

Strength. Performance. Passion.

# Dunloe Sands Quarry Annual Review 2017

Holcim (Australia) Pty Ltd



# TABLE OF CONTENTS

| 1 |    | STATEMENT OF COMPLIANCE7 |                                            |    |  |  |  |  |
|---|----|--------------------------|--------------------------------------------|----|--|--|--|--|
| 2 |    | INTRODUCTION9            |                                            |    |  |  |  |  |
|   | 2. | 1                        | Name and Contact Details                   | 13 |  |  |  |  |
| 3 |    | APP                      | PROVALS                                    | 14 |  |  |  |  |
| 4 |    | OPERATIONS SUMMARY       |                                            |    |  |  |  |  |
|   | 4. | 1                        | Exploration                                | 15 |  |  |  |  |
|   | 4. | 2                        | Land Preparation                           | 15 |  |  |  |  |
|   | 4. | 3                        | Construction Activities                    | 15 |  |  |  |  |
|   | 4. | 4                        | Quarry Operations                          | 15 |  |  |  |  |
|   | 4. | 5                        | Next Reporting Period                      | 15 |  |  |  |  |
| 5 |    | ACT                      | TIONS REQUIRED FROM PREVIOUS ANNUAL REVIEW | 16 |  |  |  |  |
| 6 |    | ENV                      | /IRONMENTAL PERFORMANCE                    | 19 |  |  |  |  |
|   | 6. | 1                        | Meteorological Monitoring                  | 19 |  |  |  |  |
|   | 6. | 2                        | Noise                                      | 19 |  |  |  |  |
|   |    | 6.2.1                    | 1 EIS Predictions                          | 19 |  |  |  |  |
|   |    | 6.2.2                    | 2 Approved Criteria                        | 19 |  |  |  |  |
|   |    | 6.2.3                    | 3 Key Environmental Performance            | 19 |  |  |  |  |
|   |    | 6.2.4                    | 4 Management Measures                      | 20 |  |  |  |  |
|   |    | 6.2.5                    | 5 Proposed Improvements                    | 20 |  |  |  |  |
|   | 6. | 3                        | Air Quality                                | 22 |  |  |  |  |
|   |    | 6.3.1                    | 1 EIS Predictions                          | 22 |  |  |  |  |
|   |    | 6.3.2                    | 2 Approved Criteria                        | 22 |  |  |  |  |
|   |    | 6.3.3                    | 3 Key Environmental Performance            | 22 |  |  |  |  |
|   |    | 6.3                      | 3.3.1 Depositional Dust                    | 22 |  |  |  |  |
|   |    | 6.3                      | 3.3.2 PM <sub>10</sub> Monitoring          | 24 |  |  |  |  |
|   |    | 6.3.4                    | 4 Management Measures                      | 25 |  |  |  |  |
|   |    | 6.3.5                    | 5 Proposed Improvements                    | 25 |  |  |  |  |
|   | 6. | 4                        | Traffic Management                         | 25 |  |  |  |  |
|   |    | 6.4.1                    | 1 EIS Predictions                          | 25 |  |  |  |  |
|   |    | 6.4.2                    | 2 Approved Criteria                        | 26 |  |  |  |  |
|   |    | 6.4.3                    | 3 Key Environmental Performance            | 26 |  |  |  |  |
|   |    | 6.4.4                    | 4 Management Measures                      | 26 |  |  |  |  |
|   |    | 6.4.5                    | 5 Proposed Improvements                    | 26 |  |  |  |  |
|   | 6. | 5                        | Biodiversity                               | 27 |  |  |  |  |
|   |    | 6.5.1                    | 1 EIS Predictