environment Protection Authority (EPA), Noise Policy for Industry (NPI), 2017;
- Dunloe Noise Management Plan (NMP), 2016; and
- Australian Standard AS 1055:2018- Acoustics Description and measurement of environmental noise - General Procedures.

A glossary of terms, definitions and abbreviations used in this report is provided in Appendix A.

2 Noise Criteria

Schedule 3 Section 2 of the Project Approval outlines the applicable noise criteria for residential receivers surrounding the quarry site.

The noise criteria are applicable when the site undertakes quarrying operations within the permitted operating hours Monday to Friday 7am – 5pm, Saturday 7am – 12pm with no operations on Sunday.

 Table 1 presents the noise criteria for each of the receivers as outlined in the Project Approval.

Table 1 Noise Criteria						
Location	Day Criteria dB LAeq(15min) ²					
All privately-owned receivers ¹	48					

Note 1: Receiver locations are shown in Figure 1.

Note 2: Criteria applicable between Monday to Friday 7am – 5pm, Saturday 7am – 12pm with no operations on Sunday as the Table 2 of the Project Approval.

3 Methodology

3.1 Locality

The quarry is approximately 2.5km south west of Pottsville, NSW. Receivers surrounding the quarry are primarily rural/residential situated in coastal bushland with elevated and undulating topography. The monitoring locations with respect to the quarry and assessed receivers are presented in the locality plan shown in **Figure 1**.

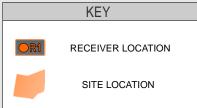
3.2 Noise Monitoring Locations

Four monitoring locations have been selected as part of the NMA and are listed below:

- R1 is located at the property on Kellehers Road situated north of the quarry;
- R2 is located west of the quarry on the boundary of 574 Pottsville Road;
- R3 is located to the south-west of the quarry at the address of 122 Warwick Park Road; and
- R4 is located at 265 Warwick Park Road, south of the quarry.

3.3 Assessment Methodology

Attended noise surveys were conducted in general accordance with the procedures described in Australian Standard AS 1055:2018, "Acoustics - Description and Measurement of Environmental Noise and Dunloe Quarry's Project Approval. Measurements were carried out using a Svantek Type 1, 971 noise analyser on Thursday 28 November 2019. Acoustic instrumentation used carries current NATA calibration and complies with AS/NZS IEC 61672.1-2019-Electroacoustics - Sound level meters - Specifications. Calibration of all instrumentation was checked prior to and following measurements. Drift in calibration did not exceed ±0.5dBA.


One measurement was conducted at each monitoring location during the daytime period. Measurements were of 15 minutes in duration and where possible, throughout each survey the operator quantified the contribution of each significant noise source.

Extraneous noise sources were excluded from the analysis to determine the LAeq(15min) quarry noise contribution for comparison against the relevant criteria. Where the quarry was inaudible, the contribution is estimated to be at least 10dB below the ambient noise level.

4 Results

4.1 Assessment Results - Location R1

The monitored noise level contributions and observed meteorological conditions for R1 are presented in **Table 2**.

Table 2 Ope	erator-Attend	ed Noise	Survey R	esults – Lo	cation R1	
Data	Time (bre)	Descriptor (dBA re 20 µPa)			Mataoralagy	Description and SDL dDA
Date Time (hrs)	LAmax	LAeq	LA90	Meteorology	Description and SPL, dBA	
					WD: F	Birds 34-39
28/11/2019	11:44	82 57	F7		WS: 2m/s	Insects <34
20/11/2019	11.44		57	33		Traffic 33-82
					Rain: Nil	Quarry inaudible
	Dunk	be Quarry L	Aeq(15min)	Contribution		<30

4.2 Assessment Results - Location R2

The monitored noise level contributions and observed meteorological conditions for R2 are presented in **Table 3.**

Table 3 Operator-Attended Noise Survey Results – Location R2							
Date Time (hrs)	Time = (lama)	Descriptor (dBA re 20 µPa)					
	LAmax	LAeq	LA90	Meteorology	Description and SPL, dBA		
					WD: F	Traffic 46-76	
00/44/0040	10.00	85 64		46	WD: E WS: 0.5m/s Rain: Nil	Birds <46	
28/11/2019 12:08	12:08		64			Local residential noise 46-60	
						Quarry inaudible	
	Dunk	<30					

4.3 Assessment Results - Location R3

The monitored noise level contributions and observed meteorological conditions for R3 are presented in **Table 4.**

Table 4 Operator-Attended Noise Survey Results – Location R3						
Date	Time (hrs)	Descriptor (dBA re 20 µPa)			Mataaralaay	Description and SPL, dBA
Date	Time (113)	LAmax	LAeq	LA90	Meteorology	
						Aircraft 38-44
						Birds 36-62
28/11/2019	12:32	62	40	37	WD: E WS: 1m/s Rain: Nil	Wind 36-44
20/11/2019	12.32	62 43	43	51		Traffic <38
						Insects <38
						Quarry inaudible
	Dunio	be Quarry L	Aeq(15min)	Contribution		<30

4.4 Assessment Results - Location R4

The monitored noise level contributions and observed meteorological conditions for R4 are presented in **Table 5**.

Table 5 Operator-Attended Noise Survey Results – Location R4							
Date Time (hrs)	Time (hrs)	Descript	or (dBA re	20 µPa)	Mataarala <i>a</i> u	Description and CDL dDA	
	LAmax	LAeq	LA90	Meteorology	Description and SPL, dBA		
						Traffic <36	
) 57		40	WD: E WS: 2m/s	Wind 34-44	
28/11/2019	13:00		44			Birds 36-57	
			Rain: Nil	Quarry inaudible			
	Dunic	<30					

5 Discussion

5.1 Discussion of Results - Location R1

Quarry noise emissions were inaudible during noise monitoring conducted on Thursday 28 November 2019 at location R1. Quarry noise contributions were estimated to satisfy the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources include birds, insects and traffic during the monitoring period.

5.2 Discussion of Results - Location R2

Quarry noise emissions were inaudible during noise monitoring conducted on Thursday 28 November 2019 at location R2. Quarry noise contributions were estimated to satisfy the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources include traffic, birds and local residential noise during the monitoring period.

5.3 Discussion of Results - Location R3

Quarry noise emissions were inaudible during noise monitoring conducted on Thursday 28 November 2019 at location R3. Quarry noise contributions were estimated to satisfy the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources include aircraft, birds, wind in trees, traffic and insects during the monitoring period.

5.4 Discussion of Results - Location R4

Quarry noise emissions were inaudible during noise monitoring conducted on Thursday 28 November 2019 at location R4. Quarry noise contributions were estimated to satisfy the relevant daytime noise limit of 48dB LAeq(15min). Extraneous noise sources include traffic, wind in trees and birds during the monitoring period.

6 Conclusion

Muller Acoustic Consulting Pty Ltd (MAC) has completed a Noise Monitoring Assessment (NMA) on behalf of Holcim (Australia) Pty Ltd at Dunloe Quarry, Pottsville, NSW. The assessment was completed to determine the quarry's compliance with the relevant criteria outlined in their Project Approval for relevant surrounding residential receivers for the Quarter 4, ending December 2019.

Attended noise monitoring was undertaken on Thursday 28 November 2019 at representative monitoring locations, with quarry noise contributions compared against the relevant criteria. The assessment has identified that noise emissions generated by Dunloe Quarry complies with the relevant noise criteria specified in the Project Approval at all assessed residential receivers.

Appendix A - Glossary of Terms

 Table A1 provides a number of technical terms have been used in this report.

Term	Description
1/3 Octave	Single octave bands divided into three parts
Octave	A division of the frequency range into bands, the upper frequency limit of each band being twice
	the lower frequency limit.
ABL	Assessment Background Level (ABL) is defined in the NPI as a single figure background level for
	each assessment period (day, evening and night). It is the tenth percentile of the measured LA90
	statistical noise levels.
Adverse Weather	Weather effects that enhance noise (that is, wind and temperature inversions) that occur at a site
	for a significant period of time (that is, wind occurring more than 30% of the time in any
	assessment period in any season and/or temperature inversions occurring more than 30% of the
	nights in winter).
Ambient Noise	The noise associated with a given environment. Typically a composite of sounds from many
	sources located both near and far where no particular sound is dominant.
A Weighting	A standard weighting of the audible frequencies designed to reflect the response of the human
	ear to noise.
dBA	Noise is measured in units called decibels (dB). There are several scales for describing noise, the
	most common being the 'A-weighted' scale. This attempts to closely approximate the frequency
	response of the human ear.
dB(Z), dB(L)	Decibels Linear or decibels Z-weighted.
Hertz (Hz)	The measure of frequency of sound wave oscillations per second - 1 oscillation per second
	equals 1 hertz.
LA10	A noise level which is exceeded 10 % of the time. It is approximately equivalent to the average of
	maximum noise levels.
LA90	Commonly referred to as the background noise, this is the level exceeded 90 % of the time.
LAeq	The summation of noise over a selected period of time. It is the energy average noise from a
	source, and is the equivalent continuous sound pressure level over a given period.
LAmax	The maximum root mean squared (rms) sound pressure level received at the microphone during a
	measuring interval.
RBL	The Rating Background Level (RBL) is an overall single figure background level representing
	each assessment period over the whole monitoring period. The RBL is used to determine the
	intrusiveness criteria for noise assessment purposes and is the median of the ABL's.
Sound power level (LW)	This is a measure of the total power radiated by a source. The sound power of a source is a
	fundamental location of the source and is independent of the surrounding environment. Or a
	measure of the energy emitted from a source as sound and is given by :
	= 10.log10 (W/Wo)

Table A2 Common Noise Sources and Their Typical Sound Pressure Levels (SPL), dBA												
Source	Typical Sound Level											
Threshold of pain	140											
Jet engine	130											
Hydraulic hammer	120											
Chainsaw	110											
Industrial workshop	100											
Lawn-mower (operator position)	90											
Heavy traffic (footpath)	80											
Elevated speech	70											
Typical conversation	60											
Ambient suburban environment	40											
Ambient rural environment	30											
Bedroom (night with windows closed)	20											
Threshold of hearing	0											

 Table A2 provides a list of common noise sources and their typical sound level.

Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com

APPENDIX 2

DUNLOE SAND QUARRY LONGTERM ENVIRONMENTAL MONITORING

Data located	Date	Location	D1	D2	D3	D4
Appendix of 2015 AEMP	17.07.2015	Duplos Sanda	g/m2/month 0.3	g/m2/month 0.2	g/m2/month 0.7	g/m2/month 0.4
Appendix of 2015 AEMR	17-07-2015	Dunloe Sands		0.2	0.7	0.4
Appendix of 2015 AEMR	19-08-2015 17-09-2015	Dunloe Sands	0.3	1.6	0.2	0.2
Appendix of 2015 AEMR	21-10-2015	Dunloe Sands Dunloe Sands	0.5	0.6	0.4	0.5
Appendix of 2015 AEMR	21-10-2015		0.1	1.7	0.2	0.1
Appendix of 2015 AEMR	16-12-2015	Dunloe Sands Dunloe Sands	0.3	0.8	0.6	0.5
Appendix of 2015 AEMR 2016 AEMR	Jan-16	Dunice Sands	0.7	0.8	0.4	0.6
2016 AEMR 2016 AEMR	Feb-16	Dunice Sands	0.3	0.4	0.5	0.6
2016 AEMR 2016 AEMR	Mar-16	Dunloe Sands	0.4	4.7	0.3	0.5
2016 AEMR 2016 AEMR			0.2	<u>4.7</u> 1.6	0.3	0.5
2016 AEMR 2016 AEMR	Apr-16	Dunloe Sands	_	_		
	May-16	Dunloe Sands	0.3	1.2	0.3	1.6
2016 AEMR	Jun-16	Dunloe Sands	0.3	1.1	1.6	0.5
2016 AEMR	Jul-16	Dunloe Sands	0.13	0.52	0.41	0.39
2016 AEMR	Aug-16	Dunloe Sands	0.6	0.5	0.3	0.4
2016 AEMR	Sep-16	Dunloe Sands	0.8	0.5	0.4	
2016 AEMR 2016 AEMR	Oct-16 Nov-16	Dunloe Sands Dunloe Sands	0.8	0.5 1.9	0.4	0.3
				1.9	0.3	0.4
2016 AEMR	Dec-16	Dunloe Sands	0.5			
2017 Q1 Env Mon report	30-01-2017	Dunloe Sands	0.3	0.2	0.5	0.3
2017 Q1 Env Mon report	27-02-2017	Dunloe Sands	0.3	0.2	0.2	0.3
2017 Enviro Monitoring	22-03-2017	Dunloe Sands	0.2	0.1	2.4	0.3
2017 Enviro Monitoring	19-04-2017	Dunloe Sands	0.2	0.9	1	0.3
2017 Enviro Monitoring	17-05-2017	Dunloe Sands	0.8	0.8	1.4 0.2	0.7
2017 Enviro Monitoring	14-06-2017	Dunloe Sands Dunloe Sands	0.2	0.2	0.2	0.2
2017 Enviro Monitoring 2017 Enviro Monitoring	12-07-2017 09-08-2017		0.3	0.1	0.2	0.3
0	09-08-2017	Dunloe Sands Dunloe Sands	0.1	0.1	0.2	0.5
2017 Enviro Monitoring 2017 Enviro Monitoring	00-09-2017 04-10-2017	Dunice Sands	0.5	0.2	2.4	0.9
2017 Enviro Monitoring	04-10-2017	Dunice Sands	0.7	0.8	0.8	0.9
2017 Enviro Monitoring	29-11-2017	Dunice Sands	0.5	0.3	0.8	0.3
2017 Enviro Monitoring	29-11-2017 28-12-2017	Dunice Sands	0.1	0.2	0.3	0.1
2017 Enviro Monitoring	24-01-2018	Dunloe Sands	0.4	0.3	0.2	0.2
2018 Enviro Monitoring	24-01-2018	Dunice Sands	2.7	0.7	1.6	0.1
2018 Enviro Monitoring	21-02-2018	Dunice Sands	0.4	4.9c	11.8c	7.1c
2018 Enviro Monitoring	18-04-2018	Dunice Sands	0.4	0.1	0.3	0.2
2018 Enviro Monitoring	16-05-2018	Dunice Sands	0.4	0.1	0.6	0.2
2018 Enviro Monitoring	13-06-2018	Dunice Sands	0.2	0.4	5.2c	0.3
2018 Enviro Monitoring	11-07-2018	Dunice Sands	0.5	0.2	0.5	0.4
2018 Enviro Monitoring	08-08-2018	Dunloe Sands	0.3	0.4	0.3	0.2
2018 Enviro Monitoring	05-09-2018	Dunloe Sands	NS	NS	NS	NS
2018 Enviro Monitoring	05-10-2018	Dunloe Sands	0.1	0.4	0.3	0.7
2018 Enviro Monitoring	06-11-2018	Dunloe Sands	0.1	0.4	1.5	0.7
2018 Enviro Monitoring	07-12-2018	Dunloe Sands	1	0.1	1.6	0.7
2019 Enviro Monitoring	08-01-2019	Dunloe Sands	0.5	0.2	0.5	0.3
2019 Enviro Monitoring	05-02-2019	Dunice Sands	0.3	0.0	0.3	0.3
2019 Enviro Monitoring	03-02-2019	Dunloe Sands	1.1	1	1.2	0.2
2019 Enviro Monitoring	08-03-2019	Dunice Sands	0.5	0.2	0.2	0.9
2019 Enviro Monitoring	05-04-2019	Dunice Sands	0.5	0.2	0.2	1.2
2019 Enviro Monitoring	07-05-2019 04-06-2019	Dunice Sands	0.1	0.4	0.2	0.2
2019 Enviro Monitoring	04-06-2019	Dunice Sands	0.2	0.4	0.7	1.1
2019 Enviro Monitoring	29-08-2019	Dunioe Sands	0.3	0.3	0.2	1.1
•	29-08-2019	Dunioe Sands	0.5	0.5	0.4	1.8
2019 Enviro Monitoring			1.2			
2019 Enviro Monitoring	24-10-2019	Dunloe Sands		0.7	0.5	1.4
2019 Enviro Monitoring	22-11-2019	Dunloe Sands	0.8	0.5	0.8	0.5
2019 Enviro Monitoring	20-12-2019	Dunloe Sands Minimum	1.8	1.8 0.1	1.6	1
		Minimum			0.1	0.1
		Maximum Average	2.7 0.48	4.7 0.66	2.4 0.62	1.8 0.55

\\au.sir.local\Corporate\Projects-SLR\630-SrvNTL\630-NTL\630.12676 Holcim Quarries Annual Reporting 2018\04 Reports\Dunloe Sands\Environmental Monitoring Database\Dunloe Sands Enviro longterm mon 18.xlsx DUST Printed 24-03-2020 11:40 AM

Longterm Surrounding Surface Water Quality Monitoring at Dunloe Sands Quarry

Data located	Date	Location	рН	EC	DO (membrane electrode)	Turbidity	TSS	Total Phosphorus-P	Total-N	Calcium	Magnesium	Potassium	Sulfur as Sulfate	Arsenic (Total)	Iron (Total)	Manganese (Total)
			рН	µScm-1	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
2011/2012 AEMR	Dec-11	SW3	6	253	8.4		8	0.03	0.05							
2011/2012 AEMR	Mar-12	SW3	5.4	227	5.5	26	11	0.02	0.96	0.0						
2011/2012 AEMR 2011/2012 AEMR	Jun-12 27-09-2012	SW3 SW3	6 6.7	314 17676	7.8 7.6	36 10	12 5.2	0.05	0.7	8.2						
2012/2013 AEMR	Dec-12	SW3	6.7	25765	6	10	14	0.03	0.52							
2012/2013 AEMR	Mar-13	SW3	6.7	3489	6.8		8.4	0.03	0.53				1			
2012/2013 AEMR	Jun-13	SW3	6	692	7.2		48									
2012/2013 AEMR	Sep-13	SW3	7	17686	7.3		14	0.02	0.38							
2013/2014 AEMR	12-12-2013	SW3	7.1	25681	5.8		13	0.02	0.34							
2013/2014 AEMR	Mar-14	SW3	3.7	1753	2.9	77	42	0.05	1.54							
2013/2014 AEMR	31-03-2014	SW3	3.7 5.7	1753	2.9	77	42	0.05	1.54							
2013/2014 AEMR 2013/2014 AEMR	25-06-2014 Aug-14	SW3 SW3	5.7	19911 41455	8.9 8.4	14	9 5.8	<0.02 <0.02	0.76							
2013/2014 AEMR	29-09-2014	SW3	7.9	41455	8.4	6.2	5.8	<0.02	0.2	123	16	7	505	< 0.005	11	106
Appendix of 2015 AEMR	15-12-2014	SW3	7.7	30732	7.9	9.9	35	0.02	0.36			1 '		-0.000		100
Appendix of 2015 AEMR	26-03-2015	SW3	3.7	1834	4.8	54	23	0.04	1.32							
Appendix of 2015 AEMR	24-04-2015	SW3	6.5	12467	7.2	7.8	4.0	0.15	0.46							
Appendix of 2015 AEMR	17-09-2015	SW3	6.7	15704	7.3	33	20	0.02	0.45							
Appendix of 2015 AEMR	11-12-2015	SW3	6.5	15038	6.8	13	24	<0.02	0.41	ļ	ļ	ļ	ļ			ļ
Appendix of 2016 AEMR	24-03-2016	SW3	3.8	2548	3.6	54	24	0.06	1.16							
Appendix of 2016 AEMR Appendix of 2016 AEMR	30-06-2016 29-09-2016	SW3 SW3	5.5 6.7	1501.6 38914	6.8 6.1	31	25 5.6	0.03	0.87							
Appendix of 2016 AEMR	29-09-2016	SW3 SW3	7.4	36425	7.1		6.2	<0.02	0.23							
AEMR 2019	08-03-2019	SW3	6.92	41	2.97	0	5	~0.0Z	0.51							
AEMR 2019	04-06-2019	SW3	6.84	30600	7.8	14	6	1 1					1			
AEMR 2019	29-08-2019	SW3	6.36	6310	9.9	17.5	10									
AEMR 2019	22-11-2019	SW3	6.79	43000	108	5.6	6									
	Number o	of Samples	27	27	27	16	27	17	22	2	1	1	1	0	1	1
		Minimum	3.7	41	2.9	0	4	0.02	0.05	8.2	16	7	505	0	11	106
		Maximum	7.9	43000	108	77	48	0.15	1.54	123	16	7	505	0	11	106
		Average	6.22	16045.36	10.38	23.94	16.00	0.04	0.64	65.60	16.00	7.00	505.00	#DIV/0!	11.00	106.00
2011/2012 AEMR	Dec-11	SW4	6.4	1504	5.3		12	0.03	0.63							
2011/2012 AEMR	Mar-12	SW4	6	458	6.8		6.7	0.03	0.81							
2011/2012 AEMR	Jun-12	SW4	6.2	805	8.6	26	7.7	0.04	0.78	10						
2011/2012 AEMR	27-09-2012	SW4	7	23790	7	5.1	10	< 0.02	0.27							
2012/2013 AEMR 2012/2013 AEMR	Dec-12 Mar-13	SW4 SW4	7.6	30543 29821	5.7 7		9.4 9.6	<0.02 0.02	0.39 0.54							
2012/2013 AEMR	Jun-13	SW4	5.9	890	7.4		16	0.02	0.54							
2012/2013 AEMR	Sep-13	SW4	6.8	16825	7.2		8.8	0.02	0.41							
2013/2014 AEMR	12-12-2013	SW4	6.7	17021	5.5		15	0.03	0.51							
2013/2014 AEMR	Mar-14	SW4	3.8	1354	2.5		41	0.04	1.43							
2013/2014 AEMR	31-03-2014	SW4	3.8	1354	2.5	76	41	0.04	1.43	ļ						
2013/2014 AEMR	25-06-2014	SW4	6.5	25363	8.4	12	8	< 0.02	0.5				ļ			ļ
2013/2014 AEMR	Aug-14	SW4	7.1	22190	8.4	0.0	6	< 0.02	0.31				<u> </u>			<u> </u>
2013/2014 AEMR Appendix of 2015 AEMR	29-09-2014 15-12-2014	SW4 SW4	7.1 8	22190 29257	8.4 10	9.8 11	6 33	<0.02 0.05	0.31				<u> </u>			
Appendix of 2015 AEMR	26-03-2015	SW4 SW4	3.7	1426	4.7	48	24	0.05	1.15				1			1
Appendix of 2015 AEMR	24-04-2015	SW4	6.4	12416	7.4	22	18	0.02	0.45				1			1
Appendix of 2015 AEMR		SW4	6.7	8008	7.3	19	11	0.02	0.48							
Appendix of 2015 AEMR	11-12-2015	SW4	7.7	39859	7.5	4.2	9.5	0.02	0.24							
Appendix of 2016 AEMR	24-03-2016	SW4	3.8	2721	5.5	54	25	0.06	1.15							
Appendix of 2016 AEMR	30-06-2016	SW4	6.5	3468.2	8.4	14	10	0.02	0.7		<u> </u>	ļ				
Appendix of 2016 AEMR		SW4	6.9	37551	9.6		66	0.02	0.34				<u> </u>			<u> </u>
		SW4	6.9	17005 51	6.9 4.67	0	8.5 5	0.03	0.49				<u> </u>			<u> </u>
Appendix of 2016 AEMR	20-12-2016	S/V/V).	4 0/	U U	5				+	ļ				
AEMR 2019	08-03-2019	SW4	7.59	-	-	23	6	1 1								
AEMR 2019 AEMR 2019	08-03-2019 04-06-2019	SW4	6.99	40700	9	2.3 6.6	6 8	+								
AEMR 2019	08-03-2019			-	-	2.3 6.6 2.6	-									
AEMR 2019 AEMR 2019 AEMR 2019	08-03-2019 04-06-2019 29-08-2019 22-11-2019	SW4 SW4 SW4	6.99 6.9 7.23	40700 7140	9 8.5	6.6 2.6	8 5	17	22	1						
AEMR 2019 AEMR 2019 AEMR 2019	08-03-2019 04-06-2019 29-08-2019 22-11-2019	SW4 SW4	6.99 6.9 7.23 27	40700 7140 45300 27	9 8.5 103 27	6.6	8 5 27	17								
AEMR 2019 AEMR 2019 AEMR 2019	08-03-2019 04-06-2019 29-08-2019 22-11-2019	SW4 SW4 SW4 of Samples	6.99 6.9 7.23 27 3.7	40700 7140 45300	9 8.5 103	6.6 2.6 16	8 5	17 0.02 0.1	22 0.24 1.43	1 10 10						

Longterm Surrounding Surface Water Quality Monitoring at Dunloe Sands Quarry

		Average	6.42	16259.64	10.49	19.54	15.79	0.03	0.64	10.00					
2011/2012 AEMR	Dec-11	SW9	6.4	657	7.8		13	0.03	0.53	ļ		ļ	ļ		ļ]
2011/2012 AEMR	Mar-12	SW9	6.1	704	6.5	05	36	0.09	1.31	20					
2011/2012 AEMR	Jun-12	SW9	6.1 7.3	575 13557	5.4	25	10	0.04	0.6 0.53	32					
2011/2012 AEMR 2012/2013 AEMR	27-09-2012 Dec-12	SW9 SW9	6.8	17219	9.4 6.9	4.8	13 9.4	0.02	0.55		 	<u> </u>	<u> </u>		
2012/2013 AEMR	Mar-13	SW9 SW9	6.7	3708	7.3		6.8	0.04	0.43						
2012/2013 AEMR	Jun-13	SW9	4.9	305	6.5		27	0.00	0.40						
2012/2013 AEMR	Sep-13	SW9	7	2753	9.9		29	0.13	1.34						
2013/2014 AEMR	12-12-2013	SW9	6.8	10096	5.2		20	0.05	0.81						
2013/2014 AEMR	Mar-14	SW9	4.6	1431	2.1		40	0.13	1.64						
2013/2014 AEMR	31-03-2014	SW9	4.6	1431	2.1	30	40	0.13	1.64						
2013/2014 AEMR	25-06-2014	SW9	6.6	18376	7.9	60	16	0.05	0.67						
2013/2014 AEMR	Aug-14	SW9	7.1	10705	9.3		20	0.03	0.6						
2013/2014 AEMR	29-09-2014	SW9	7.1	10705	9.3	36	20	0.03	0.6						
Appendix of 2015 AEMR	15-12-2014	SW9	8	26966	10	33	37	0.05	1.52						
Appendix of 2015 AEMR	26-03-2015	SW9	4.2	763	5.2	16	5.8	0.02	1.04						
Appendix of 2015 AEMR		SW9	6.2	4344	6.8	29	14	0.03	0.86						
Appendix of 2015 AEMR	17-09-2015	SW9	6.6	7381	6.8	34	14	0.03	0.83	ļ	 	ļ	ļ		
Appendix of 2015 AEMR	11-12-2015	SW9	7.1	5694	5.2	22	28	0.05	0.81	 	 	<u> </u>	<u> </u>		
Appendix of 2016 AEMR	24-03-2016	SW9 SW9	6.1 6.6	4157 2577.4	6.5 7.6	13 19	10 6.3	0.04 0.02	0.88						
Appendix of 2016 AEMR	30-06-2016 29-09-2016	SW9 SW9		35815	7.0	19	35	<0.02	0.78						
Appendix of 2016 AEMR Appendix of 2016 AEMR	29-09-2016	SW9 SW9	6.8 6.9	21421	6.9		6.4	0.02	0.26	 	 }	<u> </u>	<u> </u>		
AEMR 2019	08-03-2019	SW9 SW9	7.46	49	3.6	0	5	0.04	0.02						
AEMR 2019	04-06-2019	SW9	6.93	38	8	3	5								
AEMR 2019	29-08-2019	SW9	6.82	7240	8.7	3.4	5								
AEMR 2019	22-11-2019	SW9	7.07	44300	71.1	2.1	10								
		of Samples	27	27	27	16	27		22	1					
		Minimum	4.2	38	2.1	0	5		0.26	1					
		Maximum	8	44300	71.1	60	40		1.64	32					
		_					-			-					
2011/2012 AEMR	Dec-11	Average SW10	6.37 6.2	9369.16 492	9.24 7.5	20.64	17.84 23	0.04	0.88 0.54	32.00					
2011/2012 AEMR	Mar-12	SW10	5.7	546	4.3		31	0.04	0.54						
2011/2012 ALMR	Jun-12	SW10	6.4	805	6.7	45	22	0.07	0.86	35					
2011/2012 AEMR	27-09-2012	SW10	7.4	12749	9.4	7.7	14	0.04	0.84						
2012/2013 AEMR	Dec-12	SW10	6.7	19403	6.9		7.4	0.03	0.71						
2012/2013 AEMR	Mar-13	SW10	6.8	1025	5.6		16	0.05	0.77						
2012/2013 AEMR	Jun-13	SW10	4.8	302	5.7		30								
2012/2013 AEMR	Sep-13	SW10	7.8	2870	15		45	0.29	2.15						
2013/2014 AEMR	12-12-2013	SW10	6.8	15775	5		10	0.03	0.56						
2013/2014 AEMR	Mar-14	SW10	4.6	1454	2.2		40	0.13	1.63						
2013/2014 AEMR	31-03-2014	SW10	4.6	1454	2.2	32	40	0.13	1.63						
2013/2014 AEMR	25-06-2014	SW10	6.5	17312	7.6	37	15	0.04	0.72	ļ		ļ	ļ		
2013/2014 AEMR	Aug-14	SW10	7.2	9164	11	40	30	0.11	1.06	 	 	<u> </u>	<u> </u>		
2013/2014 AEMR	29-09-2014	SW10 SW10	7.2 7.6	9164	11	46	30 44	0.11 0.07	1.06 1.38						
Appendix of 2015 AEMR Appendix of 2015 AEMR	15-12-2014 26-03-2015	SW10 SW10	4.2	26936 779	12 5.6	33 14	8.0	0.07	1.08	 	 }	<u> </u>	<u> </u>		
Appendix of 2015 AEMR		SW10	6.2	4381	6.5	25	15	0.00	0.87			<u> </u>	<u> </u>		
Appendix of 2015 AEMR		SW10	6.5	6756	7	37	21	0.03	0.98	1		1	1		
Appendix of 2015 AEMR		SW10	6.8	17660	5.7	5.4	9	<0.02	0.33	1	1	1	1	1	
Appendix of 2016 AEMR		SW10	5.3	2967	7.1	7.4	4.8	0.04	0.77						
Appendix of 2016 AEMR	30-06-2016	SW10	6.7	4893.3	7.1	7.1	4.8	0.02	0.61	1		1			
Appendix of 2016 AEMR		SW10	6.9	35928	6.9		36	0.02	0.58						
Appendix of 2016 AEMR	20-12-2016	SW10	6.9	7210	7.8		10	0.04	0.81						
AEMR 2019	08-03-2019	SW10	6.93	42	4.29	20	8								
AEMR 2019	04-06-2019	SW10	5.76	18800	4.8	16.4	15			ļ					
AEMR 2019	29-08-2019	SW10	6.6	3010	9.2	19.6	8								
AEMR 2019	22-11-2019	· · · · · ·	7.02	38700	54.8	10.5	9								
	Number	of Samples Minimum	27	27	27	16	27		22	1					
	4.2	42	2.2	5.4	4.8		0.33	35							
		Maximum	7.8	38700	54.8	46	45		2.15	35					
		Average	6.37	9651.01	8.85	22.69	20.22		0.94	35.00					
		-													

Longterm Pond Water Quality Monitoring at Dunloe Sands Quarry

Data located	Date	Location	рН	EC	DO (membrane	*Redox Potential	Alkalinity as CaCO3	Bicarbonate as CaCO3	Chloride	Turbidity	TSS	Chlorophyll 'a'	Oil and Grease	Total Phosphorus-P	Total-N	Ammonia	Calcium	Magnesium	Sodium	Potassium	Sulfur as Sulfate	Aluminium (Total)	Arsenic (Total)	Iron (Total)	Manganese (Total)
Data located	Date	Location	pH	µScm-1	electrode) mg/L	mV	mg/L	mg/L	mg/L	NTU	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
2011/2012 AEMR	30-05-2012	Lake	5.8	133	8.9		3	<u> </u>	8	190	84		<2	0.09	0.66		40	4.5	<u></u>		44	4.04	0.005	4.04	0.02
2011/2012 AEMR 2011/2012 AEMR	27-06-2012 26-07-2012	Lake Lake	6 7	143 164	9.4 9.4		3	2	8	34 18	23 15		4 <2	0.04 0.02	0.38		13	1.5	6.3	<5	41	1.21	<0.005	1.01	0.03
2011/2012 AEMR	27-08-2012	Lake	5.7	188	9.3	168			10	100	70		2	0.04	0.44							0.17			
2011/2012 AEMR 2011/2012 AEMR	27-09-2012 29-10-2012	Lake 1 Lake	4.6	214 246	8.2 8.5		<1	<1	10	7.8	11 4		<2 <2	0.02	0.09		22	1.9	9	<5	65	0.47	<0.005	0.41	0.05
2012/2013 AEMR	25-11-2013	Lake	5.9	478	7					18	26		<2	0.04	0.33										
2013/2014 AEMR 2013/2014 AEMR	12-12-2013 30-01-2014	Lake Lake	4.7	568 650	7.7	160	2	1	22	33 31	54 41		<2	0.06	0.48		75	8.6	15	5	244	8.92	<0.005	3.49	0.64
2013/2014 AEMR	24-02-2014	Lake	4.4	780	7.5					40	41		<2	0.03	0.25					1					
2013/2014 AEMR	31-03-2014	Lake	4.9	800	7.5					70	63		<2	0.04	0.55										ļ
2013/2014 AEMR 2013/2014 AEMR	28-04-2014 28-05-2014	Lake Lake	4.4	874 895	9.2					33 42	30 30		<2 <2	0.03	0.17					1					<u> </u>
2013/2014 AEMR	25-06-2014	Lake	3.8	916	9.4		<1	<1	35	72	53		<2	0.08	0.37		109	16	23	6	413	26	<0.005	12	1.05
2013/2014 AEMR 2013/2014 AEMR	30-07-2014 29-08-2014	Lake Lake	4.3 4.5	917 960						79 138	44 187		<2 5	0.02 0.05	0.44 0.81										⊢−−−−
2013/2014 AEMR	29-09-2014	Lake	3.8	971	8		<1	<1		68	58		5	0.03	0.58										
Appendix of 2015	28-11-2014	Lake		000						70	101		0	0.07	0.5										
AEMR Appendix of 2015	45 40 0044	1.1.	4	998	8.3					70	101		<2	0.07	0.5										
AEMR Appendix of 2015	15-12-2014	Lake	4.4	1005	8		NP	<1	40	119	167		<2	0.14	0.31		159	18	29	7	394	33	0.008	11	1.23
AEMR Appendix of 2015	22-01-2015	Lake 1	4.4	1029	7.4	204				78	96		<2	0.05	0.32										ļ
AEMR	25-02-2015	Lake 1	4.2	960	7					85	89		<2	0.08	0.6										ļ
Appendix of 2015 AEMR	26-03-2015	Lake 1	4.1	853	7.5		NP	NP	38	34	55		<2	0.25	0.42		92	12	22	6	369	24.2	0.003	5.61	1.03
Appendix of 2015 AEMR	24-04-2015	Lake	4.3	963	8.5					59	95		<2	0.1	0.73			ļ		ļ					
Appendix of 2015 AEMR	28-05-2015	Lake	4.4	927	9					52	85		<2	0.22	0.44										
Appendix of 2015 AEMR	17-09-2015	Lake	4.5	928	8.9		NP		35	56	61	6	<2	0.1	0.43	0.08	117	13	25	8	361	19.3	0.003	6.7	0.953
Appendix of 2015 AEMR	21-10-2015	Lake	4.4	955	7.8					56	100		<2	0.08	0.28										
Appendix of 2015 AEMR	25-11-2015	Lake	3.7	996	7.7					5.1	4		<2	0.03	0.16										
Appendix of 2015 AEMR	11-12-2015	Lake 1	4.2	956	6.8		<1	<1	45	20	39		<2	0.39	0.57		111	13	29	9	429	14.3	0.004	2.54	0.896
Appendix of 2016 AEMR	25-01-2016	Pond	3.9	1002	7.3					7.9			6												
Appendix of 2016 AEMR	24-02-2016	Pond	4	1021	7.4					6.1			2												
Appendix of 2016 AEMR	24-03-2016	Pond	3.9	1060	7.9					7.2			2	0.07	0.12		112.71	14.14	43.28	9.32	382.38	10.93	0.002	1.24	0.88
Appendix of 2016 AEMR	29-04-2016	Pond	4.4	1037	8.6					7.7			2												
Appendix of 2016 AEMR	24-05-2016	Pond	4.9	1029	8.4								4												
Appendix of 2016 AEMR	30-06-2016	Pond	4.7	518.9	9.8					4		16	2	0.02	0.31	<0.02	57.45	7.218	24.38	5.39	185.14	4.51	0.002	0.41	0.56
Appendix of 2016 AEMR Appendix of 2016	21-07-2016	Pond	4.5	546.4	9.3					1.2			0												ļ
AEMR	31-08-2016	Pond	4	618	9.1					2			2												ļ
Appendix of 2016 AEMR	29-09-2016	Pond	4.1	651	8.7					2.6		10	2			<0.02		7.9	27	6	220	2.83	0.002	0.41	0.39
Appendix of 2016 AEMR	27-10-2016	Pond	4	684	8.4					7.2			2												ļ
Appendix of 2016 AEMR	29-11-2016	Pond	3.8	714	8					1.7			2												ļ
Appendix of 2016 AEMR	20-12-2016	Pond	3.5	742	7.3					2.8		2	2	<0.02	0.19	0.03		9.3	29	7	251	4.01	0.001	0.71	0.48
2017 Q1 Env Mon report	30-01-2017	Pond	3.6	758	7.2					2.6			<2												
2017 Q1 Env Mon report	27-02-2017	Pond	3.5	858	7.7					2.4			<2							_					
2017 Env Monitoring 2017 Env Monitoring	22-03-2017 19-04-2017	Pond Pond	3.4 6.5	979 84	8.2 7.6		<5		67	2.2 400			<5.0 <5.0	< 0.05	0.01	0.013		10	46	7	260	5.6	<0.001	1.7	0.57
2017 Env Monitoring	17-05-2017	Pond	5.9	101	8.1					230			<5.0												
2017 Env Monitoring 2017 Env Monitoring	14-06-2017	Pond	4.8	115	9.5		<5		8	100			<5.0	0.07	0.07	0.03		2	7	2	25	0.17	<0.001	0.04	0.12
2017 Env Monitoring 2017 Env Monitoring	12-07-2017 09-08-2017	Pond Pond	4.3	153 171	9.2 9.9					5.5 3.4			<5.0 <5.0												
2017 Env Monitoring	06-09-2017	Pond	4.2	183	6.6		<5		11	3.2			<5.0	<0.05	0.3	< 0.005		2	8	2	47	0.35	<0.001	0.085	0.18
2017 Env Monitoring 2017 Env Monitoring	04-10-2017 01-11-2017	Pond Pond	4.3	229 271	8.6 8					1.6 2.9			<5.0 <5.0												
2017 Env Monitoring	29-11-2017	Pond	4.3	303	7.6		_			4			<5.0												
2017 Env Monitoring 2018 Env Monitoring	28-12-2017 24-01-2018	Pond Dam 1	4.1	339 361	7.8 8.3		<5		16	1 2.1		<1	<5.0 <5	<0.05	<0.1	<0.005		3.7	11	3	84	0.6	<0.001	0.12	0.23
2018 Env Monitoring	21-02-2018	Dam 1	3.96	367	8.74					2.1		<1	<5			1		1							
2018 Env Monitoring 2018 Env Monitoring		Dam 1 Dam 1	4.05 4.6	395 373	8.61 8.18		<5		21	2.42		<1	<5 <5	< 0.05	<0.1	< 0.005		5	14	3.6	99	0.88	<0.001	0.088	0.25
2018 Env Monitoring 2018 Env Monitoring	16-05-2018	Dam 1 Dam 1	4.6	373	8.18					4.64		<1	<5 <5												
2018 Env Monitoring	13-06-2018	Dam 1	4.21	366	9.18		<5		21	2.87		<1	<5	< 0.05	<0.1	< 0.005		4.9	14	3.6	110	0.62	<0.001	0.1	0.25
2018 Env Monitoring 2018 Env Monitoring		Dam 1 Dam 1	4.13	324 384	9.69 9.38					4.17 5.3		<1	<5 <5												
2018 Env Monitoring	05-09-2018	Dam 1	6.73	382	9.30	138				21		<1	~3	0.02		0.04									
2018 Env Monitoring	05-10-2018	Dam 1																							
2018 Env Monitoring 2018 Env Monitoring	06-11-2018 07-12-2018	Dam 1 Dam 1	4.25	560 540	104 99.8	3520 350	1		86	0.2	<5	_1	~5	0.18		0.01		9	45	4	135	0.72	<0.002	0.07	0.243
	07-12-2018	Dami	4.42	540	77.0	300		1	00	1.4		<1	<5	0.10		0.01	I	9	40	4	130	0.72	<0.00Z	0.07	0.243

Longterm Pond Water Quality Monitoring at Dunloe Sands Quarry

Data located	Date	Location	рН	EC	DO (membrane electrode)	*Redox Potential	Alkalinity as CaCO3	Bicarbonate as CaCO3	Chloride	Turbidity	TSS	Chlorophyll 'a'	Oil and Grease	Total Phosphorus-P	Total-N	Ammonia	Calcium	Magnesium	Sodium	Potassium	Sulfur as Sulfate	Aluminium (Total)	Arsenic (Total)	Iron (Total)	Manganese (Total)
			pН	µScm-1	mg/L	mV	mg/L	mg/L	mg/L	NTU	mg/L	µg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
2019 Env Monitoring	08-01-2019	Dredge Pond Dam 1	4.45	613	103					0.7			NR												
2019 Env Monitoring	05-02-2019	Dredge Pond Dam 1	4.41	680	7.44					0			5												
2019 Env Monitoring	08-03-2019	Dredge Pond Dam 1	4.12	625	5.63			1	81	0		2	5					10	47	5	164	0.84	0.001	0.23	0.278
2019 Env Monitoring	05-04-2019	Dredge Pond Dam 1	4.24	603	8.1					3.4			5												
2019 Env Monitoring	07-05-2019	Dredge Pond Dam 1	4.18	127	1.2					50.8			5												
2019 Env Monitoring	04-06-2019	Dredge Pond Dam 1	4.06	547	9.3			1	74	1.8		1	5					10	44	5	170	0.76	0.001	0.21	0.235
2019 Env Monitoring	04-07-2019	Dredge Pond Dam 1	4.15	436	12.8					1.8			5												í
2019 Env Monitoring	29-08-2019	Dredge Pond Dam 1	4.35	120	11.4			1	66	1.9		1	NR					9	37	4	174	0.68	0.001	0.2	0.259
2019 Env Monitoring	26-09-2019	Dredge Pond Dam 1	5.54	620	8					8			5												1
2019 Env Monitoring	24-10-2019	Dredge Pond Dam 1	4.42	663	60.3					NR			5												í
2019 Env Monitoring	22-11-2019	Dredge Pond Dam 1	3.95	722	116			1	95	1.1		1	5					11	53	5	171	0.92	0.003	0.55	0.26
2019 Env Monitoring	20-12-2019	Dredge Pond Dam 1	5.13	783	85.4					12.7			5												
		Minimum	3.4	84	1.2	138	1	1	8	0	4	1	0	0.02	0.01	0.01	13	1.5	6.3	2	25	0.17	0.001	0.04	0.03
		Maximum	7	1060	116	3520	3	2	95	400	187	16	6	0.39	33	0.08	159	18	53	9.32	429	33	0.008	12	1.23
0040 5	00.04.0040	Average	4.44	599.62	16.62	756.67	2.00	1.17	41.00	34.47	61.79	4.44	3.56	0.08	1.36	0.03	86.82	8.66	26.43	5.38	208.41	7.04	0.00	2.13	0.48
2019 Env Monitoring	08-01-2019	Silt Pond Dam 2	8.21	578	111.28					2.76			NR												<u> </u>
2019 Env Monitoring	05-02-2019	Silt Pond Dam 2	6.76 9.85	653	7.74			0	71	0		2	5					10	42	4	150	0.02	0.001	0.05	0.076
2019 Env Monitoring	08-03-2019	Silt Pond Dam 2		612	5.97			8	71	ů		3	5					10	43	4	158	0.03	0.001	0.05	0.076
2019 Env Monitoring	05-04-2019	Silt Pond Dam 2	6.8	587	8.2					15			5												<u> </u>
2019 Env Monitoring 2019 Env Monitoring	07-05-2019 04-06-2019	Silt Pond Dam 2 Silt Pond Dam 2	3.94 6.08	592 501	0.5 9.6			5	72	0.6		1	5					10	42	4	164	0.01	0.001	0.05	0.164
2019 Env Monitoring 2019 Env Monitoring		Silt Pond Dam 2 Silt Pond Dam 2	6.08	420				5	12			1	5					10	42	4	104	0.01	0.001	0.05	0.104
2019 Env Monitoring 2019 Env Monitoring	04-07-2019 29-08-2019	Silt Pond Dam 2	6.91	148	9.5 10			11	65	7.6		2	o NR					0	36	4	164	0.02	0.001	0.05	0.203
2019 Env Monitoring 2019 Env Monitoring	29-08-2019	Silt Pond Dam 2	6.81	140	9.3				00	14.1		2	INK.	-		+		9	30	4	104	0.02	0.001	0.05	0.203
	26-09-2019	Silt Pond Dam 2								NR			5	+		+									<u> </u>
2019 Env Monitoring	22-11-2019	Silt Pond Dam 2	7.3 NRR	652 NRR	84.5 NRR			22	80	NRR		8	5					11	16	5	164	0.58	0.003	0.05	0.126
2019 Env Monitoring				-				22		1		8	5	+		+		11	46	5	104	0.58	0.003	0.05	0.120
2019 Env Monitoring	20-12-2019	Silt Pond Dam 2 Minimum	6.99 3.94	719	110 0.5	0		5	65	57.3			5		0	-			36		158	0.01	0.001	0.05	0.076
		Minimum Maximum	3.94	719	0.5	0	0	5 22	65 80	57.3	0	1	5	0	0	0	0	9 11	30	4	158	0.01	0.001	0.05	0.076
						0	0	5	80 65		0.00	0.00	5.30	0	0	0	0	11	40	5	164				0.203
		Average	6.94	508.36	33.33	0	0	5	65	12.17	0.00	0.00	5.30	0	0	0	0	11	46	5	164	0.58	0.003	0.05	1

Longterm Pond Water Layer Monitoring at Dunloe Sands Quarry

Data located	Date	Location	рН	EC	DO (membrane electrode)	*Redox Potential	Turbidity	TSS	Total Phosphorus-P	Total-N
			рН	µScm-1	mg/L	mV	NTU	mg/L	mg/L	mg/L
2011/2012 AEMR	27-06-2012	Lake 2m	6.1	144	9.4	257				
2011/2012 AEMR	27-09-2012	Lake 2m	4.6	214	8.2		2.2	4.5	0.02	
Appendix of 2015 AEMR	26-03-2015	Lake 2m	4.0	859	7.6	280				
Appendix of 2015 AEMR	17-09-2015	Lake 2m	4.5	915	8.8	185				
Appendix of 2015 AEMR	11-12-2015	Lake 2m	4.2	952	7.2		19	44	0.13	0.13
Appendix of 2016 AEMR	24-03-2016	Lake 2m	4.3	1011	8					
Appendix of 2016 AEMR	30-06-2016	Lake 2m	4.8	527.6	9.9					
Appendix of 2016 AEMR	29-09-2016	Lake 2m	4.1	647	8.8					
Appendix of 2016 AEMR	20-12-2016	Lake 2m	3.5	742	7.4	•				
	NO	of Samples	9	9	9	3	2	2	2	1
		Minimum	3.5	144	7.2	185	2.2	4.5	0.02	0.13
		Maximum	6.1	1011	9.9	280	19	44	0.13	0.13
		Average	4.46	667.96	8.37	240.67	10.60	24.25	0.08	0.13
2011/2012 AEMR	27-06-2012	Lake 3m	6.1	144	9.5	267				
2011/2012 AEMR	27-09-2012	Lake 3m	4.6	214	8.2		14	30	0.03	
Appendix of 2015 AEMR	26-03-2015	Lake 3m	4.0	859	7.5	297	ļ		_ _	
Appendix of 2015 AEMR	17-09-2015	Lake 3m	4.5	915	8.7	200	10			
Appendix of 2015 AEMR	11-12-2015	Lake 3m	4.2	949	7.2		19	96	0.07	0.07
Appendix of 2016 AEMR	24-03-2016	Lake 3m	4.4	1014	8.1					
Appendix of 2016 AEMR	30-06-2016	Lake 3m	4.9 4.1	510.8 650	9.8 8.8					
Appendix of 2016 AEMR Appendix of 2016 AEMR	29-09-2016 20-12-2016	Lake 3m Lake 3m	3.6	742	7.7					
Appendix of 2010 AEMIK		of Samples				2	•	2	2	4
	NO		9	9	9	3	2	2	2	1
		Minimum	3.6	144	7.2	200	14	30	0.03	0.07
		Maximum	6.1	1014	9.8	297	19	96	0.07	0.07
		Average	4.49	666.42	8.39	254.67	16.50	63.00	0.05	0.07
2011/2012 AEMR	27-06-2012	Lake 4m	6.2	144	9.6	264				
2011/2012 AEMR	27-09-2012	Lake 4m	4.6	213	8.2	0.1.0	5.8	9.2	0.02	
Appendix of 2015 AEMR	26-03-2015	Lake 4m	4.0	860	7.5	312				
Appendix of 2015 AEMR	17-09-2015	Lake 4m	4.5 4.2	915 952	8.7 7.5	200	16	102	0.06	0.06
Appendix of 2015 AEMR Appendix of 2016 AEMR	11-12-2015 24-03-2016	Lake 4m Lake 4m	4.2	1.11	7.9		10	102	0.00	0.06
Appendix of 2016 AEMR	30-06-2016	Lake 4m	4.3	517.4	9.9					
Appendix of 2016 AEMR	29-09-2016	Lake 4m	4.0	648	8.8					
Appendix of 2016 AEMR	20-12-2016	Lake 4m	3.6	742	7.7					
		of Samples	9	9	9	3	2	2	2	1
		Minimum	3.6	1.11	7.5	200	5.8	9.2	0.02	0.06
		Maximum	6.2	952	9.9	312		9.2	0.02	0.06
	07.00.0010	Average	4.47	554.72	8.42	258.67	10.90	55.60	0.04	0.06
2011/2012 AEMR Appendix of 2015 AEMR	27-06-2012	Lake 5m	<u>6.5</u> 4.0	144 864	9.5 7.5	<u>261</u> 316				
Appendix of 2015 AEMR	26-03-2015 17-09-2015	Lake 5m Lake 5m	4.0	913	7.5 8.7	210				
Appendix of 2015 AEMR	11-12-2015	Lake 5m	4.4	954	7.7	210	12	22	0.06	0.06
Appendix of 2016 AEMR	24-03-2016	Lake 5m	4.7	1019	8.1		12		0.00	0.00
Appendix of 2016 AEMR	30-06-2016	Lake 5m	4.8	515.5	9.9		1			
Appendix of 2016 AEMR	29-09-2016	Lake 5m	4.0	647	8.8		1		1	
Appendix of 2016 AEMR	20-12-2016	Lake 5m	3.6	742	7.6					
		of Samples	8	8	8	3	1	1	1	1
		Minimum	3.6	144	7.5	210	12	22	0.06	0.06
		Maximum	6.5	1019	9.9	316	12	22	0.06	0.06
		Average								
Appondix of 2016 AEMD	20.06.0046	-	4.51	724.81	8.48	262.33	12.00	22.00	0.06	0.06
Appendix of 2016 AEMR	30-06-2016	Lake 6m	5.2	516.6	9.9					
Appendix of 2016 AEMR	29-09-2016	Lake 6m	4.5	627	8.4					
Appendix of 2016 AEMR	20-12-2016	Lake 6m of Samples	3.6	740	7.4					
		UL SAMDIES	3	3	3					
	NO	-								
		Minimum	3.6	516.6	7.4					
	No	-		516.6 740 627.87	7.4 9.9					

Longterm Algae Monitoring at Dunloe Sands Quarry

Data located	Date	Location	Cyanophyta (Blue Green Algae) cells/mL	Chlorophyta (Total Algae Count) cells/mL	Diatoms (Bacillariophyta) cells/mL	Dinophyta (Dinoflagellates) cells/mL	Euglenophyta (Euglenoids) cells/mL
2011/2012 AEMR	30-11-2011	Extraction Pond	240				
2011/2012 AEMR 2011/2012 AEMR	22-12-2012 02-02-2012	Extraction Pond Extraction Pond	800 <100				
2011/2012 AEMR	20-02-2012	Extraction Pond	700				
2011/2012 AEMR	28-02-2012	Extraction Pond	14375				
2011/2012 AEMR 2011/2012 AEMR	27-03-2012 30-05-2012	Extraction Pond Extraction Pond	1200 <100				
2011/2012 AEMR	27-06-2012	Extraction Pond	130	0.01			
2011/2012 AEMR	26-07-2012	Extraction Pond	16360	2520			
2011/2012 AEMR 2011/2012 AEMR	27-08-2012 27-09-2012	Extraction Pond Extraction Pond	24640 68000	3720 35000			
2011/2012 AEMR	29-10-2012	Extraction Pond	<100	7900			
2012/2013 AEMR	28-11-2012	Extraction Pond	<100	80670			
2012/2013 AEMR 2012/2013 AEMR	24-12-2012 17-01-2013	Extraction Pond Extraction Pond	<100 <100				
2012/2013 AEMR	01-02-2013	Extraction Pond	<100				
2012/2013 AEMR	15-02-2013	Extraction Pond	<100				
2012/2013 AEMR 2012/2013 AEMR	08-03-2013 30-05-2013	Extraction Pond Extraction Pond	<100 <100	215 880			
2012/2013 AEMR	30-06-2013	Extraction Pond	<100				
2012/2013 AEMR	30-07-2013	Extraction Pond	<100	34000			
2012/2013 AEMR 2012/2013 AEMR	28-08-2013 30-09-2013	Extraction Pond Extraction Pond	<100 <100	205			
2012/2013 AEMR	25-10-2013	Extraction Pond	<100	17430			
2013/2014 AEMR	25-11-2013	Extraction Pond				480	
2013/2014 AEMR 2013/2014 AEMR	12-12-2013 19-12-2013	Extraction Pond Extraction Pond	1150	39500 22000			
2013/2014 AEMR	09-01-2014	Extraction Pond		123000		<u> </u>	
2013/2014 AEMR	29-01-2014	Extraction Pond		34000			
2013/2014 AEMR 2013/2014 AEMR	31-03-2014 28-04-2014	Extraction Pond Extraction Pond		7700	295 45		
2013/2014 AEMR 2013/2014 AEMR	29-05-2014	Extraction Pond	ND	7600	40		
2013/2014 AEMR	26-06-2014	Extraction Pond	ND	52000			
2013/2014 AEMR	31-07-2014	Extraction Pond	ND ND	28000			
2013/2014 AEMR Appendix of 2015 AEMR	28-10-2014 28-11-2014	Extraction Pond Extraction Pond	ND ND	168000 123000	260	60	
Appendix of 2015 AEMR	16-12-2014	Extraction Pond	ND	106500	220	35	
Appendix of 2015 AEMR	22-01-2015	Extraction Pond	ND	37000			
Appendix of 2015 AEMR Appendix of 2015 AEMR	26-02-2015 26-03-2015	Extraction Pond Extraction Pond	ND ND	8750			
Appendix of 2015 AEMR	24-04-2015		ND	8000			
Appendix of 2015 AEMR	29-05-2015		ND	76000	4200		
Appendix of 2015 AEMR Appendix of 2015 AEMR	29-06-2015 21-10-2015	Extraction Pond Extraction Pond	ND ND	211000 18330	6300 65	35	155
Appendix of 2015 AEMR	26-11-2015		ND	4850	00	5	155
Appendix of 2015 AEMR	11-12-2015		ND	11900	30	10	
2016 AEMR	25-01-2016 08-02-2016	Extraction Pond	ND	34000 0			
2016 AEMR 2016 AEMR	24-02-2016	Extraction Pond Extraction Pond	ND ND	3700			
2016 AEMR	10-03-2016		ND	1575			
2016 AEMR	24-03-2016		ND	7600			
2016 AEMR 2016 AEMR	07-04-2016 29-04-2016	Extraction Pond Extraction Pond	ND ND	9700 11800			
2016 AEMR	24-05-2016	Extraction Pond	ND	5700			
2016 AEMR	30-06-2016		ND 0.10	28930			
2016 AEMR 2016 AEMR	31-08-2016 30-09-2016		840 ND	61500 920			
2016 AEMR	04-10-2016	Extraction Pond	ND	920			
2016 AEMR	28-10-2016		ND	29000			
2016 AEMR 2017 Q1 Env Mon report	21-12-2016 30-01-2017	Extraction Pond Extraction Pond	ND ND	10830 1480			
2017 Q1 Env Mon report	27-02-2017	Extraction Pond	ND	640			
2017 Env Monitoring	22-03-2017	Extraction Pond	ND	175			
2017 Env Monitoring 2017 Env Monitoring	19-04-2017 17-05-2017	Extraction Pond Extraction Pond	ND ND	600 2820			
2017 Env Monitoring	14-06-2017	Extraction Pond	ND	1830			
2017 Env Monitoring	12-07-2017	Extraction Pond	ND	5260			
2017 Env Monitoring 2017 Env Monitoring	09-08-2017 06-09-2017	Extraction Pond Extraction Pond	ND ND	41500 99800			
2017 Env Monitoring	04-10-2017	Extraction Pond	ND	128000			
2017 Env Monitoring	01-11-2017	Extraction Pond	ND	38600 8150			
2017 Env Monitoring 2017 Env Monitoring	29-11-2017 28-12-2017	Extraction Pond Extraction Pond	ND ND	8150 1890			
2018 Env Monitoring	24-01-2018		<5	350			
2018 Env Monitoring	21-02-2018		<5	100			
2018 Env Monitoring 2018 Env Monitoring	21-03-2018 18-04-2018		<5 <5	3,960 4,580			
2018 Env Monitoring	16-05-2018		<5	250			
2018 Env Monitoring	13-06-2018		<5	5,820			
2018 Env Monitoring 2018 Env Monitoring	11-07-2018 08-08-2018	Extraction Pond Extraction Pond	<5 <5	16,100 13,800			
2018 Env Monitoring	05-09-2018		ND	ND			
2018 Env Monitoring	05-10-2018	Extraction Pond	<5	ND			
2018 Env Monitoring 2018 Env Monitoring	06-11-2018		ND ND	ND ND			
2019 Env Monitoring	08-03-2019	Point 1 Silt Pond	<0.001	<5			
		(Dam 2)		-			
2019 Env Monitoring	04-06-2019	Point 1 Silt Pond (Dam 2)	<0.001	500			
2019 Env Monitoring	29-08-2019	Point 1 Silt Pond	<0.001	525			
		(Dam 2) Point 1 Silt Pond			<u> </u>		<u> </u>
2019 Env Monitoring	22-11-2019	(Dam 2)	2.13	10800			
2019 Env Monitoring	08-03-2019	Point 2 Dredge Pond (Dam 1)	<0.001	<5			
2019 Env Monitoring	04-06-2019	Point 2 Dredge Pond	<0.001	550			
		(Dam 1) Point 2 Dredge Pond					
2019 Env Monitoring	29-08-2019	(Dam 1)	0.002	30900			
2019 Env Monitoring	22-11-2019	Point 2 Dredge Pond (Dam 1)	0.002	900			
		Minimum	0.002	0	30	5	155
		Maximum	68000	211000	6300	480	155
		Average	9174.1	26700.4	1426.9	104.2	155.0

		1	1	1	1	1	Lo	ongterm Gro	oundwater	Quality Mon	itoring at D	ounloe Sand	ls Quarry			1		1	1 1		
Data located	Date	Location	рН	EC	DO (membrane electrode)	*Redox Potential	Alkalinity as CaCO3	Bicarbonate as CaCO3	Chloride	Total Phosphorus-P	Total-N	Ammonia	Calcium	Magnesium	Sodium	Potassium	Sulfur as Sulfate	Aluminium (Total)	Arsenic (Total)	Iron (Total)	Manganese (Total)
			рН	µScm-1	mg/L	mV	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
2011/2012 AEMR 2011/2012 AEMR	Dec-11 Mar-12	DPL1 DPL1							13 17				0.2	0.4	4 5.4	<5 <5	3.5 4.8		<0.005 <0.005	1.34	<0.01 <0.01
2011/2012 AEMR 2011/2012 AEMR	30-05-2012	DPL1 DPL1	4.2	98	3.3	435			17				0.2	0.4	5.4	<5	4.0		<0.005	1.32	<0.01
2011/2012 AEMR	Jun-12	DPL1	4.2	105	3.8	405	<1	<1	20				0.6	0.6	11	<5	5.3		<0.005	2.49	<0.01
2011/2012 AEMR	26-07-2012		4.3	87	5.1	374															·
2011/2012 AEMR 2011/2012 AEMR	27-08-2012 27-09-2012	DPL1 DPL1	4.2	98 94	2.1 2.6	365 305	<1	<1	15				0.5	0.3	8.4	<5	6.7		<0.005	3.25	<0.01
2011/2012 AEMR	29-10-2012	DPL1	4.2	96	5.8	208			15				0.5	0.3	0.4	~5	0.7		~0.005	3.25	<0.01
2012/2013 AEMR	Dec-12	DPL1							36				1	0.7	6.3	<5	4.9		<0.005	4.32	<0.01
2012/2013 AEMR	Mar-13	DPL1							12				0.2	0.1	9.2	<5	7.3		<0.005	1.68	<0.01
2012/2013 AEMR 2012/2013 AEMR	Jun-13	DPL1							19				0.1	<0.1 0.2	0.1	<5 <5	5.9		<0.005 <0.005	1.5 5.82	< 0.01
2012/2013 AEMR 2013/2014 AEMR	Sep-13 12-12-2013	DPL1 DPL1	4.8	86	3.5	91	3	2	16 20				0.4	0.2	7.5 0.2	<5	6.2		<0.005	3.83	<0.01 0.02
2013/2014 AEMR	29-01-2014	DPL1	4	279	5.7	264	Ŭ	-	20				0.1	0.2	0.2		0.2		-0.000	0.00	0.02
2013/2014 AEMR	24-02-2014	DPL1	4.6	76	3.8	242															· · · · · · · · · · · · · · · · · · ·
2013/2014 AEMR	31-03-2014	DPL1	4.9	72	6.3	136	3	2	15				0.6	0.1	0.1	<5	3.5		<0.005	2.44	<0.01
2013/2014 AEMR 2013/2014 AEMR	24-04-2014 28-05-2014	DPL1 DPL1	4	75 95		204 307															i
2013/2014 AEMR	25-06-2014	DPL1	4.2	98	2	350	<1	<1	16				0.5	0.3	9.7	<5	6.4	1	< 0.005	0.76	<0.01
2013/2014 AEMR	30-07-2014	DPL1	4.1	112	3.9	174	<1	<1	19				0.4	0.2	11	<5	7.7	0.77	<0.005	0.62	<0.01
2013/2014 AEMR	29-08-2014	DPL1	4.4	97	4.3	185	NP	NP	20	<u> </u>			0.2	<0.1	9.6	<5	4.3	<u> </u>	<0.005	3.93	<0.01
2013/2014 AEMR Appendix of 2015 AEMR	29-09-2014 28-11-2014	DPL1 DPL1	4.7	108 81	3.5 3.3	177 110													┨────┤		
Appendix of 2015 AEMR	15-12-2014	DPL1	4.6	94	1.5	160	NP	<1	15				1.6	0.4	10	<5	6.1	0.32	<0.005	2.55	0.02
Appendix of 2015 AEMR	22-01-2015	DPL1	4.8	80	3.8	110															i
Appendix of 2015 AEMR	25-02-2015	DPL1	4.2	110	1.1	160															
Appendix of 2015 AEMR Appendix of 2015 AEMR	26-03-2015 24-04-2015	DPL1 DPL1	4.1	109 131	4 2.7	245 253	NP	NP													
Appendix of 2015 AEMR	28-05-2015	DPL1	3.8	164	2.7	255															
Appendix of 2015 AEMR	17-09-2015	DPL1	4.1	135	3.9	195	NP		18			<0.02	0.7	0.8	12	<5	10	0.64	<0.001	0.95	0.017
Appendix of 2015 AEMR	21-10-2015	DPL1	4.3	116	2.9	217															· · · · · · · · · · · · · · · · · · ·
Appendix of 2015 AEMR Appendix of 2015 AEMR	25-11-2015 11-12-2015	DPL1 DPL1	4.2	102 86	6.1 2.4	170 232	1	1	14				0.3	0.2	11	<5	10	0.32	<0.001	3.21	0.009
Appendix of 2016 AEMR	25-01-2016	DPL1	4.0	95	1.6	165	1		14				0.5	0.2		~5	10	0.32	~0.001	3.21	0.009
Appendix of 2016 AEMR	24-02-2016	DPL1	4.8	98	5.7	138															
Appendix of 2016 AEMR	24-03-2016	DPL1	4.6	104	3.8	268	2	2	17				0.37	0.23	10.21	<5	9.403	0.727	0.001	4.224	0.007
Appendix of 2016 AEMR	29-04-2016	DPL1 DPL1	4.3 4.2	96 106	6.4 2.7	388	-														i
Appendix of 2016 AEMR Appendix of 2016 AEMR	24-05-2016 30-06-2016	DPL1 DPL1	4.2	101.1	3.6	255 283							3.503	0.353	10.561	<5	9.636	0.471	0.001	2.508	0.14
Appendix of 2016 AEMR	21-07-2016	DPL1	3.9	142.2	6.8	384							0.000	0.000	10.001		0.000	0	0.001	2.000	
Appendix of 2016 AEMR	31-08-2016	DPL1	4	140	6.5	321															
Appendix of 2016 AEMR	29-09-2016	DPL1	3.9	151	2.5	366	-														i
Appendix of 2016 AEMR Appendix of 2016 AEMR	27-10-2016 29-11-2016	DPL1 DPL1	4.7	151 116	2.5	366 108	+														·
Appendix of 2016 AEMR	20-12-2016		4.7	131	5.2	307.1															í
Q1 2017 Env mon report	30-01-2017	DPL1	4.2	121																	
	27-02-2017		4.6	103					40	0.00		0.050		-0.5	10		10	0.40	-0.004	1.0	0.010
2017 Env Monitoring 2017 Env Monitoring	22-03-2017 19-04-2017		4.4	116 180			<5		18	0.09	1.1	0.056		<0.5	12	1	12	0.48	<0.001	4.8	0.018
2017 Env Monitoring	17-05-2017		4.4	135																	
2017 Env Monitoring	14-06-2017		4.3	197			<5		22	<0.05	0.5	0.039		1	14	1	39	1.6	<0.001	13	0.039
2017 Env Monitoring	12-07-2017		4.1	137														ļ			
2017 Env Monitoring 2017 Env Monitoring	09-08-2017 06-09-2017		4.3	123 124			<5		18	< 0.05	1.2	0.031		<0.5	11	1	10	0.73	<0.001	3.4	0.017
2017 Env Monitoring	04-10-2017		4.3	123					10	0.00		0.001	ĺ	5.0		· ·	10	0.10	0.001	0.1	
2017 Env Monitoring	01-11-2017	DPL1	4.4	121																	
2017 Env Monitoring 2017 Env Monitoring	29-11-2017 28-12-2017		4.5 4.5	129 130			<5		21	<0.05	0.4	0.071		0.6	12	2.1	44	0.53	<0.001	5	0.02
2017 Env Monitoring 2018 Env Monitoring	28-12-2017 24-01-2018		4.5	130			N 0		21	< <u></u> 0.05	0.4	0.071		0.0	12	2.1	44	0.53	<u>∼0.001</u>	5	0.02
	21-02-2018		4.46	120.5			1						<u>i </u>					1	1		
2018 Env Monitoring	21-03-2018	DPL1	4.35	159			<5		21	0.06	0.2	0.062		0.8	13	1.5	44	0.76	<0.001	5.5	0.028
· · · · · · · · · · · · · · · · · · ·	18-04-2018		4.49	153			-											l			l
2018 Env Monitoring 2018 Env Monitoring	16-05-2018 13-06-2018		4.4 4.33	146.3 167.1	+		<5		19	< 0.05	0.4	0.057		0.7	14	1.4	28	0.76	<0.001	6.2	0.024
2018 Env Monitoring 2018 Env Monitoring	11-07-2018		4.33	146.3			~~~		19	<0.02	т. ,	0.037		0.7	71	1.7	20	0.70	~0.001	0.2	0.024
2018 Env Monitoring	08-08-2018	DPL1	3.91	204									<u> </u>				<u> </u>				
2018 Env Monitoring	05-09-2018		4.12	114	4.52		<1		18			0.07		<1	22	1	26	1.08	<0.001	0.05	0.001
2018 Env Monitoring	05-10-2018		4.53	143	7		-											l			l
2018 Env Monitoring 2018 Env Monitoring	06-11-2018 07-12-2018		4.51 4.49	142 120	4.8	44.3	<1		17			0.06		1	11	<1	36	0.88	0.001	10.7	0.003
2019 Env Monitoring	08-01-2019		4.49	178.36	3.52	-2.5			1/			0.00		1	11	<u> </u>	50	0.00	0.001	10.7	0.003
2019 Env Monitoring	05-02-2019		4.48	142.5	0.26	-64.1							<u> </u>				<u> </u>				1
2019 Env Monitoring	08-03-2019		4.12	224	0.11	1.6		<1					4	2	13	1	68	2.58	<0.001	19.5	0.05
2019 Env Monitoring	05-04-2019		4.14	122	0.2	NR		<1						1				l	<0.001		0.038
2019 Env Monitoring 2019 Env Monitoring	07-05-2019 04-06-2019		6.6 4.14	3570 126	0.3	0.1 31.9		<1 <1					2	1	11	1	38	1.27	<0.001 <0.001	10.9	0.033 0.034
2019 Env Monitoring 2019 Env Monitoring	04-06-2019		6.6	3570	0.5	0.1							2	1	11	1	00	1.2/	<0.001	10.9	0.054
2019 Env Monitoring	01-08-2019		4.32	94	8.1	54.1		<1					2	<1	10	<1	20	1.1	<0.001	8.63	0.033
2019 Env Monitoring	26-09-2019		5.01	38	9.6	-29.4		<1													0.034
2019 Env Monitoring	24-10-2019		5.01	138	1.8	< 0.1	-	<1							44		21	0.00	-0.001	0.24	0.024
2019 Env Monitoring	22-11-2019	DPL1	4.59	94	15.6	71.1		<1					2	<1	11	<1	31	0.98	<0.001	8.34	0.034

							Lo	ngterm Gro	oundwater	Quality Mon	itoring at D	unloe Sand	ds Quarry					1		1	
2019 Env Monitoring	20-12-2019	DPL1	4.86	84	15.5	110													+		
No of S		DILI	76	76	53	50	4	4	25	2	6	8	22	24	30	9	29	18	3	30	21
Minir			3.8	38	0.11	-64.1	1	1	12	0.06	0.2	0.031	0.1	0.1	0.1	1	3.5	0.32	0.001	0.05	0.001
Maxi	mum		6.6	3570	15.6	435	3	2	36	0.09	1.2	0.071	4	2	22	2.1	68	2.58	0.001	19.5	0.14
Aver		D.D.L.O.	4.42	213.01	4.07	197.93	2.25	1.75	18.24	0.08	0.63	0.06	0.99	0.57	9.68	1.22	17.50	0.89	0.00	4.76	0.03
2011/2012 AEMR 2011/2012 AEMR	Dec-11 Mar-12	DPL3 DPL3							2300 2400				72 66	119 109	842 1081	72 <5	136 126		<0.005 <0.005	0.74	0.53 0.51
2011/2012 AEMR	30-05-2012	DPL3	6.6	7074	2.3	317															
2011/2012 AEMR 2011/2012 AEMR	Jun-12 26-07-2012	DPL3 DPL3	6.7 6.6	7057 7093	6.6 3.6	315 284	150	94	2220				70	112	1119	48	143		< 0.005	1.94	0.53
2011/2012 AEMR	27-08-2012	DPL3	6.7	7343	1.8	193															
2011/2012 AEMR	27-09-2012	DPL3	6.4	7130	2.4	249	120	75	2280				63	100	1060	50	147		< 0.005	2.11	0.51
2011/2012 AEMR 2012/2013 AEMR	29-10-2012 Dec-12	DPL3 DPL3	6.3	7177	4.8	146			2270				68	103	946	61	132		< 0.005	2.46	0.52
2012/2013 AEMR	Mar-13	DPL3							2280				74	115	1296	48	149		< 0.005	1.78	0.58
2012/2013 AEMR 2012/2013 AEMR	Jun-13 Sep-13	DPL3 DPL3							2310 2280				66 60	105 93	66 1003	44 38	169		<0.005 <0.005	1.63 3.05	0.52 0.52
2013/2014 AEMR	12-12-2013	DPL3	6.2	7140	2.4	116	120	73	2340				66	104	1000	43	168		< 0.005	3.16	0.57
2013/2014 AEMR 2013/2014 AEMR	29-01-2014	DPL3 DPL3	6.3	6964 6677	4.4 3.6	201 245													-		
2013/2014 AEMR	24-02-2014 31-03-2014	DPL3 DPL3	6.3 6.4	7234	4.2	118	120	74	120				63	109	109	43	175		< 0.005	2.86	0.56
2013/2014 AEMR	24-04-2014	DPL3	6.5	7448		136															
2013/2014 AEMR 2013/2014 AEMR	28-05-2014 25-06-2014	DPL3 DPL3	6.6 6.6	7484 7370	5.9	318 260	110	70	2290				82	125	1320	44	180		<0.005	6.47	0.93
2013/2014 AEMR	30-07-2014	DPL3	6.6	7431	4.9	122	110	66	2420				74	114	1200	46	177	0.03	<0.005	3.97	0.58
2013/2014 AEMR 2013/2014 AEMR	29-08-2014 29-09-2014	DPL3 DPL3	6.5 6.1	7643 7558	3.9 3	184 188	110	68	2370				71	110	1140	43	168		< 0.005	4.22	0.56
Appendix of 2015 AEMR	28-11-2014	DPL3	6.1	7491	4.2	100															
Appendix of 2015 AEMR	15-12-2014 22-01-2015	DPL3 DPL3	6.2 6.1	7280 7473	2.6 2.2	130 136	130	77	2370				82	118	1240	48	146	0.04	<0.005	3.53	0.59
Appendix of 2015 AEMR Appendix of 2015 AEMR	22-01-2015	DPL3 DPL3	6.4	7473	3.2	136															
Appendix of 2015 AEMR	26-03-2015	DPL3	6.1	7542	2.9	195	130	128													
Appendix of 2015 AEMR Appendix of 2015 AEMR	24-04-2015 28-05-2015	DPL3 DPL3	6.6 6.5	7540 7483	4.8 5.2	246 182															
Appendix of 2015 AEMR	17-09-2015	DPL3	6.4	7422	3.7	150	120		2380			0.04	68	102	1220	41	152	0.22	<0.001	3.09	0.641
Appendix of 2015 AEMR Appendix of 2015 AEMR	21-10-2015 25-11-2015	DPL3 DPL3	6.2 6.2	7310 7562	2.4 6.9	157 205													-		
Appendix of 2015 AEMR	11-12-2015	DPL3	6.3	7321	2.6	182	120	120	2370				68	108	1220	40	181	0.13	0.001	2.99	6.23
Appendix of 2016 AEMR	25-01-2016	DPL3	6.1	7395	2.8	147															
Appendix of 2016 AEMR Appendix of 2016 AEMR	24-02-2016 24-03-2016	DPL3 DPL3	6.2 6.4	7372 7406	5.7 3.5	58 155	123	123	2650				78.03	117.11	1284.98	44.19	176.114	0.07	0.001	2.183	0.625
Appendix of 2016 AEMR	29-04-2016	DPL3	6.4	7417	6.4	196															
Appendix of 2016 AEMR Appendix of 2016 AEMR	24-05-2016 30-06-2016	DPL3 DPL3	6.5 6.6	7394 7250.2	5.4 6.4	180 180															
Appendix of 2016 AEMR	21-07-2016	DPL3	6.5	6868.2	6.6	262															
Appendix of 2016 AEMR Appendix of 2016 AEMR	31-08-2016 29-09-2016	DPL3 DPL3	6.5 6.1	7281 7313	5.8 2.5	170 221	121		2650				78	121	1350	46	170		0.001	3.33	0.541
Appendix of 2016 AEMR	27-10-2016	DPL3	6.1	7313	399	1738															
Appendix of 2016 AEMR	29-11-2016	DPL3	6.1	7376	1.8	67	404		0700				75	444	4.00	40	100		0.004	2.4	0.544
Appendix of 2016 AEMR Q1 2017 Env mon report	20-12-2016 30-01-2017	DPL3 DPL3	6 6.1	7673 7119	4	315.9	121		2700				75	114	1.28	43	182		0.001	2.4	0.541
Q1 2017 Env mon report	27-02-2017		6.1	7013			400							100	4500			0.04	0.004	15	0.07
2017 Env Monitoring 2017 Env Monitoring	22-03-2017 19-04-2017	DPL3 DPL3	5.9 5.9	7570 7660		-	130		2300	0.1	4.1	2.9		130	1500	54	230	0.04	<0.001	15	0.67
2017 Env Monitoring	17-05-2017	DPL3	5.9	7410																	
2017 Env Monitoring 2017 Env Monitoring	14-06-2017 12-07-2017		6.2	7060																	
2017 Env Monitoring	09-08-2017	DPL3	6.2	7490																	
2017 Env Monitoring 2017 Env Monitoring	06-09-2017 04-10-2017		6.1 6	7490 7530			140		2000	<0.05	3	2		120	1600	55	140	0.04	<0.001	2.8	0.6
2017 Env Monitoring 2017 Env Monitoring	04-10-2017 01-11-2017		5.9	7530				L			L										
2017 Env Monitoring	29-11-2017	DPL3	5.9	7680			400		0.400	0.05				100	1700	50	100	0.00	-0.001	10	0.00
2017 Env Monitoring 2018 Env Monitoring	28-12-2017 24-01-2018	DPL3 DPL3	6 5.94	7570 7640			130		2400	0.05	3.8	2.8		130	1700	53	190	0.09	<0.001	13	0.62
2018 Env Monitoring	21-02-2018	DPL3	5.94	7240																	
2018 Env Monitoring 2018 Env Monitoring	21-03-2018 18-04-2018		5.87 5.94	8230 7580			140		2500	< 0.05	3.7	2.9		150	1400	53	200	0.09	<0.001	9.9	0.64
2018 Env Monitoring	16-05-2018	DPL3	5.97	7670																	
2018 Env Monitoring 2018 Env Monitoring	13-06-2018 11-07-2018	DPL3	6.02 6.18	7930 7280			130		2300	<0.05	4.1	2.7		120	1500	56	180	0.08	<0.001	11	0.61
2018 Env Monitoring 2018 Env Monitoring	08-08-2018	DPL3	6.1	7880																	
2018 Env Monitoring	05-09-2018	DPL3	5.38	3760	69.8	211	134		2760			2.46		137	1380	49	191	0.66	0.002	24	0.715
2018 Env Monitoring 2018 Env Monitoring	05-10-2018 06-11-2018	DPL3 DPL3	5.87 5.81	7540 7580	7.8																
2018 Env Monitoring	07-12-2018	DPL3	5.82	7520	3.4		151		2470			2.29		118	130	45	158	0.32	<0.001	12.9	0.658
2019 Env Monitoring 2019 Env Monitoring	08-01-2019 05-02-2019	DPL3 DPL3	5.84 5.76	7562.2 8597.1	10.2 0.38	-25.8 -88.9															
2019 Env Monitoring	08-03-2019	DPL3	3.88	680	0.30	39.3		120	3500				134	193	1720	56		0.07	<0.01	15.8	0.988
2019 Env Monitoring	05-04-2019	DPL3	5.83	8790	0.3	NR															
2019 Env Monitoring	07-05-2019	DPL3	4.08	568	8.5	278		400	0040				00	440	4400	47		0.40	-0.004	40.0	0.700
2019 Env Monitoring 2019 Env Monitoring	04-06-2019 04-07-2019	DPL3 DPL3	5.72 4.08	9200 568	0.4	56.8 278		133	2810				92	142	1400	47		0.18	<0.001	12.2	0.789
2019 Env Monitoring	01-08-2019	DPL3	5.99	7560	7.6	2.9		138	2610				84	130	1240	41		0.46	<0.001	14	0.797
2019 Env Monitoring	26-09-2019	DPL3	6.4	8790	4.3	106															
2019 Env Monitoring	24-10-2019	DPL3	6.16	8580	16	48											I				

B B								Lo	ongterm Gro	oundwater	Quality Mor	nitoring at D	ounloe Sand	ls Quarry								
ProblemProb	2019 Env Monitoring	22-11-2019		6.03	9480	10.0	<0.1		115	3840				150	236	1910	64		0.21	<0.001	17.6	1.11
UU	•								110	0040				100	200	1010	04		0.21	40.001	17.0	1.11
Norm Norm <th< td=""><td></td><td></td><td></td><td></td><td>75</td><td></td><td>49</td><td></td><td></td><td>30</td><td></td><td>5</td><td>-</td><td></td><td></td><td>_</td><td></td><td>25</td><td></td><td>-</td><td></td><td>30</td></th<>					75		49			30		5	-			_		25		-		30
UNDER UNDER <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.51</td></th<>												•										0.51
Normal And Ora - - - -<		-				1	1	1	1	1					1				1			6.23 0.83
B B D		-	DPL5	0.09	1252.54	14.27	200.41	120.07	50.27	2410.33	0.08	3.74	2.20	70.44	123.47	1102.74	40.00	100.04	0.17	0.00	0.71	0.85
B B										14				0.5	1	9.1	<5	5.9		<0.005	2.51	<0.01
Biological								2	1	47				0.0	1.2	0.0	-5	10		<0.00F	1.01	10.01
NUMBER OF APPER OPEN OF AF 44 OPEN O								2	1	17				0.6	1.3	9.2	<5	4.3		<0.005	1.01	<0.01
Second Second<	2011/2012 AEMR	27-08-2012	DPL5	4.6	103	3.4	292															
Second MA Deco Deco <thdeco< th=""> Deco</thdeco<>								<1	<1	19				0.7	1.4	10	<5	8.5	-	<0.005	0.89	<0.01
Substrate Main UNA UNA <thu< td=""><td></td><td></td><td></td><td>4.4</td><td>100</td><td>2.2</td><td>200</td><td></td><td></td><td>18</td><td></td><td></td><td></td><td>0.6</td><td>1.2</td><td>5.9</td><td><5</td><td>3.5</td><td></td><td>< 0.005</td><td>2.16</td><td><0.01</td></thu<>				4.4	100	2.2	200			18				0.6	1.2	5.9	<5	3.5		< 0.005	2.16	<0.01
Sector Land Land <thland< th=""> Land Land <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.01</td></t<></thland<>																						<0.01
State State <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td>8.2</td><td>-</td><td></td><td></td><td><0.01 0.14</td></th<>														-		-		8.2	-			<0.01 0.14
Bit				4.8	334	2.3	106	3	2					-	-		-	15				0.04
Biblio Biblio<																						
State State <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td>1</td><td>110</td><td></td><td></td><td></td><td>24</td><td>6.2</td><td>6.2</td><td></td><td>40</td><td></td><td><0.005</td><td>3 50</td><td><0.01</td></th<>								2	1	110				24	6.2	6.2		40		<0.005	3 50	<0.01
Bit Bit All						3.3		4		110				2.4	0.3	0.3	N 0	12		~0.005	3.32	<u>\U.UI</u>
State State <th< td=""><td>2013/2014 AEMR</td><td>28-05-2014</td><td>DPL5</td><td>4</td><td>239</td><td></td><td>313</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ļ</td><td></td><td></td></th<>	2013/2014 AEMR	28-05-2014	DPL5	4	239		313	1												ļ		
Sector PAC AB C AP CP CP AP CP CP AP AP CP CP AP AP AP CP CP AP AP CP AP AP AP AP A																-			2.00			0.05
Distriction Distriction <thdistriction< th=""> <thdistriction< th=""></thdistriction<></thdistriction<>						-								-			-		3.90			0.11 0.03
Answerted Teach	2013/2014 AEMR	29-09-2014	DPL5	3.8	942	1.8	247	1		· · ·												
Addex of 2014 BAS Vision Vision <								5	2	220				6.2	15	110	~5	11	0.2	<0.005	1/	0.08
International Stars, Sime Field 4 All All Base - - - -								5	3	220				0.2	10	110	~0	11	0.0	~0.005	14	0.00
Alexa 3314 3914 3914 Model 1 Model 1 Model 2 Model 2 <td>Appendix of 2015 AEMR</td> <td>25-02-2015</td> <td>DPL5</td> <td></td> <td>433</td> <td>6.2</td> <td>178</td> <td></td>	Appendix of 2015 AEMR	25-02-2015	DPL5		433	6.2	178															
Interver 2005-000 CPU All OIL All								2	2													
Append 2375 AMR B1:007 DR3 6.3 6.3 6.4 107 1 1 1																						
Algent 2015 ADM Selection								NP		220			0.18	5.5	9.6	113	<5	23	0.67	<0.001	1.4	0.055
Accession 2019 ADMR 101-2015 045 54 36 13 17 7 7 86 1 22 39 41 45 32 010 42000 721 0 Approxim 011 015 0.5 0.1 420 10																						
Appendic 200 ALBR Absolution 200 ALBR						-		7	7	80				2.2	3.9	41	<5	12	0.13	<0.001	7.21	0.027
Append add 300 Abbits Abd 302 abs GAL 3.13 4.12 7.44 110 1 <td></td>																						
Appendix 2010 ARMR 2004-2010 DMS 4.6 300 4.0 4.0 4.0 1.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td>6</td> <td>112</td> <td></td> <td></td> <td></td> <td>2 99</td> <td>3.88</td> <td>42.05</td> <td><5</td> <td>13 372</td> <td>0 148</td> <td><0.001</td> <td>4 597</td> <td>0.022</td>								6	6	112				2 99	3.88	42.05	<5	13 372	0 148	<0.001	4 597	0.022
Append cd 2016 ADAM S006 300 DPS 4.4 305 2.0 2.7 D <thd< th=""> D <thd< th=""></thd<></thd<>								Ŭ	Ŭ	112				2.00	0.00	12.00		10.072	0.140	-0.001	4.001	0.022
Appends of 3014 ALM 2 (247 206) PPS 4.4 362 397 -																						
Appendix di 200 ARDM 31.08 2016 OPE 4.4 386 4.4 200 4.1 200 200<																						
Appendix of 016 ALMS 271-02.01 DHS 4.4 390 2.5 285 Image of 016 ALMS 1mage of 016 ALMS <t< td=""><td>Appendix of 2016 AEMR</td><td>31-08-2016</td><td>DPL5</td><td>4.4</td><td>348</td><td>4.4</td><td>230</td><td><1</td><td></td><td>89</td><td></td><td></td><td></td><td>2.2</td><td>2.8</td><td>57</td><td><5</td><td>28</td><td></td><td>0.001</td><td>11.2</td><td>0.012</td></t<>	Appendix of 2016 AEMR	31-08-2016	DPL5	4.4	348	4.4	230	<1		89				2.2	2.8	57	<5	28		0.001	11.2	0.012
Appendix of 2016 ALEM 201-12 DPL6 6.4 1.6 1.7 <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td>																		-	-			
Appendix d 2013 AUM 2013 201 DPLS 6.2 280 3.3 2.4.5 5 1 50 1 2.3 2.8 4.7 <5 2.1 0.001 4.55 0.001 G12017 Emminiped 9726.2017 DPLS 6.1 2.00 1 0 1 0.1 1 0 1 2.0 0.011 4.5 0.011 1 0.1 1 0.1 2.0 0.01 1.5 0.011 0.1 1 0.1 2.0 2.0 0.011 1.5 0.011 0.1 1 0.1 2.0 2.0 0.011 1.5 0.001 1.5 0.001 1.5 0.001 1.5 0.001 1.5 0.001 1.5 0.001 1.5 0.001 1.5 0.001 1.5 0.001 1.5 0.001 1.5 0.001 1.5 0.001 1.5 0.001 1.5 0.001 1.5 0.001 1.5 0.001 0.011 0.011 0.011 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>						-																
O1 2017 Err. Montholog 2242.007 PR-5 5.5 244 Image: Second Secon	Appendix of 2016 AEMR			÷.=		3.3	244.5	5		50				2.3	2.8	47	<5	21		0.001	4.55	0.012
2012 Erry Manularing 28-43-2017 DPLS 5.1 300																						
2017 Em Monitoring 19.04-2017 DPLS 5.1 228 Image: Constraint of the second s								<5		63	0.1	1	0.1		2	55	1	22	0.2	<0.001	1.5	0.009
2017 Em Monitoring 14.06-2017 DPLS Image: Second Seco																						
2017 Ern Montoring 120/P-2017 DPLS 5.2 199 Image: constraint of the second s	•			5.1	226																	
2017 Erv Montoring 09-08-2017 PULS 5.1 200 PC 5.1 200 PC 5.2 179 PC 5.3 188 PC B 266 0.05 1.3 0.055 PC 0.5 35 0.7 18 0.54 <0.01 0.23 <0.023 <0.01 0.24 <0.01 0.23 <0.01 0.24 <0.01 0.23 <0.01 0.24 <0.01 0.24 <0.01 0.24 <0.01 0.24 <0.01 0.24 <0.01 0.24 <0.01 0.24 <0.01 0.24 <0.01 0.24 <0.01 0.24 <0.01 0.24 <0.01 0.24 <0.01 0.24 <0.01 7.2 0.24 <0.01 7.2 0.24 <0.01 7.2 0.24 <0.01 7.2 0.24 <0.01 7.2 0.24 <0.01 7.2 0.24 <0.01 7.2 0.24 <0.01 7.2 0.24 <0.01 7.2 0.20 2.4 2.4				5.2	189											1						
2017 Env Monitorig 04-10-2017 DPL5 5.3 188 Image: Constraint of the second s	2017 Env Monitoring	09-08-2017	DPL5	5.1	200			-					a a		-		10 10					
2017 Em. Monitoring 01-11-2017 DPL5 5.3 197 Image: Monitoring 281-12017 DPL5 5.3 197 Image: Monitoring 281-12017 DPL5 5.3 197 Image: Monitoring 281-12017 DPL5 4.5 2000 Image: Monitoring 241-2018 DPL5 4.5 2000 Image: Monitoring 240-12018 DPL5 4.53 1332 Image: Monitoring 21-02-0018 DPL5 4.53 1332 Image: Monitoring 110 370 c.0 Image: Monitoring 12-0 2000 Image: Monitoring 110 370 c.0 Image: Monitoring 12-0 2000 Image: Monitoring 10-2000 S11 Image: Monitoring 10-2010 DPL5 4.80 10-0 Image: Monitoring 10-2010 DPL5 4.80 10-0 10-0 10-0 10-0 <t< td=""><td>•</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>8</td><td></td><td>26</td><td>< 0.05</td><td>1.3</td><td>0.055</td><td></td><td><0.5</td><td>35</td><td>0.7</td><td>18</td><td>0.54</td><td><0.001</td><td>0.23</td><td><0.005</td></t<>	•				-			8		26	< 0.05	1.3	0.055		<0.5	35	0.7	18	0.54	<0.001	0.23	<0.005
2017 Erw Monitoring 28-12:017 OPLS 4.5 640 <0.05 0.6 0.24 <141 450 6.8 79 2.4 <0.01 7.2 0.01 2018 Erw Monitoring 240-12018 DPL5 4.42 2470 <																						
2018 Em Monitoring 24-03-2018 DPL5 4.42 2470 Image: Monitoring 12-03-2018 DPL5 4.43 1392 Image: Monitoring 12-03-2018 DPL5 4.58 1361 Image: Monitoring 12-03-2018 DPL5 4.58 12-00-01 4.22 0 2018 Em Monitoring 16-96-2018 DPL5 4.88 266 Image: Monitoring 16-96-2018 DPL5 4.69 Image: Monitoring 16-96-2018 DPL5 4.69 Image: Monitoring 16-96-2018 DPL5 4.61 252 Image: Monitoring 0-008 Imag				-						0.15						150			<u> </u>			
2018 Erv Monitoring 21-02-2018 DPL5 4.53 1392 Image: constraint of the state of								<5		640	< 0.05	0.6	0.24		41	450	6.8	79	2.4	<0.001	7.2	0.11
2018 Erv Monitoring 21-03-2018 DPL5 4.58 1461 11 370 <0.05 0.4 0.14 255 230 5.1 59 1.2 <0.011 4.2 0 2018 Erv Monitoring 16-04-2018 DPL5 4.88 266 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>1</td><td></td><td></td></t<>								1								1				1		
2018 Erv Monitoring 16-05-2018 DPL5 4.78 4.86 Image: Constraint of the constraint of	2018 Env Monitoring	21-03-2018	DPL5	4.58	1461			11		370	<0.05	0.4	0.14		25	230	5.1	59	1.2	<0.001	4.2	0.066
2018 Env Monitoring 13-06-2018 DPL5 4.69 4.09 4.69 4.60 2.1 15 0.28 <0.01 2.1 0 2018 Env Monitoring 11-07-2018 DPL5 4.73 623																						
2018 Env Monitoring 11-07-2018 DPL5 4.73 623 Image: Constraint of the constraint								<5		96	< 0.05	0.4	0.098		4.8	66	2.1	15	0.28	<0.001	2.1	0.019
2018 Env Monitoring 05-09-2018 DPL5 4.67 1880 4 112 0.12 7 58 2 14 0.36 <0.001 3.11 0. 2018 Env Monitoring 05-10-2018 DPL5 4.96 2011 -	2018 Env Monitoring	11-07-2018	DPL5	4.73	623																	
2018 Env Monitoring 05-10-2018 DPL5 4.96 201 <								4		112			0.12		7	58	2	14	0.36	<0.001	3 11	0.0029
2018 Env Monitoring $06-11-2018$ $DPL5$ 4.99 296 $1.12.6$ 2.0 $1.16.6$ 2.0 $1.16.6$ 2.0 $1.12.6$ 2.0 $1.16.6$ 2.0 $1.16.6$ 2.0 $1.16.6$ 2.0 $1.16.6$ 2.0 $1.16.6$ 2.0 $1.16.6$ 2.0 $1.16.6$ 2.0 $1.16.6$ 2.0 $1.16.6$ 2.0 $1.16.6$ 2.0 $1.16.6$ 2.0 $1.16.6$ 2.0 $1.16.6$ 2.0 $1.16.6$ 2.0 $1.16.6$ 2.0 $1.16.6$ 2.0 $1.16.6$ 2.0 $1.16.6$ 2.0 $1.06.6$ $2.0.66$ $2.0.66$ $1.2.15$ $3.66.9$ $0.16.6$ <								4		112			0.12		1		<u> </u>	14	0.00	~0.001	5.11	0.0029
2019 Env Monitoring 08-01-2019 DPL5 5.13 259.66 12.15 -36.9 0 1 <	2018 Env Monitoring	06-11-2018	DPL5	4.99	296			-							-		-					
2019 Env Monitoring 05-02-2019 DPL5 4.62 1140.4 0.43 -40.9 Image: Constraint of the co						10 15		2		156			0.16		8	80	2	20	0.31	<0.001	3.66	0.039
2019 Env Monitoring 08-03-2019 DPL5 9.89 3168 48 -82.4 4 100 2 5 16 2 0.23 <0.01 0 2019 Env Monitoring 05-04-2019 DPL5 4.63 1280 0.3 NR <																						
2019 Env Monitoring 07-05-2019 DPL5 6.41 5623 9.5 121	2019 Env Monitoring	08-03-2019	DPL5	9.89	3168	48	-82.4	1	4	100				2	5	16	2		0.23	<0.001		0.02
2019 Env Monitoring 04-06-2019 DPL5 4.43 2310 0.6 2.4 < 1 657 < 1 41 337 7 1.81 <0.001 0																						
								1	<1	657				1	41	337	7		1.81	<0.001		0.127
	2019 Env Monitoring	04-07-2019	DPL5	6.41	563	9.5	121															
2019 Env Monitoring 01-08-2019 DPL5 4.5 1780 10 46 <1 940 15 56 462 10 2.23 <0.001 0 2019 Env Monitoring 26-09-2019 DPL5 4.35 657 5.3 -14.4 <									<1	940				15	56	462	10		2.23	<0.001		0.212
2019 Env Monitoring 26-09-2019 DPL5 4.35 657 5.3 -14.4 2019 Env Monitoring 24-10-2019 DPL5 4.63 2380 10.8 61 Image: Constraint of the second s								1								1				1		

					Lo	ongterm Gro	oundwater	Quality Mor	itoring at D	unloe Sand	ls Quarry								
2019 Env Monitoring 22-11-2019 DPL5	4.63	2200	11.6	66.1		<1	888				14	55	54	10		1.74	<0.01		0.16
No of Samples	75	75	49	51	12	8	25	1	5	8	22	28	29	8	24	12	2	25	21
Minimum	3.6	5.4	0.3	-112.6	2	1	12	0.1	0.4	0.055	0.5	1	0.7	0.7	3.5	0.13	0.001	0.09	0.0029
Maximum	9.89	5623	48	386	11	7	940	0.1	1.3	0.24	15	56	462	10	79	3.96	0.001	15	0.212
Average 2011/2012 AEMR Dec-11 DPL6	4.83	706.54	5.98	169.85	4.75	3.25	214.41 14	0.10	0.74	0.14	4.40 2.7	13.47 3.6	95.19 4.9	4.81 <5	19.57 37	1.03	0.00 <0.005	4.40 9.48	0.06
2011/2012 AEMR Mar-12 DPL6							14				3.3	4.5	8.4	<5	42		<0.005	17	0.02
2011/2012 AEMR 30-05-2012 DPL6	3.8	302	1	464							7.0	10	40		10.1		0.005	47	
2011/2012 AEMR Jun-12 DPL6 2011/2012 AEMR 26-07-2012 DPL6	4.6	324 331	2.8 3.3	345 14	<1	<1	14				7.3	12	10	<5	104		<0.005	17	0.11
2011/2012 AEMR 27-08-2012 DPL6	4.4	419	2	84															
2011/2012 AEMR 27-09-2012 DPL6	4.3	363	2.2	279	<1	<1	15				11	14	12	<5	130		<0.005	24	0.16
2011/2012 AEMR 29-10-2012 DPL6 2012/2013 AEMR Dec-12 DPL6	4.4	425	4.9	127			15				4.7	4.7	13	<5	63		< 0.005	15	0.07
2012/2013 AEMR Mar-13 DPL6							14				3.6	2.5	11	<5	34		<0.005	20	0.07
2012/2013 AEMR Jun-13 DPL6 2012/2013 AEMR Sep-13 DPL6							18 16				3.1 2.4	2.1	3.1 11	<5 <5	40		<0.005 <0.005	15 10	0.04 0.04
2013/2014 AEMR 12-12-2013 DPL6	5.2	162	4.4	42	10	6	20				4.5	1.5	1.5	<5	30		< 0.005	10	0.04
2013/2014 AEMR 29-01-2014 DPL6	4.2	210	5.3	269															
2013/2014 AEMR 24-02-2014 DPL6 2013/2014 AEMR 31-03-2014 DPL6	4.2 4.8	228 165	4.5 2.5	268 130	3	2	22				5.6	1.8	1.8	<5	34		< 0.005	10.5	0.06
2013/2014 AEMR 24-04-2014 DPL6	5	156	2.0	162	Ű	2					0.0	1.0	1.0		01		-0.000	10.0	0.00
2013/2014 AEMR 28-05-2014 DPL6	3.8	198	0.4	343	-4		47				7	4.5	40	-5	440		<0.005	40	
2013/2014 AEMR 25-06-2014 DPL6 2013/2014 AEMR 29-08-2014 DPL6	3.2 4.1	497 1764	6.1 4.9	440 191	<1 NP	<1 NP	17 40				7 45	4.5 23	16 16	<5 9	119 958		<0.005 <0.005	13 388	0.2 2.01
2013/2014 AEMR 29-09-2014 DPL6	3.5	1699	<1	302										-					
Appendix of 2015 AEMR 28-11-2014 DPL6 Appendix of 2015 AEMR 15-12-2014 DPL6	4.5 3.5	1622 1700	2.6 <0.1	90 290	NP	<1	<3				134	26	24	10	768	10	<0.005	322	1.91
Appendix of 2015 AEMR 15-12-2014 DPL6 Appendix of 2015 AEMR 22-01-2015 DPL6	3.5 4.1	1216	3.4	230			~5				104	20	24	10	100	10	50.00	JZZ	1.81
Appendix of 2015 AEMR 25-02-2015 DPL6	3.7	951	1.6	213															
Appendix of 2015 AEMR 26-03-2015 DPL6 Appendix of 2015 AEMR 24-04-2015 DPL6	4.2 4.0	1600 1558	5.1 2.5	177 226	NP	NP													↓]
Appendix of 2015 AEMR 24-04-2015 DPL6 Appendix of 2015 AEMR 28-05-2015 DPL6	3.9	2153	5.3	279															├ ───┤
Appendix of 2015 AEMR 17-09-2015 DPL6	3.8	2219	2	220	NP		100			1.13	22	24	16	9	1490	147	<0.001	580	3.65
Appendix of 2015 AEMR 21-10-2015 DPL6 Appendix of 2015 AEMR 25-11-2015 DPL6	3.6 3.3	2189 2264	2	284 226															
Appendix of 2015 AEMR 23-11-2015 DPL6	3.4	2164	0.9	342	<1	<1	40				50	23	18	10	1520	104	0.011	291	3
Appendix of 2016 AEMR 25-01-2016 DPL6	4.5	2056	1.1	52															
Appendix of 2016 AEMR 24-02-2016 DPL6 Appendix of 2016 AEMR 24-03-2016 DPL6	4.4 4.1	2056 2031	2.3 1.5	78 183	<1	<1	23				55.48	23.88	17.76	10.27	1382.076	94.142	0.026	428	3.75
Appendix of 2016 AEMR 29-04-2016 DPL6	3.9	1997	1.9	183			20				00110	20.00		10121	10021010	01112	0.020	120	00
Appendix of 2016 AEMR 24-05-2016 DPL6	3.8	1974	2.8	199															ļ]
Appendix of 2016 AEMR 30-06-2016 DPL6 Appendix of 2016 AEMR 21-07-2016 DPL6	4.2 3.5	1810.2 1731.9	3.3 1.3	275 338															
Appendix of 2016 AEMR 31-08-2016 DPL6	3.7	1783	3.8	262	<1		790				24	22	14	<5	1100		0.001	241	1.96
Appendix of 2016 AEMR 29-09-2016 DPL6 Appendix of 2016 AEMR 27-10-2016 DPL6	3.8 3.8	1738 1738	1.9 1.9	189 189															
Appendix of 2016 AEMR 29-11-2016 DPL6	3.8	3.8	2.3	182															<u> </u>
Appendix of 2016 AEMR 20-12-2016 DPL6	3.7	1752	2.1	274.7	<1		<1				21	33	16	9	1080		0.001	259	1.96
Q1 2017 Env mon report 30-01-2017 DPL6 Q1 2017 Env mon report 27-02-2017 DPL6	3.6 3.8	1745 1653																	╂────┦
2017 Env Monitoring 22-03-2017 DPL6	3.8	1710			<5		17	0.3	2.5	0.54		21	14	10	1200	59	0.004	370	1.9
2017 Env Monitoring 19-04-2017 DPL6 2017 Env Monitoring 17-05-2017 DPL6	3.9 3.8	1540 1580																	ļ/
2017 Env Monitoring 14-06-2017 DPL6	3.7	1380			<5		17	0.2	1.6	0.59		17	14	11	990	43	0.003	300	1.4
2017 Env Monitoring 12-07-2017 DPL6	3.9	1100																	
2017 Env Monitoring 09-08-2017 DPL6 2017 Env Monitoring 06-09-2017 DPL6	3.9 3.7	1050 977			<5		16	<0.05	1.6	0.51		11	12	8	370	17	0.002	180	0.93
2017 Env Monitoring 04-10-2017 DPL6	3.9	1030		<u> </u>				-0.00	1.5	0.01			12		0.0		0.002	100	0.00
2017 Env Monitoring 01-11-2017 DPL6	3.9	1000																	
2017 Env Monitoring 29-11-2017 DPL6 2017 Env Monitoring 28-12-2017 DPL6	3.9 3.9	919 822			<5		18	0.1	1.6	0.41		8.8	11	8	540	12	0.001	150	0.67
2018 Env Monitoring 24-01-2018 DPL6	3.88	866			-									-					
2018 Env Monitoring 21-02-2018 DPL6 2018 Env Monitoring 21-03-2018 DPL6	3.84 3.94	822 655			<5		20	11	1.3	0.3		7.1	11	7.3	410	8.2	0.001	120	0.45
2018 Env Monitoring 21-03-2018 DPL6 2018 Env Monitoring 18-04-2018 DPL6	4.03	472		1			20		1.0	0.0		1.1		1.3	410	0.2	0.001	120	0.40
2018 Env Monitoring 16-05-2018 DPL6	3.98	469			-													- /	
2018 Env Monitoring 13-06-2018 DPL6 2018 Env Monitoring 11-07-2018 DPL6	3.89 3.92	533 463			<5		25	11	1.4	0.52		5.2	11	6.5	320	6.7	<0.001	74	0.4
2018 Env Monitoring 08-08-2018 DPL6	3.92	517																	<u> </u>
2018 Env Monitoring 05-09-2018 DPL6	3.82	600	6.82	14.5	<1		20	11		0.25		7	11	6	205	9.31	0.001		0.498
2018 Env Monitoring 05-10-2018 DPL6 2018 Env Monitoring 06-11-2018 DPL6	3.99 4.02	641 634	8.8 14.1																łł
2018 Env Monitoring 07-12-2018 DPL6	4.01	618	3.2		<1		17	11		0.28		8	11	6	328	12.1	0.001	123	0.659
2019 Env Monitoring 08-01-2019 DPL6	4.07	607.54	10.04	39.9															
2019 Env Monitoring 05-02-2019 DPL6 2019 Env Monitoring 08-03-2019 DPL6	4.07 5.78	653.15 10190	0.25	-45.9 -39.5		<1	18				11	8	11	6	293	9.51	<0.01	99.8	0.576
2019 Env Monitoring 05-04-2019 DPL6	3.98	655	0.3	NR								-		-					
2019 Env Monitoring 07-05-2019 DPL6 2019 Env Monitoring 04-06-2019 DPL6	5.69 3.9	8160 611	0.6	0.1 25.6		<1	16				10	8	11	6	288	9.92	0.001	108	0.54
2019 Env Monitoring 04-06-2019 DPL6 2019 Env Monitoring 04-07-2019 DPL6	3.9 5.69	8160	0.4	0.1			10				10	0		0	200	9.9Z	0.001	100	0.04
2019 Env Monitoring 01-08-2019 DPL6	3.93	473	2.8	53.8		<1	17				8	6	10	4	231	8.03	<0.001	92.6	0.538
2019 Env Monitoring 26-09-2019 DPL6 2019 Env Monitoring 24-10-2019 DPL6	3.93 4.94	109 393	0.8 24.3	-19.9 <0.1															├ ──── [/]
2019 Env Monitoring 22-11-2019 DPL6	3.96	463	24.3	36.9		<1	16				7	6	12	6	187	3.21	<0.01	45	0.225
No of Samples	75	75	50	49	2	2	28	7	6	9	22	30	30	18	29	16	12	29	30

							Lo	ongterm Gro	oundwater (Quality Mor	nitoring at D	unloe Sand	ds Quarry								
Minim	um		3.2	3.8	0.19	-45.9	3	2	14	0.1	1.3	0.25	21	29	1.5	4	30	3.21	0.001	9.48	0.02
Maxim			5.78	10190	35.9	464	10	6	790	11	2.5	1.13	134	33	24	11	1520	147	0.026	580	3.75
Avera	<u> </u>		4.06	1361.10	4.18	175.26	6.50	4.00	49.61	6.37	1.67	0.50	20.12	11.36	11.78	7.89	492.86	34.57	0.00	149.39	0.93
2011/2012 AEMR 2011/2012 AEMR	Dec-11 Mar-12	DPL7 DPL7							680 710				16 16	24	451 649	36 28	207 210		<0.005 <0.005	0.34 0.28	0.04 0.03
2011/2012 AEMR	30-05-2012	DPL7	7.4	3451	3.6	241			710				10	24	049	20	210		<0.005	0.20	0.03
2011/2012 AEMR	Jun-12	DPL7	7.5	3446	5	249	550	336	700				17	36	561	30	214		<0.005	0.32	0.05
2011/2012 AEMR 2011/2012 AEMR	26-07-2012 27-08-2012	DPL7 DPL7	7.4 7.6	3434 3492	3.4 2.5	-15 24															
2011/2012 AEMR	27-09-2012	DPL7	7.4	3385	2.1	154	430	256	730				15	32	530	28	226		<0.005	1.11	0.02
2011/2012 AEMR	29-10-2012	DPL7	7.2	3416	1.7	52			700				10		070				0.005	0.50	0.00
2012/2013 AEMR 2012/2013 AEMR	Dec-12 Mar-13	DPL7 DPL7							730 750				16 18	34 38	673 610	29 27	203 223		<0.005 <0.005	0.56	0.02
2012/2013 AEMR	Jun-13	DPL7							740				16	36	16	25	274		<0.005	1.56	0.03
2012/2013 AEMR 2013/2014 AEMR	Sep-13	DPL7 DPL7	7.0	3341	4.1	52	390	238	750 750				16	34 38	543 38	23 26	249		<0.005 <0.005	1.2 1.33	0.05
2013/2014 AEMR	12-12-2013 29-01-2014	DPL7 DPL7	7.2 7.3	3243	3.9	154	390	230	750				18	30	30	20	249		<0.005	1.55	0.08
2013/2014 AEMR	24-02-2014	DPL7	7.2	3151	2.4	231															
2013/2014 AEMR 2013/2014 AEMR	31-03-2014 24-04-2014	DPL7 DPL7	7.2 7.5	3358 3452	2.8	-2 116	410	250	720				19	39	39	26	253		<0.005	1.52	0.04
2013/2014 AEMR	28-05-2014	DPL7	7.3	3468		297															
2013/2014 AEMR	25-06-2014	DPL7	4.6	69	2.3	320	1	<1	15				0.3	0.2	9.9	<5	4.2		< 0.005	0.85	< 0.01
2013/2014 AEMR 2013/2014 AEMR	30-07-2014 29-08-2014	DPL7 DPL7	7.5 7.5	3414 3477	3.5 2.8	126 128	390 400	240 245	760 740				19 17	41 37	656 611	27 25	261 236	0.41	<0.005 <0.005	1.42 1.88	0.02
2013/2014 AEMR	29-09-2014	DPL7	7.2	3436	4.9	173		210									200		-0.000	1.00	5.51
Appendix of 2015 AEMR	28-11-2014	DPL7	7.1	3416	4.9	75	400	040	700				00	40	005	00	044	0.04	<0.005	4.00	0.00
Appendix of 2015 AEMR Appendix of 2015 AEMR	15-12-2014 22-01-2015	DPL7 DPL7	7.2	3340 3404	2.3 2.6	100 77	400	243	780				22	43	685	29	211	0.34	<0.005	1.62	0.06
Appendix of 2015 AEMR	25-02-2015	DPL7	7.4	3396	4.5	30															
Appendix of 2015 AEMR Appendix of 2015 AEMR	26-03-2015 24-04-2015	DPL7 DPL7	7.1 7.5	3446 3438	3.1 5.5	78 53	420	423	780				18	38	651	26	250	0.51	<0.001	2.62	0.077
Appendix of 2015 AEMR	28-05-2015	DPL7 DPL7	7.5	3438	5.5 6	161															
Appendix of 2015 AEMR	17-09-2015	DPL7	7.3	3323	2.8	110	380		760			0.06	18	39	644	25	250	0.62	<0.001	2.53	0.025
Appendix of 2015 AEMR Appendix of 2015 AEMR	21-10-2015	DPL7 DPL7	7.2	3330 3500	3.5 5.8	144 100															
Appendix of 2015 AEMR	25-11-2015 11-12-2015	DPL7 DPL7	7.2	3371	2.7	214	380	380	770				17	37	644	24	272	0.04	0.0002	2.44	0.084
Appendix of 2016 AEMR	25-01-2016	DPL7	7.1	3344	1.8	-36.00															
Appendix of 2016 AEMR Appendix of 2016 AEMR	24-02-2016 24-03-2016	DPL7 DPL7	7.2	3444 3399	5.5 4.1	-60.00 -9.00	363	363	738				18.21	38.01	637.38	26.08	260.218	0.356	<0.001	1.772	0.084
Appendix of 2016 AEMR	29-04-2016	DPL7	7.4	3374	6.4	26.00	505	505	730				10.21	30.01	007.00	20.00	200.210	0.330	<0.001	1.772	0.004
Appendix of 2016 AEMR	24-05-2016	DPL7	7.4	3382	5.5	-57.00															
Appendix of 2016 AEMR Appendix of 2016 AEMR	30-06-2016 21-07-2016	DPL7 DPL7	7.4 7.5	3404.7 3159	5.7 6.5	98.00							-								
Appendix of 2016 AEMR	31-08-2016	DPL7	7.3	3364	3.7	-22.00	369		760				24	35	604	24	217		0.001	2.07	0.082
Appendix of 2016 AEMR	29-09-2016 27-10-2016	DPL7 DPL7	7.2	3558 3558	2.4	44.00 44.00															
Appendix of 2016 AEMR Appendix of 2016 AEMR	29-11-2016	DPL7 DPL7	7.2	7.1	2.4	20.00															
Appendix of 2016 AEMR	20-12-2016	DPL7	6.9	3527	4.5	229.3	372		372				18	38	648	25	263		0.001	1.85	0.082
Q1 2017 Env mon report Q1 2017 Env mon report	30-01-2017 27-02-2017	DPL7 DPL7	6.9 7.1	3471 3174																	
2017 Env Monitoring	22-03-2017	DPL7	7	3430			350		360	0.1	2.1	0.19		36	830	29	710	0.33	<0.001	1.8	0.076
2017 Env Monitoring	19-04-2017																				
2017 Env Monitoring 2017 Env Monitoring	17-05-2017 14-06-2017	DPL7 DPL7	6.9	3440																	
2017 Env Monitoring	12-07-2017	DPL7	7	3360																	
2017 Env Monitoring	09-08-2017	DPL7	7	3480			200		640	0.1		0.07		20	040	04	250	0.00	10.001	4.0	0.005
2017 Env Monitoring 2017 Env Monitoring	06-09-2017 04-10-2017	DPL7 DPL7	7	3380 3450			390		640	0.1	2.9	0.67		38	940	31	350	0.33	<0.001	1.3	0.065
2017 Env Monitoring	01-11-2017	DPL7	6.9	3440																	
2017 Env Monitoring 2017 Env Monitoring	29-11-2017 28-12-2017	DPL7 DPL7	6.8 6.9	344 3410			380		720	0.1	3.6	2.4		38	930	30	250	0.33	<0.001	1.4	0.063
2017 Env Monitoring 2018 Env Monitoring	28-12-2017 24-01-2018	DPL7 DPL7	6.84	3410	1	1	300		120	0.1	3.0	2.4		30	900	30	200	0.00	~0.001	1.4	0.003
2018 Env Monitoring	21-02-2018	DPL7	6.83	3310																	
2018 Env Monitoring 2018 Env Monitoring	21-03-2018 18-04-2018	DPL7 DPL7	6.78 6.88	3650 3500			400		710	0.2	3.7	2.3		41	750	30	250	0.37	< 0.001	1.3	0.065
2018 Env Monitoring	16-05-2018	DPL7 DPL7	6.89	3480																	
2018 Env Monitoring	13-06-2018	DPL7	6.89	3570		1	380		680	0.1	3.9	2.3		37	840	31	260	0.35	<0.001	1.6	0.072
2018 Env Monitoring 2018 Env Monitoring	11-07-2018 08-08-2018	DPL7 DPL7	7.08 7.01	3220 3510																	
2018 Env Monitoring	05-09-2018	DPL7	3.9	2680	57.6	391	393		783			2.06		40	651	26	232	0.49	<0.001		0.074
2018 Env Monitoring	05-10-2018	DPL7	6.88	3340	7.5																
2018 Env Monitoring 2018 Env Monitoring	06-11-2018 07-12-2018	DPL7 DPL7	6.73 6.76	3530 3310	4 2.3	-112.6	395		749			2.08		39	635	25	278	0.5	<0.001	1.7	0.659
2019 Env Monitoring	08-01-2019	DPL7	6.75	3329.4	14.2	-90.7			175			2.00		33	055	23	2/0	0.3	~0.001	1./	0.039
2019 Env Monitoring	05-02-2019	DPL7	6.74	3571.4	0.18	-1620															
2019 Env Monitoring	08-03-2019	DPL7	5.09	367	0.22	3.2		415					755	39	675	25	267	0.44	<0.01	1.63	0.072
2019 Env Monitoring 2019 Env Monitoring	05-04-2019 07-05-2019	DPL7 DPL7	6.74 4.4	3460 2320	0.6	NR 0.1															
2019 Env Monitoring	04-06-2019	DPL7	6.68	3480	0.7	0.1		380					671	40	656	25	316	0.34	<0.001	1.57	0.078
2019 Env Monitoring	04-07-2019	DPL7	4.4	2320	0.7	0.1															
2019 Env Monitoring	01-08-2019	DPL7	6.88	3220	7.2	<0.1		393					639	38	607	22	265	0.51	<0.001	1.8	0.082
2019 Env Monitoring 2019 Env Monitoring	26-09-2019 24-10-2019	DPL7 DPL7	7.35 7.51	3420 3590	2.2	195 0.1							+	+			+				
2019 Env Monitoring	22-11-2019	DPL7	6.71	3570	5.7	<0.1		388					803	39	637	24	264	0.48	<0.001	1.48	0.074
No of Sa	mples		74	74	53	49	21	14	27	5	5	8	24	31	31	30	30	17	3	30	30
																					_

					Lo	ongterm Gro	oundwater	Quality Mon	itoring at D	unloe Sand	s Quarry								
Minimum	3.9	7.1	0.18	-1620	1	238	15	0.1	2.1	0.06	0.3	0.2	9.9	22	4.2	0.04	0.0002	0.28	0.01
Maximum	7.6	3820	57.6	391	550	423	783	0.2	3.9	2.4	803	43	940	36	710	0.62	0.001	2.62	0.659
Average	6.94	3207.18	4.67	50.09	378.24	325.00	680.63	0.12	3.24	1.51	133.60	35.68	582.30	26.90	257.51	0.40	0.00	1.45	0.08

Longterm Groundwater Depth Monitoring at Dunloe Sands Quarry

Date	DPL1	DPL3	DPL5	DPL6	DPL7
Nov-13	0.61	0.57	0.67	0.59	0.61
Apr-14	0.61	0.58	0.68	0.61	0.62
Nov-14	1.30	1.90	1.20	1.40	1.90
Dec-14	1.20	1.80	1.20	1.40	1.80
Jan-15	1.10	1.40	0.90	1.20	1.40
Feb-15	0.30	1.00	0.20	0.80	1.50
Mar-15	0.70	1.00	0.40	1.00	1.20
Apr-15	0.90	1.00	0.80	1.20	1.40
May-15	1.10	1.70	0.80	1.40	1.20
Jun-15	1.40	1.40	0.80	1.20	1.30
Jul-15	1.00	1.50	1.10	1.10	1.00
Aug-15	1.30	1.50	0.90	1.10	1.60
Sep-15	1.30	1.80	1.30	1.20	1.70
Oct-15	1.40	1.70	1.10	1.20	1.80
Nov-15	1.20	1.40	1.20	1.30	1.70
Dec-15	1.10	1.20	0.90	1.20	1.60
22-03-2017	1.58	1.28	1.38	1.95	1.20
19-04-2017	1.53	1.46	1.51	1.26	
17-05-2017	1.64	1.44	1.54	1.51	1.51
14-06-2017	0.89			1.08	
12-07-2017	1.69	1.52	1.60	1.54	1.47
09-08-2017	1.83	1.60	1.68	1.77	1.69
06-09-2017	1.90	1.61	1.67	1.85	1.80
04-10-2017	1.91	1.54	1.61	1.81	1.69
01-11-2017	1.92	1.64	1.72	1.81	1.72
29-11-2017	1.93	1.65	1.74	1.81	1.77
28-12-2017	1.94	1.66	1.74	1.97	1.78
24-01-2018	2.03	1.70	1.77	1.88	1.9
21-02-2018	1.94	1.52	1.62	1.87	1.89
21-03-2018	1.68	1.38	1.49	1.62	1.4
18-04-2018	1.6	1.33	1.41	1.52	1.24
16-05-2018	1.62	1.23	1.36	1.65	1.37
13-06-2018	1.74	1.42	1.56	1.78	1.55
11-07-2018	1.78	1.48	1.56	1.71	1.62
08-08-2018	1.98	1.72	1.80	1.78	1.78
05-09-2018		1.36	1.74	1.6	1.78
05-10-2018	1.73	1.39	1.39	1.73	1.64
06-11-2018	1.74	1.74	1.54	1.62	1.52
07-12-2018		1.39	1.46	1.58	1.34
08-01-2019	1.75	1.63	1.60	1.91	1.8
05-02-2019	1.99	1.64	1.71	2.1	1.93
08-03-2019	1.97	1.83	1.88	1.51	1.59
05-04-2019	1.58	1.35	1.39	1.48	1.56
07-05-2019	NA	NA	NA	NA	NA
04-06-2019	1.75	1.35	1.75	1.64	1.6
04-07-2019	1.68	1.26	1.42	1.49	1.31
01-08-2019	1.85	1.49	1.59	1.58	1.61
26-09-2010	2.45	2.74	2.77	1.64	2.75
24-10-2019	NR	NR	NR	NR	NR
22-11-2019	2.03	2.02	1.81	2.01	1.99
20-12-2019	2.13	1.79	1.83	1.68	2.01
Minimum	0.3	0.57	0.2	0.59	0.61
Maximum	2.45	2.74	2.77	2.1	2.75
Average		1.49	1.39	1.50	1.58

APPENDIX 3

DUNLOE SAND QUARRY TRUCK MOVEMENT SUMMARY

Monday 0 4 10 40 Tuesday 01-01-2019 0 4 10 40 Wednesday 02-01-2019 0 4 10 40 Flursday 03-01-2019 0 4 10 40 Friday 04-01-2019 0 4 10 40 Saturday 05-01-2019 0 0 0 0 0 Sunday 06-01-2019 1 4 10 400 400 Tuesday 08-01-2019 15 4 10 400 400 Wednesday 09-01-2019 15 4 10 400 400 Friday 11-01-2019 18 4 10 400 <t< th=""><th>Jan-1</th><th>L9</th><th></th><th></th><th></th><th></th><th></th></t<>	Jan-1	L9					
Date day Max Visits Per Hour hours Max visits per day Monday 0 4 10 40 Tuesday 01-01-2019 0 4 10 40 Wednesday 02-01-2019 0 4 10 40 Thursday 03-01-2019 0 4 10 40 Friday 04-01-2019 0 4 10 40 Saturday 06-01-2019 0 0 0 0 Monday 07-01-2019 21 4 10 400 Medesday 09-01-2019 15 4 10 400 Thursday 10-01-2019 18 4 10 400 Saturday 10-01-2019 13 4 10 400 Saturday 13-01-2019 0 0 0 0 Saturday 13-01-2019 14 4 10 400 Wednesday 16-01-2019 14 10 <td></td> <td></td> <td>Total truck</td> <td></td> <td></td> <td></td> <td></td>			Total truck				
On 4 10 40 Yuedasday 01-01-2019 0 4 10 40 Wednesday 02-01-2019 0 4 10 40 Thursday 03-01-2019 0 4 10 40 Thursday 03-01-2019 0 4 10 40 Saturday 05-01-2019 0 4 10 40 Saturday 06-01-2019 0 0 0 0 Wednesday 08-01-2019 19 4 10 40 Wednesday 09-01-2019 15 4 10 40 Wednesday 09-01-2019 18 4 10 40 Saturday 10-01-2019 13 4 10 40 Saturday 13-01-2019 0 0 0 0 0 Saturday 13-01-2019 14 4 10 40 40 Friday 15-01-2019 14			movements per		Operational		
Tuesday 01-01-2019 0 4 10 40 Wednesday 02-01-2019 0 4 10 40 Friday 03-01-2019 0 4 10 40 Friday 04-01-2019 0 4 10 40 Saturday 05-01-2019 0 4 5 20 Sunday 06-01-2019 0 0 0 0 0 Monday 07-01-2019 21 4 10 40 40 Wednesday 08-01-2019 15 4 10 40 40 Wednesday 09-01-2019 18 4 10 40 40 Friday 11-01-2019 13 4 10 40 40 Saturday 12-01-2019 0 0 0 0 0 0 Sunday 13-01-2019 14 4 10 40 40 40 Thursday 16-01-2019	Day	Date	day	Max Visits Per Hour	hours	Max visits per day	
Wednesday 02-01-2019 0 4 10 40 Thursday 03-01-2019 0 4 10 40 Friday 04-01-2019 0 4 10 40 Saturday 05-01-2019 0 4 5 20 Sunday 06-01-2019 0 0 0 0 Monday 07-01-2019 21 4 10 40 Mednesday 09-01-2019 15 4 10 40 Wednesday 09-01-2019 18 4 10 40 Friday 11-01-2019 18 4 10 40 Saturday 12-01-2019 0 4 5 20 Sunday 13-01-2019 0 0 0 0 0 Saturday 15-01-2019 20 4 10 40 40 Thursday 17-01-2019 14 4 10 40 40 Saturday	Monday		0		4	10	40
Inursday D3-01-2019 0 4 10 40 Friday 04-01-2019 0 4 10 40 Saturday 05-01-2019 0 4 5 20 Sunday 06-01-2019 0 0 0 0 0 Monday 07-01-2019 21 4 10 40 40 Tuesday 08-01-2019 15 4 10 40 40 Wednesday 09-01-2019 15 4 10 40 40 Friday 11-01-2019 13 4 10 40 40 Saturday 12-01-2019 0 4 5 20 40	Tuesday	01-01-2019	0	4	4	10	40
Triday 04-01-2019 0 4 10 40 Saturday 05-01-2019 0 4 5 20 Sunday 06-01-2019 0 0 0 0 Monday 07-01-2019 21 4 10 40 Tuesday 08-01-2019 19 4 10 40 Wednesday 09-01-2019 15 4 10 40 Fuesday 09-01-2019 18 4 10 40 Furday 11-01-2019 13 4 10 40 Saturday 12-01-2019 0 0 0 0 Saturday 13-01-2019 0 0 0 0 Monday 14-01-2019 19 4 10 40 Wednesday 16-01-2019 14 4 10 40 Friday 18-01-2019 0 0 0 0 0 Saturday 20-01-2019 0	Wednesday	02-01-2019	0	4	4	10	40
Saturday 05-01-2019 0 4 5 20 Sunday 06-01-2019 0 <	Thursday	03-01-2019	0	4	4	10	40
Sunday 06-01-2019 0 0 0 0 Monday 07-01-2019 21 4 10 40 Tuesday 08-01-2019 19 4 10 40 Wednesday 09-01-2019 15 4 10 40 Friday 10-01-2019 18 4 10 40 Friday 11-01-2019 13 4 10 40 Saturday 12-01-2019 0 4 5 20 Sunday 13-01-2019 0 0 0 0 0 Sunday 13-01-2019 0 0 0 0 0 0 Sunday 13-01-2019 14 4 10 40 40 Friday 16-01-2019 14 4 10 40 40 Saturday 19-01-2019 26 4 10 40 40 Saturday 19-01-2019 26 4 10	Friday	04-01-2019	0	4	4	10	40
Monday 07-01-2019 21 4 10 40 Tuesday 08-01-2019 19 4 10 40 Wednesday 09-01-2019 15 4 10 40 Tuesday 09-01-2019 15 4 10 40 Friday 11-01-2019 13 4 10 40 Saturday 12-01-2019 0 4 5 20 Sunday 13-01-2019 0 0 0 0 0 Monday 14-01-2019 19 4 10 40 40 Sunday 13-01-2019 0	Saturday	05-01-2019	0		4	5	20
No. No. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	Sunday	06-01-2019	0	(0	0	0
Normany Normany <t< td=""><td>Monday</td><td>07-01-2019</td><td>21</td><td></td><td>4</td><td>10</td><td>40</td></t<>	Monday	07-01-2019	21		4	10	40
Thursday 10-01-2019 18 4 10 40 Friday 11-01-2019 13 4 10 40 Saturday 12-01-2019 0 4 5 20 Sunday 13-01-2019 0 0 0 0 0 Monday 14-01-2019 19 4 10 40 Mursday 15-01-2019 20 4 10 40 Wednesday 16-01-2019 14 4 10 40 Mursday 17-01-2019 21 4 10 40 Friday 18-01-2019 18 4 10 40 Gaturday 19-01-2019 0 4 5 20 Sunday 20-01-2019 0 4 10 40 Monday 21-01-2019 27 4 10 40 Monday 22-01-2019 23 4 10 40 Wednesday 23-01-2019 17 4 10 40 Sturday 26-01-2019 0	Tuesday	08-01-2019	19	4	4	10	40
Friday 11-01-2019 13 4 10 40 Saturday 12-01-2019 0 4 5 20 Sunday 13-01-2019 0 0 0 0 Monday 14-01-2019 19 4 10 40 Tuesday 15-01-2019 20 4 10 40 Wednesday 16-01-2019 14 4 10 40 Thursday 17-01-2019 21 4 10 40 Friday 18-01-2019 18 4 10 40 Saturday 19-01-2019 0 0 0 0 Saturday 19-01-2019 0 4 5 20 Sunday 20-01-2019 0 0 0 0 0 Sunday 20-01-2019 27 4 10 40 Tuesday 23-01-2019 23 4 10 40 Wednesday 23-01-2019 17 4 10 40 Saturday 26-01-2019 0	Wednesday	09-01-2019	15		4	10	40
Saturday 12-01-2019 0 4 5 20 Sunday 13-01-2019 0 <	Thursday	10-01-2019	18		4	10	40
Sunday 13-01-2019 0 0 0 0 0 Monday 14-01-2019 19 4 10 40 Tuesday 15-01-2019 20 4 10 40 Wednesday 16-01-2019 14 4 10 40 Thursday 17-01-2019 21 4 10 40 Friday 18-01-2019 18 4 10 40 Saturday 19-01-2019 0 4 5 20 Sunday 20-01-2019 0 0 0 0 0 Monday 21-01-2019 26 4 10 40 40 Tuesday 23-01-2019 27 4 10 40<	Friday	11-01-2019	13		4	10	40
Monday 14-01-2019 19 4 10 40 Tuesday 15-01-2019 20 4 10 40 Wednesday 16-01-2019 14 4 10 40 Thursday 17-01-2019 21 4 10 40 Friday 18-01-2019 18 4 10 40 Saturday 19-01-2019 0 4 5 20 Sunday 20-01-2019 0 0 0 0 Monday 21-01-2019 26 4 10 40 Tuesday 22-01-2019 27 4 10 40 Wednesday 23-01-2019 23 4 10 40 Friday 25-01-2019 17 4 10 40 Saturday 26-01-2019 0 0 0 0 Sunday 27-01-2019 0 4 10 40 Sunday 27-01-2019 0 0 0 0 Sunday 27-01-2019 0 4 <td< td=""><td>Saturday</td><td>12-01-2019</td><td>0</td><td></td><td>4</td><td>5</td><td>20</td></td<>	Saturday	12-01-2019	0		4	5	20
Tuesday 15-01-2019 20 4 10 40 Yuesday 16-01-2019 14 4 10 40 Thursday 17-01-2019 21 4 10 40 Friday 18-01-2019 18 4 10 40 Saturday 19-01-2019 0 4 5 20 Sunday 20-01-2019 0 0 0 0 Monday 21-01-2019 26 4 10 40 Tuesday 22-01-2019 27 4 10 40 Wednesday 23-01-2019 23 4 10 40 Tuesday 23-01-2019 17 4 10 40 Friday 25-01-2019 17 4 10 40 Saturday 26-01-2019 0 0 0 0 0 Sunday 27-01-2019 0 4 10 40 Sunday 27-01-2019 0 0 0 0 Sunday 26-01-2019 0	Sunday	13-01-2019	0	(0	0	0
Wednesday 16-01-2019 14 4 10 40 Thursday 17-01-2019 21 4 10 40 Friday 18-01-2019 18 4 10 40 Saturday 19-01-2019 0 4 5 20 Saturday 19-01-2019 0 0 0 0 Sunday 20-01-2019 0 0 0 0 0 Monday 21-01-2019 26 4 10 40 40 Tuesday 22-01-2019 27 4 10 40 40 Wednesday 23-01-2019 23 4 10 40 40 Thursday 24-01-2019 17 4 10 40 40 Saturday 25-01-2019 18 4 10 40 40 Saturday 26-01-2019 0 0 0 0 0 0 Sunday 27-01-2019 0	Monday	14-01-2019	19		4	10	40
Thursday17-01-20192141040Friday18-01-20191841040Saturday19-01-201904520Sunday20-01-20190000Monday21-01-20192641040Tuesday22-01-20192741040Wednesday23-01-20192341040Friday25-01-20191741040Saturday26-01-201904520Sunday26-01-2019041040Friday25-01-20190000Saturday26-01-2019041040Saturday26-01-2019041040Wednesday29-01-2019041040Wednesday30-01-20191541040	Tuesday	15-01-2019	20		4	10	40
Friday 18-01-2019 18 4 10 40 Saturday 19-01-2019 0 4 5 20 Sunday 20-01-2019 0 0 0 0 Monday 21-01-2019 26 4 10 40 Tuesday 22-01-2019 27 4 10 40 Wednesday 23-01-2019 23 4 10 40 Thursday 24-01-2019 17 4 10 40 Friday 25-01-2019 18 4 10 40 Saturday 26-01-2019 0 4 5 20 Sunday 26-01-2019 0 4 10 40 Saturday 26-01-2019 0 4 5 20 Sunday 27-01-2019 0 4 10 40 Yesday 28-01-2019 0 4 10 40 Wednesday 29-01-2019 22 4 10 40	Wednesday	16-01-2019	14		4	10	40
Saturday 19-01-2019 0 4 5 20 Sunday 20-01-2019 0 <	Thursday	17-01-2019	21		4	10	40
Sunday 20-01-2019 0 0 0 0 Monday 21-01-2019 26 4 10 40 Tuesday 22-01-2019 27 4 10 40 Wednesday 23-01-2019 23 4 10 40 Thursday 24-01-2019 17 4 10 40 Friday 25-01-2019 17 4 10 40 Saturday 26-01-2019 0 4 5 20 Saturday 26-01-2019 0 4 10 40 Saturday 26-01-2019 0 4 10 40 Saturday 26-01-2019 0 0 0 0 0 Sunday 27-01-2019 0 4 10 40 40 Wonday 28-01-2019 0 4 10 40 40 Wednesday 30-01-2019 15 4 10 40	Friday	18-01-2019	18		4	10	40
Monday 21-01-2019 26 4 10 40 Tuesday 22-01-2019 27 4 10 40 Wednesday 23-01-2019 23 4 10 40 Thursday 24-01-2019 17 4 10 40 Friday 25-01-2019 18 4 10 40 Saturday 26-01-2019 0 4 5 20 Sunday 27-01-2019 0 4 10 40 Tuesday 26-01-2019 0 4 10 40 Saturday 26-01-2019 0 4 5 20 Sunday 27-01-2019 0 0 0 0 Wonday 28-01-2019 0 4 10 40 Wednesday 30-01-2019 15 4 10 40	Saturday	19-01-2019	0		4	5	20
Tuesday 22-01-2019 27 4 10 40 Wednesday 23-01-2019 23 4 10 40 Thursday 23-01-2019 23 4 10 40 Thursday 24-01-2019 17 4 10 40 Friday 25-01-2019 18 4 10 40 Saturday 26-01-2019 0 4 5 20 Sunday 27-01-2019 0 0 0 0 Monday 28-01-2019 0 4 10 40 Tuesday 29-01-2019 0 4 10 40 Wednesday 30-01-2019 15 4 10 40	Sunday	20-01-2019	0	(0	0	0
Wednesday 23-01-2019 23 4 10 40 Thursday 24-01-2019 17 4 10 40 Friday 25-01-2019 18 4 10 40 Saturday 26-01-2019 0 4 5 20 Sunday 27-01-2019 0 0 0 0 Monday 28-01-2019 0 4 10 40 Tuesday 29-01-2019 22 4 10 40 Wednesday 30-01-2019 15 4 10 40	Monday	21-01-2019	26		4	10	40
Thursday24-01-20191741040Friday25-01-20191841040Saturday26-01-201904520Sunday27-01-20190000Monday28-01-2019041040Tuesday29-01-20192241040Wednesday30-01-20191541040	Tuesday	22-01-2019	27		4	10	40
Friday25-01-20191841040Saturday26-01-201904520Sunday27-01-20190000Monday28-01-2019041040Tuesday29-01-20192241040Wednesday30-01-20191541040	Wednesday	23-01-2019	23		4	10	40
Saturday26-01-201904520Sunday27-01-20190000Monday28-01-2019041040Tuesday29-01-20192241040Wednesday30-01-20191541040	Thursday	24-01-2019	17		4	10	40
Sunday 27-01-2019 0 0 0 0 0 Monday 28-01-2019 0 4 10 40 Tuesday 29-01-2019 22 4 10 40 Wednesday 30-01-2019 15 4 10 40	Friday	25-01-2019	18		4	10	40
Monday 28-01-2019 0 4 10 40 Tuesday 29-01-2019 22 4 10 40 Wednesday 30-01-2019 15 4 10 40	Saturday	26-01-2019	0		4	5	20
Tuesday29-01-20192241040Wednesday30-01-20191541040	Sunday	27-01-2019	0		0	0	0
Wednesday 30-01-2019 15 4 10 40	Monday	28-01-2019	0		4	10	40
,	Tuesday	29-01-2019	22		4	10	40
Thursday 31-01-2019 15 4 10 40	Wednesday	30-01-2019	15		4	10	40
	Thursday	31-01-2019	15		4	10	40

Feb-1	19				
		Total truck			
		movements per		Operational	
Day	Date	day	Max Visits Per Hour	hours	Max visits per day
Friday	43497	19	4	. 10	40
Saturday	02-02-2019	0	4	. 5	20
Sunday	03-02-2019	0	0	0	0
Monday	04-02-2019	25	4	. 10	40
Tuesday	05-02-2019	21	4	. 10	40
Wednesday	06-02-2019	7	4	. 10	40
Thursday	07-02-2019	21	4	. 10	40
Friday	08-02-2019	15	4	. 10	40
Saturday	09-02-2019	0	4	. 5	20
Sunday	10-02-2019	0	0	0	0
Monday	11-02-2019	28	4	. 10	40
Tuesday	12-02-2019	24	4	. 10	40
Wednesday	13-02-2019	24	4	. 10	40
Thursday	14-02-2019	23	4	. 10	40
Friday	15-02-2019	23	4	. 10	40
Saturday	16-02-2019	0	4	. 5	20
Sunday	17-02-2019	0	0	0	0
Monday	18-02-2019	19	4	. 10	40
Tuesday	19-02-2019	30	4	. 10	40
Wednesday	20-02-2019	17	4	. 10	40
Thursday	21-02-2019	24	4	. 10	40
Friday	22-02-2019	29	4	. 10	40
Saturday	23-02-2019	0	4	. 5	20
Sunday	24-02-2019	0	0	0	0
Monday	25-02-2019	21	4	. 10	40
Tuesday	26-02-2019	13	4	. 10	40
Wednesday	27-02-2019	23	4	. 10	40
Thursday	28-02-2019	19	4	. 10	40

Mar-19	I					
		Total truck				
		movements per		Operational		
Day	Date	day	Max Visits Per Hour	hours	Max visits per day	
Friday	01-03-2019	13		4	10	40
Saturday	02-03-2019	0		4	5	20
Sunday	03-03-2019	0		0	0	0
Monday	04-03-2019	32		4	10	40
Tuesday	05-03-2019	23		4	10	40
Wednesday	06-03-2019	16		4	10	40
Thursday	07-03-2019	26		4	10	40
Friday	08-03-2019	28		4	10	40
Saturday	09-03-2019	0		4	5	20
Sunday	10-03-2019	0		0	0	0
Monday	11-03-2019	25		4	10	40
Tuesday	12-03-2019	27		4	10	40
Wednesday	13-03-2019	19		4	10	40
Thursday	14-03-2019	29		4	10	40
Friday	15-03-2019	14		4	10	40
Saturday	16-03-2019	0		4	5	20
Sunday	17-03-2019	0		0	0	0
Monday	18-03-2019	11		4	10	40
Tuesday	19-03-2019	13		4	10	40
Wednesday	20-03-2019	20		4	10	40
Thursday	21-03-2019	24		4	10	40
Friday	22-03-2019	20		4	10	40
Saturday	23-03-2019	0		4	5	20
Sunday	24-03-2019	0		0	0	0
Monday	25-03-2019	20		4	10	40
Tuesday	26-03-2019	25		4	10	40
Wednesday	27-03-2019	16		4	10	40
Thursday	28-03-2019	11		4	10	40
Friday	29-03-2019	17		4	10	40
Saturday	30-03-2019	0		4	5	20
Sunday	31-03-2019	0		0	0	0

Apr-19						
		Total truck		Operation		
Day	Date	movements per	Max Visits Per Hour	hours	Max visits per day	
Monday	01-04-2019	26		4	10	40
Tuesday	02-04-2019	22		4	10	40
Wednesday	03-04-2019	20		4	10	40
Thursday	04-04-2019	17		4	10	40
Friday	05-04-2019	27		4	10	40
Saturday	06-04-2019	0		4	5	20
Sunday	07-04-2019	0		0	0	0
Monday	08-04-2019	19		4	10	40
Tuesday	09-04-2019	18		4	10	40
Wednesday	10-04-2019	21		4	10	40
Thursday	11-04-2019	21		4	10	40
Friday	12-04-2019	21		4	10	40
Saturday	13-04-2019	0		4	5	20
Sunday	14-04-2019	0		0	0	0
Monday	15-04-2019	18		4	10	40
Tuesday	16-04-2019	12		4	10	40
Wednesday	17-04-2019	16		4	10	40
Thursday	18-04-2019	16		4	10	40
Friday	19-04-2019	0		4	10	40
Saturday	20-04-2019	0		4	5	20
Sunday	21-04-2019	0		0	0	0
Monday	22-04-2019	0		4	10	40
Tuesday	23-04-2019	12		4	10	40
Wednesday	24-04-2019	34		4	10	40
Thursday	25-04-2019	23		4	10	40
Friday	26-04-2019	0		4	10	40
Saturday	27-04-2019	20		4	5	20
Sunday	28-04-2019	0		0	0	0
Monday	29-04-2019	15		4	10	40
Tuesday	30-04-2019	26		4	10	40

May-19						
		Total truck				
		movements per		Operational		
Day	Date	day	Max Visits Per Hour	hours	Max visits per day	
Wednesday	01-05-2019	28		4	10	40
Thursday	02-05-2019	18		4	10	40
Friday	03-05-2019	16		4	10	40
Saturday	04-05-2019	0		4	5	20
Sunday	05-05-2019	0		0	0	0
Monday	06-05-2019	18		4	10	40
Tuesday	07-05-2019	23		4	10	40
Wednesday	08-05-2019	19		4	10	40
Thursday	09-05-2019	18		4	10	40
Friday	10-05-2019	20		4	10	40
Saturday	11-05-2019	0		4	5	20
Sunday	12-05-2019	0		0	0	0
Monday	13-05-2019	20		4	10	40
Tuesday	14-05-2019	18		4	10	40
Wednesday	15-05-2019	14		4	10	40
Thursday	16-05-2019	19		4	10	40
Friday	17-05-2019	11		4	10	40
Saturday	18-05-2019	0		4	5	20
Sunday	19-05-2019	0		0	0	0
Monday	20-05-2019	13		4	10	40
Tuesday	21-05-2019	19		4	10	40
Wednesday	22-05-2019	20		4	10	40
Thursday	23-05-2019	17		4	10	40
Friday	24-05-2019	28		4	10	40
Saturday	25-05-2019	0		4	5	20
Sunday	26-05-2019	0		0	0	0
Monday	27-05-2019	24		4	10	40
Tuesday	28-05-2019	20		4	10	40
Wednesday	29-05-2019	20		4	10	40
Thursday	30-05-2019	25		4	10	40
Friday	31-05-2019	15		4	10	40

Jun-1	9				
		Total truck			
		movements per		Operational	
Day	Date	day	Max Visits Per Hour	hours	Max visits per day
Saturday	01-06-2019	1	4	5	20
Sunday	02-06-2019	0	0	0	0
Monday	03-06-2019	39	4	10	40
Tuesday	04-06-2019	26	4	10	40
Wednesday	05-06-2019	17	4	10	40
Thursday	06-06-2019	28	4	10	40
Friday	07-06-2019	23	4	10	40
Saturday	08-06-2019	0	4	5	20
Sunday	09-06-2019	0	0	0	0
Monday	10-06-2019	0	4	10	40
Tuesday	11-06-2019	28	4	10	40
Wednesday	12-06-2019	18	4	10	40
Thursday	13-06-2019	12	4	10	40
Friday	14-06-2019	15	4	10	40
Saturday	15-06-2019	0	4	5	20
Sunday	16-06-2019	0	0	0	0
Monday	17-06-2019	25	4	10	40
Tuesday	18-06-2019	17	4	10	40
Wednesday	19-06-2019	19	4	10	40
Thursday	20-06-2019	26	4	10	40
Friday	21-06-2019	24	12	10	120
Saturday	22-06-2019	7	12	5	120
Sunday	23-06-2019	0	0	0	0
Monday	24-06-2019	17	12	10	120
Tuesday	25-06-2019	7	12	10	120
Wednesday	26-06-2019	2	12	10	120
Thursday	27-06-2019	8	12	10	120
Friday	28-06-2019	15	12	10	120
Saturday	29-06-2019	0	12	5	60
Sunday	30-06-2019	0	0	0	0

Jul-19					
		Total truck			
		movements per		Operational	
Day	Date	day	Max Visits Per Hour	hours	Max visits per day
Monday	01-07-2019	36	12	10	120
Tuesday	02-07-2019	14	12	10	120
Wednesday	03-07-2019	20	12	10	120
Thursday	04-07-2019	16	12	10	120
Friday	05-07-2019	15	12	10	120
Saturday	06-07-2019	0	12	5	60
Sunday	07-07-2019	0	0	0	0
Monday	08-07-2019	11	12	10	120
Tuesday	09-07-2019	20	12	10	120
Wednesday	10-07-2019	14	12	10	120
Thursday	11-07-2019	20	12	10	120
Friday	12-07-2019	30	12	10	120
Saturday	13-07-2019	0	12	5	60
Sunday	14-07-2019	0	0	0	0
Monday	15-07-2019	21	12	10	120
Tuesday	16-07-2019	20	12	10	120
Wednesday	17-07-2019	13	12	10	120
Thursday	18-07-2019	18	12	10	120
Friday	19-07-2019	26	12	10	120
Saturday	20-07-2019	0	12	5	60
Sunday	21-07-2019	0	0	0	0
Monday	22-07-2019	21	12	10	120
Tuesday	23-07-2019	15	12	10	120
Wednesday	24-07-2019	22	12	10	120
Thursday	25-07-2019	22	12	10	120
Friday	26-07-2019	14	12	10	120
Saturday	27-07-2019	0	12	5	60
Sunday	28-07-2019	0	0	0	0
Monday	29-07-2019	18	12	10	120
Tuesday	30-07-2019	22	12	10	120
Wednesday	31-07-2019	22	12	10	120

Aug-19					
		Total truck			
		movements per		Operational	
Day	Date	day	Max Visits Per Hour	hours	Max visits per day
Thursday	01-08-2019	31	12	10	120
Friday	02-08-2019	20	12	10	120
Saturday	03-08-2019	0	12	5	60
Sunday	04-08-2019	0	0	0	0
Monday	05-08-2019	17	12	10	120
Tuesday	06-08-2019	16	12	10	120
Wednesday	07-08-2019	19	12	10	120
Thursday	08-08-2019	21	12	10	120
Friday	09-08-2019	20	12	10	120
Saturday	10-08-2019	0	12	5	60
Sunday	11-08-2019	0	0	0	0
Monday	12-08-2019	27	12	10	120
Tuesday	13-08-2019	20	12	10	120
Wednesday	14-08-2019	16	12	10	120
Thursday	15-08-2019	17	12	10	120
Friday	16-08-2019	25	12	10	120
Saturday	17-08-2019	0	12	5	60
Sunday	18-08-2019	0	0	0	0
Monday	19-08-2019	21	12	10	120
Tuesday	20-08-2019	22	12	10	120
Wednesday	21-08-2019	14	12	10	120
Thursday	22-08-2019	18	12	10	120
Friday	23-08-2019	26	12	10	120
Saturday	24-08-2019	0	12	5	60
Sunday	25-08-2019	0	0	0	0
Monday	26-08-2019	18	12	10	120
Tuesday	27-08-2019	20	12	10	120
Wednesday	28-08-2019	29	12	10	120
Thursday	29-08-2019	28	12	10	120
Friday	30-08-2019	9	12	10	120
Saturday	31-08-2019	0	12	5	60

Sep-1	9				
		Total truck			
		movements per		Operational	
Day	Date	day	Max Visits Per Hour	hours	Max visits per day
Sunday	01-09-2019	0	0	0	0
Monday	02-09-2019	25	12	10	120
Tuesday	03-09-2019	23	12	10	120
Wednesday	04-09-2019	24	12	10	120
Thursday	05-09-2019	29	12	10	120
Friday	06-09-2019	23	12	10	120
Saturday	07-09-2019	0	12	5	60
Sunday	08-09-2019	0	0	0	0
Monday	09-09-2019	21	12	10	120
Tuesday	10-09-2019	19	12	10	120
Wednesday	11-09-2019	18	12	10	120
Thursday	12-09-2019	21	12	10	120
Friday	13-09-2019	19	12	10	120
Saturday	14-09-2019	0	12	5	60
Sunday	15-09-2019	0	0	0	0
Monday	16-09-2019	26	12	10	120
Tuesday	17-09-2019	20	12	10	120
Wednesday	18-09-2019	21	12	10	120
Thursday	19-09-2019	26	12	10	120
Friday	20-09-2019	34	12	10	120
Saturday	21-09-2019	0	12	5	60
Sunday	22-09-2019	0	0	0	0
Monday	23-09-2019	21	12	10	120
Tuesday	24-09-2019	20	12	10	120
Wednesday	25-09-2019	21	12	10	120
Thursday	26-09-2019	22	12	10	120
Friday	27-09-2019	21	12	10	120
Saturday	28-09-2019	0	12	5	60
Sunday	29-09-2019	0	0	0	0
Monday	30-09-2019	13	12	10	120

Oct-19)				
		Total truck			
		movements per		Operational	
Day	Date	day	Max Visits Per Hour	hours	Max visits per day
Tuesday	01-10-2019	33	12	10	120
Wednesday	02-10-2019	16	12	10	120
Thursday	03-10-2019	73	12	10	120
Friday	04-10-2019	59	12	10	120
Saturday	05-10-2019	0	12	5	60
Sunday	06-10-2019	0	0	0	0
Monday	07-10-2019	0	12	10	120
Tuesday	08-10-2019	22	12	10	120
Wednesday	09-10-2019	24	12	10	120
Thursday	10-10-2019	26	12	10	120
Friday	11-10-2019	18	12	10	120
Saturday	12-10-2019	0	12	5	60
Sunday	13-10-2019	0	0	0	0
Monday	14-10-2019	21	12	10	120
Tuesday	15-10-2019	23	12	10	120
Wednesday	16-10-2019	23	12	10	120
Thursday	17-10-2019	24	12	10	120
Friday	18-10-2019	15	12	10	120
Saturday	19-10-2019	0	12	5	60
Sunday	20-10-2019	0	0	0	0
Monday	21-10-2019	21	12	10	120
Tuesday	22-10-2019	19	12	10	120
Wednesday	23-10-2019	18	12	10	120
Thursday	24-10-2019	23	12	10	120
Friday	25-10-2019	25	12	10	120
Saturday	26-10-2019	0	12	5	60
Sunday	27-10-2019	0	0	0	0
Monday	28-10-2019	30	12	10	120
Tuesday	29-10-2019	20	12	10	120
Wednesday	30-10-2019	49	12	10	120
Thursday	43769	28	12	10	120

Nov-1	9				
		Total truck			
		movements per		Operational	
Day	Date	day	Max Visits Per Hour	hours	Max visits per day
Friday	01-11-2019	23	12	10	120
Saturday	02-11-2019	0	12	5	60
Sunday	03-11-2019	0	0	0	0
Monday	04-11-2019	21	12	10	120
Tuesday	05-11-2019	17	12	10	120
Wednesday	06-11-2019	20	12	10	120
Thursday	07-11-2019	17	12	10	120
Friday	08-11-2019	24	12	10	120
Saturday	09-11-2019	0	12	5	60
Sunday	10-11-2019	0	0	0	0
Monday	11-11-2019	26	12	10	120
Tuesday	12-11-2019	33	12	10	120
Wednesday	13-11-2019	30	12	10	120
Thursday	14-11-2019	24	12	10	120
Friday	15-11-2019	23	12	10	120
Saturday	16-11-2019	0	12	5	60
Sunday	17-11-2019	0	0	0	0
Monday	18-11-2019	29	12	10	120
Tuesday	19-11-2019	23	12	10	120
Wednesday	20-11-2019	22	12	10	120
Thursday	21-11-2019	33	12	10	120
Friday	22-11-2019	18	12	10	120
Saturday	23-11-2019	10	12	5	60
Sunday	24-11-2019	0	0	0	0
Monday	25-11-2019	34	12	10	120
Tuesday	26-11-2019	32	12	10	120
Wednesday	27-11-2019	21	12	10	120
Thursday	28-11-2019	24	12	10	120
Friday	29-11-2019	11	12	10	120
Saturday	30-11-2019	0	12	5	60

Dec-1	9				
		Total truck			
		movements per		Operational	
Day	Date	day	Max Visits Per Hour	hours	Max visits per day
Sunday	01-12-2019	0	0	0	0
Monday	02-12-2019	28	12	10	120
Tuesday	03-12-2019	25	12	10	120
Wednesday	04-12-2019	19	12	10	120
Thursday	05-12-2019	25	12	10	120
Friday	06-12-2019	13	12	10	120
Saturday	07-12-2019	0	12	5	60
Sunday	08-12-2019	0	0	0	0
Monday	09-12-2019	21	12	10	120
Tuesday	10-12-2019	23	12	10	120
Wednesday	11-12-2019	23	12	10	120
Thursday	12-12-2019	23	12	10	120
Friday	13-12-2019	16	12	10	120
Saturday	14-12-2019	0	12	5	60
Sunday	15-12-2019	0	0	0	0
Monday	16-12-2019	31	12	10	120
Tuesday	17-12-2019	24	12	10	120
Wednesday	18-12-2019	28	12	10	120
Thursday	19-12-2019	27	12	10	120
Friday	20-12-2019	13	12	10	120
Saturday	21-12-2019	0	12	5	60
Sunday	22-12-2019	0	0	0	0
Monday	23-12-2019	0	12	10	120
Tuesday	24-12-2019	0	12	10	120
Wednesday	25-12-2019	0	12	10	120
Thursday	26-12-2019	0	12	10	120
Friday	27-12-2019	0	12	10	120
Saturday	28-12-2019	0	12	5	60
Sunday	29-12-2019	0	0	0	0
Monday	30-12-2019	0	12	10	120
Tuesday	31-12-2019	0	12	10	120

APPENDIX 4

DUNLOE SAND QUARRY ACID SULPHATE SOIL MONITORING RESULTS

Acid Sulphate test sample 2019

DUNLOE SANDS

Acid sulphate tests

ass

Daniel Dwyer

Construction & Holcim n<mark>illin</mark> Ngga

Construction Sciences Pty Ltd ABN: 74 128 808 735 Subscenariong Construction from Sciences Acids Construction and press phones 2111 (16). Appropriate inspiration phones 2 for 555 (21)

Address: 32 Hi-Tech Drive Kunda Park Qid 4556

Telephone: (07) 5452 0100 Email:

Laboratory: Sunshine Coset Laboratory

Website: ctionsciences.net sunshinecoast@constru

ctionsciences, net

Faceimile: (07) 5452 0133

15
-
100
-
0
-
0.
10.0
Ú.
÷.
1 C C
en
ш
and a second
÷.
- 1 - I
nin n
ш
1
iii)aa
-
-
10
W.
-
_
and the second second
- 1
and the second second
-
-
0
CC.
Nelso -
-
ada -
65
S
1

	Holcim (Australia)		24						Report Number:		3740/S/124880CRS	OCRS	
	Level 2, 18 Little Cribb Street, Milton QLD 4064	on QLD	4064						Project No:		3740/P/1333		
	Ballina NSW - Holcim Dunioe Sands	ls Is							Lot Number:				
									Internal Test Request:	equest:	3740/T/23979		
	Supplied Sample							-	Client Reference:	:00	22373/CC/280		
									Purchase Order No:	IT No:			
Area Description:									Date Sampled:		29/01/2019		
	Construction Sciences - Bailina								Date Tested:		8/02/2019		
Sampling Method:	Tested as Received								Report Date:		8/02/2019		
	AS 4969.0, .1, .2, .4, .7, .8, .15, .13, .14												
Laboratory Number	Sample Location	đ	pH _{kci} 7	TAA	TAA	Skci	Scr	SNAS	ANCet	ANCBT	Net Acidity	Net Acidity	Recommended Liming Rate
		unita:	е 1	(M°moW)	(8 %)	, (8 %)	(8 %)	(8 %)	(%ceco) ⁴	(%8)	(H [*] mol/I)	(2 % 2)	(kg of lime per cubic metre)
		LOR:	0.1	ţ	0.001	0.007	0.02	0.001	0.01	0.01	1	0.001	0.1
3740/S/124880	Concrete Sand #1	~	8.5	0	0.000	<0.007	0.021	nr	0.45	0.14	-47	-0.076	No Liming Required
3740/S/124881	Concrete Sand #2	3	8,6	0	0.000	0.008	0.029	nr	0.33	0.10	-26	-0.041	No Liming Required
3740/S/124882	Sand #1	47	5.3	9	0.009	<0.007	<0.02	Ъг	nr	nr	9	0.009	No Liming Required
3740/S/124883	Sand #2	447	5.4	6	0.014	<0.007	<0.02	nr	nr	nr	8	0.014	No Liming Required
3740/S/124884	Sand	9	6.7	0	0.000	<0.007	<0.02	nr	0.16	0.05	-21	-0.034	No Liming Required
			-										
		-45	57	4 6	0.002								

Notes:

nr: not required, pH trigger not met.

LOR: Limit of Reporting

^a If pH_{kcl} <6.5 it must be assumed that effective ANC is zero. Effective ANC is ANC_{B1}/Fineness Factor of 1.5.

⁸ S_{VCI} determined as suffate by turbidimetric method. Where liming is specified, lime should be fine grained agricultural lime of at least 90% purity. Any liming rate provided is a recommended rate only, and is based on the total of TAA Equivalent % Oxidisable Sulphur plus Potential Acidity (S_{C2}) plus Retained Acidity (S_{Nus}) minus effective ANC; with a factor of safety of 1.5.

Any recommended liming rate is based on the 0.03%8 action criteria. A placed dry density of 1.7 tonnes/cubic metre has been used in calculating liming rate/s. The recommended liming rate is derived from a mathematical equation and with used to be field velidated. Construction Sciences accepts no responsibility for any loss associated with use of the calculated liming rate/s Results apply to the sample(s) as received.

/ Why

APPROVED SIGNATORY: Paul Mayes Form Number: REP CRS-Holdm-1 28/06/17

The results of the tests, celibrations and/or measurements included in this document are traceable to Australian/hatlonal elandards. Accredited for compliance with ISO/IEC 17025 - Testing

1986 3740 Accreditation No.: Corporate Site Number:

Sciences Holdim Auto-annior of American American In-annia (1999) American American In-Concerne Inspective physics (1988) 114

Construction Sciences Pty Ltd ABN: 74 128 808 735

Laboratory: Sunshine Coast Laboratory

Address: 32 HL-Tech Drive Kunda Park Qid 4556

Telephone: (07) 5452 0100 Email:

Facelmile: (07) 5452 0133 sunshinecoast@constructionsciences.net

www.admstructionsciences.net Website:

RT
T REPO
TE TES
INS WN
CHROMI
4

Client: Client Address: Project: Location: Component:	Hoicim (Australia) Level 2, 18 Little Cribb Street, Milton QLD 4064 Ballina NSW - Hoicim Dunioe Sands - Supplied Sample -							Report Number: Project No: Lot Number: Internal Test Request: Client Reference: Cultortase Order No:	oer: Request: nce: der No:	3740/S/128670CRS 3740/P/1333 3740/T/24801 22373/CC/284	0CRS	
Area Description: Sampled by: Sampling Method: Test Procedures:	- Construction Sciences - Ballina Tested as Received As 4000.0.1.2.4.7.8.11.13.14							Date Tested: Report Date:	5	20/03/2019 21/03/2019 21/03/2019		
Laboratory Number	Sample Location	pHkci	TAA	TAA	Skci	ပို့	SHAB	ANCBT	ANCBT	Net Acidity	Net Acidity	Recommended Liming Rate
	Larifies	•	(H [*] mol/t)	(8 %)	. (8 %)	(8 %)	(8 %)	(%caco ₃) ^r	, (8%)	(H°mol/t)	(8 %)	(tig of lime per cubin metre)
	POR:	0.1	-	0.001	0.007	0.02	0,001	0.01	0.01	1	0.001	0.1
3740/S/128670	553452.77 m E 6855629.11 m S MGA94 Concrete Sand #1	6,8	0	0.000	0.007	0.028	n	0.10	0.03	4	0,006	No Liming Required
3740/S/128671	553484.44 m E 6855614.87 m S MGA94 Concrete Sand #2	7.3	0	0.000	0.007	0.024	n	0.15	0,05	φ.	-0.009	No Liming Required
3740/S/128672	553356.47 m E 6855584.13 m S MGA94 White Sand #1	5,7	4	<0.002	<0.007	0.027	'n	n	u	17	0.027	No Liming Required
3740/S/128673	553384.40 m E 6855572.34 m S MGA94 White Sand #2	5.8	-	0.002	0.011	<0.02	n	n	r	1	0.002	No Liming Required
3740/S/128674	553540.15 m E 6855608.49 m S MGA94 Loam Sand	5.2	4	0.007	0.007	<0.02	'n	Ŀ	n	4	0.007	No Liming Required
Blank		5,3	6.1	0.010								

Notes:

nr: not required, pH trigger not met. LOR: Limit of Reporting

[#] if pH_{Kcl} <6.6 it must be assumed that effective ANC is zero.

Effective ANC is ANC_{BT}/Fineness Factor of 1.5.

⁴ S_{VCI} determined as suffate by turbidimetric method. Where liming is specified, lime should be fine grained agricultural lime of at least 90% purity. Any liming rate provided is a recommended rate only, and is based on the total of TAA Equivalent % Oxidisable Sulphur plus Potential Acidity (S_{Cr}) plus Retained Acidity (S_{VAS}) minus effective ANC; with a factor of safety of 1.6.

Any recommended liming rate is based on the 0.03%S action criteria. A placed dry deneight of 1.7 tonnewould come used in calculating liming rate/s. The recommended liming rate is derived from a mathematical equation and will need to be field validated. Construction Sciences accepts no responsibility for any loss associated with use of the calculated liming rate/s. Results apply to the sample(s) as received.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISOAEC 17025 - Testing

Accreditation No.: 1986 Corporate Site Number: 3740

Thuy

APPROVED SIGNATORY: Paul Mayes Form Number: REP CRS-Holdim-1 29/08/17

ciences
UN
u <mark>ullu</mark>

Construction Sciences Pty Ltd ABN: 74 128 806 735

Laboratory: Sunshine Coast Laboratory

Telephone: (07) 5452 0100

lonsciences.net sunshinecoast@cor Email:

www.constructionsciences.net Website:

Facsimile: (07) 5452 0133

F
õ
REP
STI
Ĕ
E
SU
M
IN
RO
H

CHROMIUM SU	CHROMIUM SUITE TEST REPORT												
Cllent: Cllent Address: Project: Sub Project: Location: Component: Area Descrintion:	Holcim (Australia) Level 2, 18 Little Cribb Street, Milton QLD 4064 Bailina NSW - Holciom Dunioe Sands - Supplied Sample -	ton QLD Inds	4064					V . D	Report Number: Project No: Lot Number: Internal Test Request: Client Reference: Purchase Order No: Date Sampled:	r: tequest: ar No: :	3740/S/134628CRS 3740/P/1333 N/A 3740/T/25935 22373/CC/322 - 31/05/2019	S	
Sampled by: Sampling Method: Tast Precedures:	Construction Sciences - Bailina Tested as Received As 48660.01.21.4.71.8.11.13.14								Date Tested: Report Date:		12/06/2019 13/06/2019		
Laboratory Number	Sample Location		PHKCI	TAA	TAA	Skci	ື່ວ	SNAS	ANCBT	ANCBT	Net Acidity	Net Acidity	Recommended Liming Rate
		units:		(H [*] moW)	(8 %)	(% S) [*]	(% 8)	(8 %)	(%CBC03) ⁶	, (8%)	(M*mol/t)	(8 %)	(kg of lime per cubic metre)
		LOR:	0.1	-	0.001	0.007	0.02	0.001	0.01	0.01	-	0.001	0.1
3740/S/134628	Stockpile 7285 N/A		9.2	0	0.000	0.011	0.038	'n	1.00	0.32	-109	-0.175	No Liming Required
3740/S/134629	Stockplie 7286 N/A	-	9.2	0	0.000	0.007	0.034	L	0.43	0.14	-36	-0.058	No Liming Required
3740/S/134630	Stockpile 7287 N/A		6.8	0	0.000	0.011	<0.02	nr	0.21	0.07	-28	-0.044	No Liming Required
3740/S/134631	Stockpile 7288 N/A		7.6	0	0.000	0.015	<0.02	'n	0.33	0.11	-44	-0.070	No Liming Required
3740/S/134632	Stockpile 7289 N/A		7.1	0	0.000	0.022	0.023	L	0.16	0.05	ę	-0.012	No Liming Required
Blank		_	5,9	1.9	0.003								

Notes:

nr: not required, pH trigger not met.

LOR: Limit of Reporting

[#] If pH_{kci} <6.5 It must be assumed that effective ANC is zero.

Effective ANC is ANC_{BT}/Fineness Factor of 1.5.

^a S_{Kci} determined as sulfate by turbidimetric method.

Where Ilming is specified, lime should be fine grained agricultural lime of at least 90% purity. Any liming rate provided is a recommended rate only, and is based on the total of TAA Equivalent % Oxidisable Suiphur plus

Potential Acidity (S_{cr}) plus Retained Acidity (S_{tua}) minue effective ANC; with a factor of safety of 1.6.

Any recommended liming rate is based on the 0.03% action criteria. A placed dry density of 1.7 tonnes/cubic mate as been used in calculating liming rate/s. The recommended liming rate is derived from a mathematical equation and will need to be field validated. Construction Sciences accepts no responsibility for any loss associated with use of the calculated liming rate/s Results apply to the sample(s) as received.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17026 - Testing

1986 3740 Accreditation No.: Corporate Site Number:

Mmy

APPROVED SIGNATORY: Paul Mayes Form Number: REP CRS-Holdim-1 29/06/17

	Construction		Construction Sciences Pty Ltd ABN: 74 128 806 735	ances Pty Ltd 735		-	Laboratory: Sunshine Goast Laboratory	e Coast Laborato	2		
in sci	Sciences holcim	lcim	Address: 32 Hi-Tech Drive			₽8	Telephone: (07) 5452 0100			Facelmite: (07) 5452 0133	
	hadh-caddition for any constraint of the optimization of the optim	bach-catritications (a motification by ventures) levels acrosses 2 subsection excision primer (31, 184, Appl ogging accounting primers (3123, 525, 229	Kunda Park Qid 48	206		ш ळ,	Emeit: sunshinecoast@constructionsciences.net	nctionsciences,ne		Website: www.constructionsciences.net	sciences.net
CHROMIUM SU	CHROMIUM SUITE TEST REPORT										
Client:	Holcim (Australia)						Report Number:		3740/S/134633CRS	3CRS	
Client Address:	Level 2, 18 Little Cribb Street, Milton QLD 4064	D 4064					Project No: Lot Number:		3/40/P/1333 N/A		
Project: Sub Broiect:	Ballina Novy - noicioill Dunioe Sailus -					-	nternal Test Request:	equest:	3740/T/25936		
Location:	Supplied Sample					04	Client Reference: Purchase Order No:	se: r No:	22373/CC/323	~	
Component: Area Description:						-	Date Sampled:		3/06/2019		
Samnlad hv	Construction Sciences - Ballina						Date Tested:		12/06/2019		
Sampling Method:	Tested as Received					Addies -	Report Date:		13/06/2019		
Test Procedures: I shorefory Numher	AS 4969.0, .1, .2, .4, .7, .8, .11, .13, .14	pH _{kci} TAA	TAA	Skci	Scr	SNAS	ANCBT	ANCBT	Net Acidity	Net Acidity	Recommended Liming Rate
		(H [*] mel/k)	(8 %)	* (8 %)	(% 8)	(% 8)	(%CaCO ₃)	, (8%)	(H*mol/t)	(8 %)	(kg of lime par cubic matra)
	LOR	0.1		0.007	0.02	0.001	0.01	0.01	1	0.001	0.1
3740/S/134833	Stockpile 7290 N/A	8.5 0	0.000	<0.007	0.033	Ŀ	0.37	0.12	-29	-0.047	No Liming Required
3740/S/134634	Stock nile 7291 N/A	8,5	0,000	<0.007	0.037	nr	0.30	0.10	-16	-0.026	No Liming Required
3740/S/134635	Stockpile 7292 N/A	7,9 0	0,000	0.011	<0.02	nr	0.15	0.05	-20	-0.033	No Liming Required
3740/S/134636	Stockpile 7293 N/A	7.7 0	0.000	0.011	<0.02	Ŀ	0.07	0.02	Ģ	-0.014	No Liming Required
3740/S/134637	Stockpile 7294 N/A	7.3 0	0.000	0.022	<0.02	Ŀ	0.19	0.06	-25	-0.040	No Liming Required
Blank		5.9 1.9	0.003								
Notes: nr: not required, pH trigger not met. LOR: Limit of Reporting	Notes: nr: not required, pH trigger not met. LOR: Limit of Reporting							VATA	The results of the documen Accredite	tasts, celibrations and/or m t are traceable to Australian of for compliance with ISO/ Accreditation No.:	The results of the tests, celibrations and/or measuraments included in this document are traceable to Australian/micloral standards. Accredited for compliance with ISO/IEC 17025 - Testing Accreditation No.: 1986

Effective ANC is ANC_{BT}/Fineness Factor of 1.5.

 $^{\rm a}$ S $_{\rm KG}$ determined as sulfate by turbidimetric method.

Where Ilming is specified, lime should be fine grained sgricultural lime of at least 90% purity. Any liming rate provided is a recommended rate only, and is based on the total of TAA Equivalent % Oxtdisable Sulphur plus Potential Acidity (So,) plue Retained Acidity (S_{uxe}) minus effective ANC; with a factor of safety of 1.5.

Any recommended liming rate is based on the 0.03% action criteria. A placed dry density of 1.7 tonnes/cubic matte has been used in calculating liming rate/a. The recommended liming rate is derived from a mathematical equation and will need to be field validated. Construction Sciences accepts no responsibility for any loss associated with use of the calculated liming rate/s.

Pary

APPROVED SIGNATORY: Paul Mayes Form Number: REP CRS-Holdm-1 29/06/17

Sciences Holcim

Nukuratrasing Canatasihan Senanan terhin Danapta empiring pinan 131-135. Argmepara menintan pinan 1340-555 211

Construction Sciences Pty Ltd ABN: 74 128 805 735 Address: 32 HI-Tech Drive Kunda Park Qid 4556

Laboratory: Sunshine Coast Laboratory

Telephone: (07) 6452 0100

Facsimile: (07) 5452 0133 Website: Email: sunshinecoast@constructionsciences.net

www.constructionsciences.net

- A 1
0
× 1
ш
02
Ht I
CO .
ΪÍ
1
T.
11
<u> </u>
Э.
76
Y
5
÷.
18 C
2
0
Ř
-
÷.
C (3)

									Denort Number		2740/S/142923CRS		
Client:	Holcim (Australia)									•			
Cilent Address:	Level 2, 18 Little Cribb Street, Milton QLD 4064	ton QL	D 4064					-	Project No:		3/40/P/1333		
Prolect:	Bailina NSW - Holcim Dunioe Sands	spr						1	Lot Number:		N/A		
Sub Prolect:								1	Internal Test Request:	equest:	3740/T/27489		
Location:	Supplied Sample								Client Reference:	:e:	22373/CC/338		
Component: Area Description:									Purchase Orger No: Date Sampled:	IN I	22/08/2019		
Sampled by: Sampling Method:	Construction Sciences-Ballina Tested as Received								Date Tested: Report Date:		29/08/2019 29/08/2019		
Test Procedures:	AS 4969.0, 11, 2, 4, 7, 8, 111, 13, 14												
Laboratory Number	Sample Location	F	pHkci	TAA	TAA	Skci	Sc.	SNAB	ANCBT	ANCBT	Net Acidity	Net Acidity	Recommended Liming Rate
		unite:	•	(H*mol/t)	(8 %)	(% %)	(8 %)	(8 %)	(%C=CO3) *	g (8%)	(H ⁺ mol/t)	(8 %)	(kg of lime per cubic metre)
		LOR:	0.1	-	0.001	0.007	0.02	0.001	0,01	0.01	1	0.001	0.1
2740/S/142023	Stockbile 7335 N/A		8.5	0	0.000	0.011	0.033	'n	0.66	0.21	-67	-0.108	No Liming Required
3740/S/142024	Stocknike 7336 N/A		9.4	0	0.000	0.015	0.036	Ŀ	0.60	0.19	-58	-0.093	No Liming Required
9740/01440005	Stocknile 7337 N/A		7.4	0	0.000	0.022	<0.02	'n	0.12	0.04	-16	-0.026	No Liming Required
0140101440000	Stocknike 7338 N/A	T	7.3	0	0.000	0.030	<0.02	n	0.01	0.00	-2	-0.003	No Liming Required
3740/S/142927	Stocknile 7339 N/A		7.3	0	0.000	<0.007	<0.02	nr	0.06	0.02	φ	-0.013	No Liming Required
tiank		1	85	2.1	0.003								

Notes:

nr: not required, pH trigger not met.

LOR: Limit of Reporting

 $^{\rm d}$ if pH_{\rm Kci} <6.5 it must be assumed that effective ANC is zero.

^a S_{kci} determined as sulfate by turbidimetric method. Effective ANC is ANC₅₇/Fineness Factor of 1.5.

Where liming is specified, lime should be fine grained agricultural lime of at least 80% purity. Any liming rate provided is a recommended rate only, and is based on the total of TAA Equivalent % Oxidisable Sulphur plue Potential Acidity (S_{cr}) plue Retained Acidity (S_{Ma}) minus effective ANC; with a factor of safety of 1.5.

Any recommended liming rate is based on the 0.03%S action criteria.

A placed dry density of 1.7 tonnes/cubic metre has been used in calculating liming rate/s.

The recommended liming rate is derived from a mathematical equation and will need to be field validated. Construction Sciences accepts no responsibility for any loss associated with use of the calculated liming rate/s Results apply to the sample(s) as received.

Mur

APPROVED SIGNATORY: Paul Mayes Form Number: REP CRS-Holdim-1 29/08/17

The results of the tasts, calibrations and/or massurements included in this document are traceable to Australian/mational standards. Accredited for compliance with ISO/IEC 17025 - Testing

1986 3740 Accreditation No.: Corporate Site Number:

Sciences Holcim

Address: 32 Hi-Tech Drive Kunda Park Qid 4556 Nuberoten, kanji Construction Kumurov teolo Cuntoreto empariter placere 3.11.136. Aggregate conjunitor placere 1.540.155.277

Construction Sciences Pty Ltd ABN: 74 128 808 735

Laboratory: Sunshine Coast Laboratory

Telephone: (07) 5452 0100

Facelmile: (07) 5452 0133

Email:

sunshinecoast@constructionsclences.net

www.constructionsciences.net Website:

2
0
<u>.</u>
ш.
0
10
U J
ш
len l
5 A.
SO
—1.
\geq
2
0
\simeq
23
()

Client: Holcim (Australie) Report Number: 3740/5/147682CRS Client Address: Leval 2, 16 Little Cribb Streei, Milton Qid 4064 Project No: 3740/71333 Froject: Ballina NSW - Holcim Dunloe Sands - 2373/5/736 Froject: Supplied Sample - - Sub Project: Supplied Sample - - Location: Supplied Sample - - Location: Supplied Sample - - Component: - - - - Component: - - - - - - Component: - - - - - - - Campled Sample - - - - - - - -															
ss: Level 2, 18 Little Cribb Street, Milton Qid 4064 Project No:: 3740/P/1333 Bailline NSW - Holcim Dunice Sands Lot Number: 3740/T/3333 Supplied Sample Supplied Sample 3740/T/3333 Internal Test Request: 3740/T/20333 Supplied Sample Supplied Sample 2373/CC/346 Internal Test Request: 3740/T/20333 Supplied Sample Date Sample 26/09/2019 Internal Test Request: 3740/T/20333 Client Eateneore: 2373/CC/346 titon: - Date Sampled: 26/09/2019 titon: - Date Sampled: 75/10/2019 titon: - Date Sampled: 75/10/2019 titon: - Not Not 76/07 Asteso.1.1.3.4.7.5.11.13.14 Anter Not Not 76/07 Asteso.1.1.3.4.7.6.11.13.14 Tax Scotchint 737 Not 76/07 76/07 Asteso.1.1.3.4.7.7.9.11.1.13.14 Tax Scotchint 737 Not 770/07 76/07 Asteso.1.1.3		Holcim (Australia)								Report Numbe	3r:	3740/S/14768	2CRS		-
Lot Number: Lot Number: Lot Number: - -	\ddress:	Level 2, 18 Little Cribb Street, Mili	ton Qld	4064						Project No:		3740/P/1333			
- - 3740/7/2833 Supplied Sample 3740/7/2833 Supplied Sample 26109/2019 Supplied Sample 2373/5C/346 Ition: - - 26109/2019 Client Pate Sampled: 25109/2019 Ition: - 26109/2019 Client Tastes Scotler No: - Tested sampled: 26109/2019 Ition: - 26109/2019 Assess.u.tst.t.nt.nt.nt.nt.nt.nt.nt.nt.nt.nt.nt.n		Ballha NSW - Holcim Dunioe San	ds							Lot Number:					
Client Reference: 2373/CC/346 Client Reference: 2373/CC/346 Itent Purchase Order No: 26/09/2019 Itent Date Sampled: 26/09/2019 Client Tested as Received 15/10/2019 Itent Phkci TAA Skin Skin 26/09/2019 Itent Tested as Received 15/10/2019 15/10/2019 15/10/2019 Itent Itent Nample Location phkci TAA Skin Skin 26/09/2019 Itent Stockpile 7376 9.0 0.000 0.007 0.035 nn 0.12 2.8 0.004 7683 Stockpile 7376 8.3 0 0.000 0.015 0.02 0.12 2.8 0.014 0.014 7685 Stockpile 7376 6.6 0 0.000 0.011 0.026 0.12 2.8 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014	oject:									Internal Test F	Request:	3740/T/28333			_
Identification Purchase Order No: Client Cato Sampled: S6/09/2019 Unuber Pate Tested: To/10/2019 As 46650.1.1.3111314 To 26/09/2019 As 46650.1.3411314 To 26/07/2019 Mate Tested: To/10/2019 To/2		Supplied Sample								Client Referen	108:	22373/CC/34(6		
Item Date Sampled: 26/09/2019 Item 26/09/2019 26/09/2019 Item 26/09/2019 26/09/2019 Item Client 26/09/2019 26/09/2019 Item Client 26/09/2019 26/09/2019 Attended Table Location Phkeil Table Location 15/10/2019 Assess.01247.8111314 Table Location Phkeil 7.4 Nat 5c, Shot Date: 76/10/2019 Assess.01247.8111314 Table Location Phkeil 78 <th78< th=""> 78<td>nent:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Purchase Ord</td><td>er No:</td><td></td><td></td><td></td><td>_</td></th78<>	nent:									Purchase Ord	er No:				_
Date Tested: 15/10/2019 Tested as Received 15/10/2019 Tested as Received 15/10/2019 As as as as as as as as as a set of the set of	scription:									Date Sampled		26/09/2019			_
India Tested as Received Tasted as Received <td>d by:</td> <td>Client</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Date Tested:</td> <td></td> <td>15/10/2019</td> <td></td> <td></td> <td></td>	d by:	Client								Date Tested:		15/10/2019			
As 468.00, 11, 2, 4, 7, 8, 11, 13, 14 Iumber Sample Location PH _{Kcl} TAA TAA S _{Kcl} S _{NAS} ANC _{BT} ANC _{BT} Net Acidity Net	g Method:	Tested as Received								Report Date:		15/10/2019			
Rampie Location PH _{Kcl} TAA TAA S _{Kcl} S _{LAS} ANC _{BT} ANC _{BT} Net Aclelity	dures:	AS 4969.0, .1, .2, .4, .7, .8, .11, .13, .14													
unitation · (#*moth) (% a) (% b) (% a)	tory Number	Sample Location	_	pH _{kci}	TAA	TAA	Skci	s S C	SNAS	ANCBT	ANCBT	Net Acidity	Net Acidity	Recommended Liming Rate	_
LOR 6.1 1 0.001 0.007 0.001 0.001 0.01			unite:		(M°mol/l)	(% %)	= (\$ %)	(% 8)	(% 8)	(%CBCO3) *	, (%8)	(H*mol/t)	(% %)	(kg of lime per cubic metre)	
Stockpile 7375 9.0 0.000 0.007 0.035 nr 0.37 0.12 -28 -0.044 0.044 Stockpile 7376 8.3 0 0.000 <0.07			LOR:	0.1	-	0.001	0,007	0.02	0.001	0.01	0.01	1	0.001	0.1	_
Stockpile 7376 8.3 0 0.000 <0.010 nr 0.28 0.09 -12 -0.020 Stockpile 7377 7.0 0 0.000 0.015 0.027 nr 0.19 0.06 -9 -0.014 Stockpile 7377 7.0 0 0.000 0.015 0.027 nr 0.19 0.06 -9 -0.014 Stockpile 7378 6.6 0 0.000 0.011 0.030 nr 0.06 -9 -0.014 Stockpile 7379 6.5 0 0.000 0.011 <0.03	VS/147682	Stockpile 7375		9.0	0	0.000	0.007	0.035	nr	0.37	0.12	-28	-0.044	No Liming Required	_
Stockpile 737 7.0 0 0.000 0.015 0.027 nr 0.19 0.06 -9 -0.014 0.014 Stockpile 7378 6.6 0 0.000 0.011 0.030 nr 0.06 -9 -0.014 0.018 Stockpile 7378 6.5 0 0.000 0.011 0.030 nr 0.06 11 0.018)/S/147683	Stockpile 7376		8.3	0	0.000	<0.007	0.040	nr	0.28	0.09	-12	-0.020	No Liming Regulred	_
Stockpile 7378 6.6 0 0.000 0.011 0.030 nr 0.06 0.12 11 0.018 Stockpile 7378 6.5 0 0.000 0.011 <0.03)/S/147684	Stockpile 7377		7.0	0	0.000	0.015	0.027	nr	0.19	0.06	6-	-0.014	No Liming Required	_
Stockpile 7379 6.5 0 0.000 0.011 <0.02 hr hr hr 0 0.000 0.000	/S/147685	Stockpile 7378		6.6	0	0.000	0.011	0.030	nr	0.06	0.02	11	0.018	No Liming Required	
	/S/147686	Stockpile 7379	_	6.5	0	0.000	0.011	<0.02	nr	nr	Ŀ	0	0.000	No Liming Required	_
															-

Notes:

Blank

0.006

3.6

5.7

nr: not required, pH trigger not met.

LOR: Limit of Reporting

"If pH_{kci} <6.5 It must be assumed that effective ANC is zero.

Effective ANC is ANC_{BT}/Fineness Factor of 1.5.

^a S_{KGI} determined as sulfate by turbidimetric method.

Where liming is specified, lime should be fine grained agricultural lime of at least 90% purity.

Any liming rate provided is a recommended rate only, and is based on the total of TAA Equivalent % Oxidisable Suiphur plus

Potential Acidity (S_c) plus Retained Acidity (S_{NAS}) minus effective ANC; with a factor of safety of 1.5.

Any recommended liming rate is based on the 0.03%S action criteria.

A placed dry density of 1.7 tonnes/cubic metre has been used in calculating liming rate/s. The recommended liming rate is derived from a mathematical equation and will need to be field validated. Construction Sciences accepts no responsibility for any loss associated with use of the calculated liming rate/s. Results apply to the sample(s) as received.

Form Number: REP CRS-Holcim-1 29/06/17 APPROVED SIGNATORY: Paul Mayes

The results of the tests, calibrations and/or messurements included in this document are treasable to Australian/netional standards. Accredited for compliance with ISO/IEC 17026 - Testing

1988 3740 Accreditation No.: Corporate Site Number:

Construction Sciences crétié empiratels plasme 131 186 régule magneties plasme 1300 555 277

Laboratory: Sunshine Coast Laboratory

Construction Sciences Pty Ltd ABN: 74 128 806 735

Address: 32 Hi-Tech Drive Kunda Park Qld 4556

Email:

sunshinecoast@constructionsciences.net

Telephone: (07) 5452 0100

Facsimile: (07) 5452 0133

Website:

www.constructionsciences.net

	Det	erminatio	n of Chloride a	and Sulfate	
Client:	Holcim (/	Australia)		Report Number:	3740/S/153225HCA
Client's Address:	Level 2, 1	8 Little Cribb Street,	Milton QLD 4064	Project Number:	3740/P/1333
Project:	Ballina N	SW - Holcim Dunloe	Sands	Lot Number:	N/A
				Internal Test Request:	3740/T/29338
Location:	Supplied	Sample		Client Reference:	22373/\$/68191
Component	-			Purchase Order No:	-
Area Description:	-			Report Date:	27/11/2019
Test Procedures: AS1012	2.20 (1992)				
Sample No:	1 1			3740/	S/153225
Samling Method:				Tested a	as Received
Date Sampled:				1/1	0/2019
Sampled By:				Construction	Sciences-Ballina
Date Tested:				27/*	11/2019
Material Source:				Holcim D	unloe Sands
Material Type (Specificati	on):			Fine Sand (DUNFS-IT	[PCONCSAND(01/09/11))
Material Description:					Sand
Sample Location:				Ste	ockpile
					7384
					N/A
				DUNFS-ITPCO	NCSAND(01/09/11)
Chloride Content		Qualitative test	Positive/Negative	Ne	egative
	Quan	titative test (%m/m)	Volhard Titration		0.002
Sulphate Content		Qualitative test	Positive/Negative	Ne	gative
	Quan	titative test (%m/m)	Gravimetric Method		0.039
Remarks:	Results	apply to the sample a	as received.		
		The res	ults of the tests, calibrations and/or n document are traceable to Australia Accredited for compliance with ISO	n/national standards.	Form Number:
	Pa	hy	Accreditation No.: Corporate Site Number:	1986	REP HCA-Holcim-2 7/03/2018
APPROVED SIGNA	TORY: Paul M	layes			

APPROVED SIGNATORY: Paul Mayes

APPENDIX 5

DUNLOE SAND QUARRY 2019 REHABILITATION AND REVEGETATION MONITORING REPORT

Annual Report 2019 Rehabilitation and Revegetation Monitoring Program Dunloe Sand Quarry Pottsville NSW

Prepared for: Lafarge Holcim

Date: 13 March 2020

Prepared By: Michael Hallinan

Bachelor of Applied Science - Environmental Resource Management Diploma in Arboriculture (AQF Level 5) Associate Diploma in Horticulture – Arboriculture

Introduction

This annual report for the Dunloe Sand Quarry 2019 Rehabilitation and Revegetation Monitoring Program aims to address all annual report requirements outlined in the site Rehabilitation & Revegetation Management Plan (RRMP)¹. Schedule 5 *Environmental Management and Monitoring Conditions* of the plan notes annual report requirements as follows:

- Visual monitoring results and photographs
- monitoring forms A, B, C and D
- any incidents of non-compliance with performance criteria set out in the Management Plan
- corrective actions implemented in response to performance criteria non-compliance and
- a work log of all monitoring, maintenance and corrective actions (where required) activities performed during the 2019 reporting period.

Appendix 1 contains visual monitoring photo point photographs taken quarterly at established photo points as per the RRMP and March 2020 Forest Structure & other monitoring photos. Also appended to this report are monitoring forms completed for each rehabilitation zone at intervals outlined in the RRMP as follows:

- Form A: Routine Rehabilitation Monitoring (quarterly), Appendix 2
- Form B: Site Condition (six-monthly), Appendix 3
- Form C: Forest Structure (annually), Appendix 4
- Form D: Floristic Composition (annually), Appendix 4
- Routine Fauna Nest Box Monitoring (six-monthly), Appendix 5

Additionally, a 2019 work log of monitoring, maintenance and corrective actions is included as **Appendix 6.**

Rehabilitation zones and photo-point monitoring locations are shown on Figure 1.

¹ Planit Consulting 2009, *Rehabilitation & Revegetation Management Plan, Dunloe Park Sand Quarry*, prepared for Ramtech Pty Ltd, unpublished.

Arbor Ecological Mob: 0424 064 002 e: arborecological@netspace.net.au www.arborecological.com.au Annual Report, 2019 Rehabilitation and Revegetation Monitoring Program, Dunloe Sand Quarry, Pottsville NSW 13/03/20 2

Figure 1. Rehabilitation zones and photo-point monitoring locations.

An information summary from each of the data forms is provided as follows:

Routine Rehabilitation Monitoring (Form A), refer to Appendix 2

Zone 1

General Management

No fires, rubbish dumping, plant theft, cattle grazing, stockpiling or unauthorised person or vehicle access. A record of slashing of bushfire trails is outlined in the 2019 Work Log (**Appendix 1**).

Biodiversity

The high diversity of vegetation in Zone 1 was reflected in the range of fauna observations using the site. This included birdlife (e.g. predatory Wedge-tailed Eagle and Brahminy Kite; and various frugivorous, honeyeater and insectivorous birds), a Lace Monitor, Common Eastern Froglet and signs of mammals such as bandicoots and wallabies. This adds to the range of biodiversity detected over several years using the different brackish and freshwater influenced landscape elements, vegetation types and habitats of Zone 1.

Weeds

Various weed species observed included minor infestations of Lantana, Camphor Laurel, Ground Asparagus, Winter Senna, Umbrella Tree, Bitou Bush, Pinus sp. and Corky Passionfruit. Weed infestations occur mostly along vegetation edges and fencelines (from bird perch droppings), a trend continuing from previous years.

Arbor Ecological Mob: 0424 064 002 e: arborecological@netspace.net.au www.arborecological.com.au

Routine weed maintenance works identified during 2019 monitoring was scheduled to be undertaken in February 2020 and delayed due to wet weather since early February. Suitably qualified and experienced bush regenerators commenced weed control on 10/03/20 using industry best practice methods for weed control and chemical handling in line with DPI (2018)², BSRLG (1998)³, the North Coast Regional Strategic Weed Management Plan 2017-2022 (North Coast Local Land Services, 2017) and the RRMP.

Modifications

No structural modifications or illegal modifications were made within Zone 1. All fences were noted to be in a good condition with no fencing repairs required.

Vegetation Regeneration

Excellent natural regeneration/ recruitment of native plants was observed in Zone 1 despite a drought through most of the Spring/ Summer growing period. Growth continued of primary canopy species Broad-leaved Paperbark, Coast Banksia, Swamp Oak, Swamp Mahogany; and in Zone 1 C to the east Mangrove spp., Tuckeroo and Cottonwood. Height ranges of canopy species were not observed to substantially change apart from Zone 1C where an increase was observed in the reporting period.

A range of shrub and groundcover species were recorded from freshwater, marine, open forest and closed rainforest environments as shown in Routine Rehabilitation Monitoring Sheets for Zone 1A, 1B and 1C. Moderate levels of drought stress were observed and no performance criteria were exceeded in Zone 1.

Zone 2

General Management

No fires, rubbish dumping, plant theft, cattle grazing, stockpiling or unauthorised person or vehicle access.

Biodiversity

Fauna observations included birdlife such as predatory Brahminy Kite and various insectivorous and honeyeater birds; Cream-striped Shining Skink and Garden Sunskink; and signs of mammals such as bandicoots and wallabies. This adds to the range of biodiversity detected over several years using the different brackish and freshwater influenced vegetation types of Zone 2.

Weeds

Weed pressure was observed to be low in Zone two with only minor infestations of Camphor Laurel and Five-leaved Morning Glory in Zone 2C to the south. Dense vegetation groundcover was observed to exclude weed establishment.

Routine weed maintenance works identified during 2019 monitoring was scheduled to be undertaken in February 2020 and delayed due to wet weather since early February. Suitably qualified and experienced bush regenerators commenced weed control on 13/03/20 using industry best practice methods for weed control and chemical handling in line with DPI (2018), BSRLG (1998), the North Coast Regional Strategic Weed Management Plan 2017-2022 (North Coast Local Land Services, 2017) and the RRMP.

³ Big Scrub Rainforest Landcare Group (BSRLG), 1998, *Common Weeds of Northern NSW Rainforest, A practical manual on their identification and control*, 2nd Ed., Big Scrub Rainforest Landcare Group, Mullumbimby NSW.

Arbor Ecological Mob: 0424 064 002 e: arborecological@netspace.net.au www.arborecological.com.au

² NSW Department of Primary Industries (DPI) 2018, Weed Control Handbook – A guide to weed control in non-crop, aquatic and bushland situations 7th Edition.

Modifications

No structural modifications or illegal modifications were made within Zone 1. All fences were noted to be in a good condition with no fencing repairs required.

Vegetation Regeneration

Natural regeneration/ recruitment of a relatively limited range of native plants was observed in Zone 2. Growth continued of primary canopy species Broad-leaved Paperbark, Coast Banksia and Swamp Oak. Height ranges of canopy species were not observed to substantially change.

A relatively simple range of understory and groundcover species were recorded in brackish water influenced environments dominated by dense cover of Swamp Oak, Rushes (Juncus spp.) and Common Reed. Higher plant diversity was observed in more elevated areas to the south of Zone 2 as shown in Routine Rehabilitation Monitoring Sheets. Low levels of drought stress were observed and no performance criteria were exceeded in Zone 2.

Zone 3

General Management

No fires, rubbish dumping, plant theft, cattle grazing, stockpiling or unauthorised person or vehicle access.

Biodiversity

The moderately high diversity of vegetation in Zone 3 was reflected in the range of fauna observations using the site. This included birdlife (e.g. predatory Wedge-tailed Eagle and Whistling Kite; and various honeyeater and insectivorous birds), an Eastern Small-eyed Snake, skinks and signs of bandicoots. This adds to the range of biodiversity detected over several years occupying and using vegetation in Zone 3.

Weeds

Various weed species observed included minor infestations of Lantana, Camphor Laurel, Winter Senna, Umbrella Tree, Five-leaved Morning Glory, White Passionfruit, Tobacco Bush, Blue Billygoat Weed and Corky Passionfruit. Weed infestations occur mostly along vegetation edges, a trend continuing from previous years.

Routine weed maintenance works identified during 2019 monitoring was scheduled to be undertaken in February 2020 and delayed due to wet weather since early February. Suitably qualified and experienced bush regenerators commenced weed control on 10/03/20 using industry best practice methods for weed control and chemical handling in line with DPI (2018)⁴, BSRLG (1998)⁵, the North Coast Regional Strategic Weed Management Plan 2017-2022 (North Coast Local Land Services, 2017) and the RRMP.

Modifications

No structural modifications or illegal modifications were made within Zone 3. All fences were noted to be in a good condition. A failed Banksia tree over the exclusion fence was cut to prevent fence damage.

Vegetation Regeneration

Excellent natural regeneration/ recruitment of native plants was observed in Zone 3 despite a drought through most of the Spring/ Summer growing period. Growth continued of primary

⁵ Big Scrub Rainforest Landcare Group (BSRLG), 1998, *Common Weeds of Northern NSW Rainforest, A practical manual on their identification and control*, 2nd Ed., Big Scrub Rainforest Landcare Group, Mullumbimby NSW.

Arbor Ecological Mob: 0424 064 002 e: arborecological@netspace.net.au www.arborecological.com.au 5

⁴ NSW Department of Primary Industries (DPI) 2018, Weed Control Handbook – A guide to weed control in non-crop, aquatic and bushland situations 7th Edition.

canopy species Broad-leaved Paperbark, Coast Banksia and Swamp Oak. Height ranges of canopy species were not observed to substantially change.

A range of mostly closed rainforest understory shrub and groundcover species were recorded as shown in Routine Rehabilitation Monitoring Sheets for Zone 3. Low levels of drought stress were observed and no performance criteria were exceeded in Zone 3.

Site Condition (Form B), refer to Appendix 3

Zone 1

Very high levels of planting survival rates, native plant recruitment. Vegetation cover is variable with high levels of leaf litter and native grass and forb cover in patches. Leaf litter levels increased substantially following leaf-drop in response to Spring & Summer drought conditions. Drought-breaking rainfall in February 2020 has vastly improved growing conditions. Minor but increasing weed pressure following recent rainfall, mostly along vegetation edges. Minor infestations of Lantana, Camphor Laurel, Ground Asparagus, Winter Senna, Umbrella Tree, Bitou Bush, Pinus sp. and Corky Passionfruit. All of Zone 1 is rated as A, i.e. on track towards target but dependent on effective weed control to be undertaken.

Zone 2

High levels of planting survival rates and moderate to high levels of native plant recruitment. Vegetation cover is variable with high levels of native grass cover in some areas. Brackish conditions to the north and minor but increasing weed pressure to the south in Zone 2C where there are minor infestations of Camphor Laurel and Five-leaved Morning Glory. Drought-breaking rainfall in February 2020 has vastly improved growing conditions. All of Zone 2 is rated as A, i.e. on track towards target.

Zone 3

High levels of planting survival rates and native plant recruitment, particularly following drought-breaking rainfall in February 2020. Vegetation cover is variable with high levels of leaf litter and native grass cover. Drought-breaking rainfall in February 2020 has vastly improved growing conditions. Minor but increasing weed pressure following recent rainfall, mostly along vegetation edges. Minor infestations of Lantana, Camphor Laurel, Winter Senna, Umbrella Tree, Five-leaved Morning Glory, White Passionfruit, Tobacco Bush, Blue Billygoat Weed and Corky Passionfruit. All of Zone 3 is rated as A, i.e. on track towards target but dependent on effective weed control to be undertaken.

Forest Structure and Floristic Composition (Forms C & D), refer to Appendix 4

Monitoring undertaken annually at established, semi-permanent 50m x 20m monitoring plots in Zones 1, 2 and 3.

Zone 1

Groundcover was assessed in 1m x 1m quadrats at 5m, 25m and 45m along the established 50m transect. Leaf litter averaged 50% cover and native ferns dominated plant cover followed by native seedlings and shrubs and grasses. Native herb cover was a minor component and there was no bare soil. An assessment of coarse woody debris along the 50m transect found an increase in coarse woody debris from previous years of monitoring. Otherwise, no substantial change was noted from transect monitoring results from previous years.

Arbor Ecological Mob: 0424 064 002 e: arborecological@netspace.net.au www.arborecological.com.au Canopy foliage cover was both visually estimated and estimated against canopy cover range photographs in 10m x 10m quadrats at 5m, 25m and 45m along the established 50m transect. Canopy cover ranged between 40% and 70% and averaged 55%.

Canopy height was recorded by estimating the height of the tallest tree within each 10m x 10m quadrat at 5m, 25m and 45m along the established 50m transect. No emergent trees were noted and canopy height was visually estimated to be greater than 12m and 14m which is an increase on previous years of monitoring. This is indicative of continued canopy growth and development.

Special life forms were recorded within each 10m x 10m quadrat at 5m, 25m and 45m along the established 50m transect. Slender vines included Coastal Cynanchum, Twining Guinea Flower and Snake Vine. Ground ferns included Bracken, Gristle Fern, Bungwall and Climbing Fishbone. Blueberry Lilly as a strap-leaved life form and two Lantana plants were recorded as thorny scramblers. This extended special life form records from previous years of monitoring. Overall, the site continues to be on good track for rehabilitation.

Floristic composition assessments were made for each vegetation strata in 10m x 10m quadrats at 5m, 25m and 45m along the established 50m transect. Broad-leaved Paperbark, Swamp Oak, Coast Banksia and Swamp Mahogany were recorded as the main canopy species. A range of species were recorded in the midstory and understory/ groundcover (refer to **Appendix 4**).

Excellent native recruitment and development was noted in all strata. Notable common species included Swamp Oak, Coast Banksia, Wattle spp., Celerywood, Corkwood, Macaranga, Bracken, Slender Panic Grass, Blueberry Lily, Twining Guinea Flower and Bungwall Fern.

Additional weed species were recorded from previous years of monitoring. Routine weed control commenced on 12/03/20 targeting Lantana, Camphor Laurel, Corky Passionfruit, Pinus sp., Ground Asparagus, Umbrella Tree and Senna.

Zone 2

Groundcover was assessed in 1m x 1m quadrats at 5m, 25m and 45m along the established 50m transect. Leaf litter averaged 50% cover in two of the three quadrats and native grasses and ferns dominated plant cover with native herb cover a minor component. There was no bare soil. An assessment of coarse woody debris along the 50m transect found an increase in coarse woody debris from previous years of monitoring. Otherwise, no substantial change was noted from transect monitoring results from previous years.

Canopy foliage cover was both visually estimated and estimated against canopy cover range photographs in 10m x 10m quadrats at 5m, 25m and 45m along the established 50m transect. Canopy cover ranged between 35% and 55% and averaged 42%.

Canopy height was recorded by estimating the height of the tallest tree within each 10m x 10m quadrat at 5m, 25m and 45m along the established 50m transect. No emergent trees were noted and canopy height was visually estimated to be greater than 12m which is an increase on previous years of monitoring. This is indicative of continued canopy growth and development.

Special life forms were recorded within each 10m x 10m quadrat at 5m, 25m and 45m along the established 50m transect. Slender and robust vines included Twining Guinea Flower and Silkpod. Ground ferns included Bracken and Bungwall. Blueberry Lilly as a strap-

Arbor Ecological Mob: 0424 064 002 e: arborecological@netspace.net.au www.arborecological.com.au

leaved life form. This extended special life form records from previous years of monitoring. Overall, the site continues to be on good track for rehabilitation.

Floristic composition assessments were made for each vegetation strata in 10m x 10m quadrats at 5m, 25m and 45m along the established 50m transect. Broad-leaved Paperbark, Swamp Oak and Coast Banksia were recorded as the main canopy species. A range of species were recorded in the midstory and understory/ groundcover (refer to **Appendix 4**).

Excellent native recruitment and development was noted in all strata. Notable common species included Swamp Oak, Coast Banksia, Corkwood, Bracken, Slender Panic Grass, Blueberry Lily, Twining Guinea Flower, Bungwall Fern, Whiteroot and Indian Pennywort.

Additional weed species were recorded from previous years of monitoring. Routine weed control commenced on 12/03/20 targeting Camphor Laurel and Five-leaved Morning Glory.

Zone 3

Groundcover was assessed in 1m x 1m quadrats at 5m, 25m and 45m along the established 50m transect. The shade-tolerant Slender Panic Grass native grass dominated groundcover (average 68% cover) followed by leaf litter (average 13% cover) and ferns; tree seedlings and shrubs; herbs; and vines as minor components and there was no bare soil. An assessment of coarse woody debris along the 50m transect found an decrease in coarse woody debris from previous years of monitoring. Otherwise, no substantial change was noted from transect monitoring results from previous years.

Canopy foliage cover was both visually estimated and estimated against canopy cover range photographs in 10m x 10m quadrats at 5m, 25m and 45m along the established 50m transect. Canopy cover ranged between 45% and 55% and averaged 48%.

Canopy height was recorded by estimating the height of the tallest tree within each 10m x 10m quadrat at 5m, 25m and 45m along the established 50m transect. No emergent trees were noted and canopy height was visually estimated to be greater than 10m and 12m which is an increase on previous years of monitoring. This is indicative of continued canopy growth and development.

Special life forms were recorded within each 10m x 10m quadrat at 5m, 25m and 45m along the established 50m transect. Slender and robust vines included Silkpod, Twining Guinea Flower and Snake Vine. Ground ferns included Bracken, Blueberry Lilly was recorded as a strap-leaved life form and Red-fruited Saw Sedge was recorded as a thorny scrambler. This extended special life form records from previous years of monitoring. Overall, the site continues to be on good track for rehabilitation.

Floristic composition assessments were made for each vegetation strata in 10m x 10m quadrats at 5m, 25m and 45m along the established 50m transect. Broad-leaved Paperbark, Swamp Oak and Coast Banksia were recorded as the main canopy species. A range of species were recorded in the midstory and understory/ groundcover (refer to **Appendix 4**).

Excellent native recruitment and development was noted in all strata. Notable common species included Broad-leaved Paperbark, Swamp Oak, Coast Banksia, Corkwood, Bracken, Slender Panic Grass, Blueberry Lily, Twining Guinea Flower, Whiteroot, Indian Pennywort, Blady Grass, Native Peach, Cheese Tree and native Coffee Bush.

Arbor Ecological Mob: 0424 064 002 e: arborecological@netspace.net.au www.arborecological.com.au

Additional weed species were recorded from previous years of monitoring. Routine weed control commenced on 12/03/20 targeting Lantana, Senna, Umbrella Tree, Camphor Laurel, Corky Passionfruit, White Passionfruit, Five-leaved Morning Glory, Tobacco Bush and Blue Billygoat weed.

Routine Fauna Nest Box Monitoring (six-monthly), refer to Appendix 5

Monitoring of fauna nest boxes was performed using a ladder and snake-eye inspection camera. A Common Brushtail Possum was detected in a Cockatoo nest box in zone 1, and fauna scratch marks were detected on another nest box. Otherwise there were no signs of fauna use of nest boxes. Nest boxes were opened where necessary to clear spiders and ants, otherwise they were found to be in good condition with no repair or maintenance requirements. The limited fauna use of nest boxes by fauna may be indicative of the availability of hollow habitat resources in mature and over-mature trees in surrounding forested areas.

Environmental Protection Zone Performance Criteria

Performance criteria are considered to have been achieved in relation to

- Existing native vegetation and areas of natural regeneration to be retained
- All rubbish/vegetation dumping, non-approved structures etc are removed from the EPZs
- Cattle and domestic animals are excluded
- A survival rate of the following minimum standards are to apply for all planted trees, shrubs and groundcovers:
 - One year following planting: 90%
 - Three years following planting: 90%
 - Five years following planting: 85%
- Planted stock to exhibit fair or healthy conditions and meet minimum growth rate standards set out in the RRMP.
- No substantial impacts have been detected in relation to:
 - o Inappropriate public access
 - Litter and/or rubbish dumping
 - o Stock theft
 - o Bicycle/pedestrian tracks/trails
 - Soil compaction
 - Fence signage vandalism/removal
 - Cattle access and associated damage (i.e. grazing, trampling etc)
- Canopy coverage, density and diversity performance requirements for trees and shrubs
- Groundcover and natural regeneration including bare ground cover.

Note management zones contain a mosaic of variable levels of tree cover and species mixes. High levels of native recruitment and plant development and growth in all strata are considered to negate the need for any further supplementary plantings at this point in time.

Routine weed control works commenced on 12/03/20 to address isolated weed occurrences mostly along vegetation edges and ensure performance criteria are achieved, i.e:

- No declared weeds are present
- A significant reduction in the presence of weed species is evident. In practice it is noted that the removal of all individuals of all weed species for 100% of the time is unachievable. Therefore, it is considered appropriate that the following performance criteria be adopted:
 - All large weed/ornamental trees are treated
 - No weed shrubs/trees older than three months of age are present
 - Densities of such shrubs/trees is not to exceed 1 per 20m2

Arbor Ecological Mob: 0424 064 002 e: arborecological@netspace.net.au www.arborecological.com.au

 Scattered groundcover weed species may occur but not in any covering an area greater than 5m2

All management zones are considered to consist of healthy vegetation communities and are on-track to achieving rehabilitation.

Arbor Ecological Mob: 0424 064 002 e: arborecological@netspace.net.au www.arborecological.com.au

APPENDIX 6

DUNLOE SAND QUARRY 2018 – 2019 RETURN FOR EXTRACTIVE MATERIALS FORM

RETURN FOR EXTRACTIVE MATERIALS: YEAR ENDED 30 JUNE 2019

Quote RIMS ID in all correspondence

Quarry Id:	Rims ID: 401091	Inquiries please telephone: 2
Operators Name: Address:	RAMTECH PTY LTD 30-32 LUNDBERG DR MURWILLUMBAH NSW 2484	(02) 4063 6713 Completed or Nil Returns Email – <u>mineral.royalty@planning.nsw.gov.au</u> Postal Address (see below)
Email:	daniel.dwyer@lafargeholcim.com	Please amend name, postal 8
Quarry Name: Quarry Address: POTTSVILLE NSW 24	DUNLOE SANDS 'DUNLOE PARK', POTTSVILLE-MOOBALL RD 89	address and location of mine or quarry if incorrect or incomplete.

The return should be completed and forwarded to Senior Advisory Officer, RESOURCE ECONOMICS, RESOURCE PLANNING & PROJECTS, NSW DEPARTMENT OF PLANNING, INDUSTRY & ENVIRONMENT, PO BOX 344 HUNTER REGION MAIL CENTRE NSW 2310 on or before 31 October 2019. If completion of the return is unavoidably delayed, an application for extension of time should be requested before the due date. If no work was done during the year, a NIL return must be forwarded.

The return should relate to the **above quarrying establishment** and should cover the operations of quarrying and treatment (such as crushing, screening, washing etc.) carried out at or near the quarry. A return is required even if the operations are solely of a developmental nature and whether the area being worked is held under a mining title or otherwise.

Director, Resource Planning & Projects

Please complete all of the following information to assist in identifying the location of the Quarry

Typical Geology	BACK BEACH FLUVIATILE SAND
Nearest Town to QuarryPOTTSV	ILLE 2489
Local Council NameTWEED SHIRE COU	NCIL
Deposited Plan and Lot Number/s of Quarry	DP755721, DP780198, LOT 1 & LOT 2 DP78019
Email Address of Operatordaniel.dwyer	@lafargeholcim.com
Name of Owner or LicenseeLAFARGE	IOLCIM AUSTRALIA
Postal Address of LicenseePacific	Highway 2450 Coffs Harbour Australia
Licence/Lease Number/s (if any) From Mineral Resources NSW (Industry & Inv	estment NSW)DUNLOE SANDS/ Dunloe Park
From Department of Lands or other Departme	nt DUNLOE SANDS/ Dunloe Park
	licence from the above Departments, state the Name/s and Address/es
To the best of my knowledge, information entered in been inserted.	this return is correct and no blank spaces left where figures should have
SIGNATURE of PROPRIETOR or MA	NAGER DATE 17/09/2019
CONTACT PERSON for this return	Daniel Dwyer

Z

0

9

Production information may be published in aggregated form for statistical reporting. However, production data for individual operations is kept strictly confidential.

Product	Description	Quantity Tonnes
 <u>Virgin Materials</u> Crushed Coarse Aggregates 		
Over 75mm		
Over 30mm to 75mm		
5mm to 30mm		
Under 5mm		
Natural Sand		
Manufactured Sand		
Prepared Road Base & Sub Base		
Other Unprocessed Materials		
 <u>Recycled Materials</u> Crushed Coarse Aggregates 		
Over 75mm		
Over 30mm to 75mm		
5mm to 30mm		
Under 5mm		
Natural Sand	Washed Screened Sand	184,251
Manufactured Sand		
Prepared Road Base & Sub Base		
Other Unprocessed Materials		
River Gravel		
Over 30mm		
5mm to 30mm		
Under 5mm		
Construction Sand	Excluding Industrial	
Industrial Sand		
Foundry, Moulding		
Glass		
Other (Specify)		
Dimension Stone	Building, Ornamental, Monumental	
Quarried in Blocks		
Quarried in Slabs		
Decorative Aggregate	Including Terrazzo	
• Loam	Soil for Topdressing, Garden soil, Horticultural purposes)	
TOTAL SITE PRODUCTION		184,251
Gross Value (\$) of all Sales		
Type of Material		
Number of Full-Time Equivalent (FTE) Employees	Employees: 3 Contractors 1	

Please Note: A return for clay based products can be obtained by contacting the inquiry number.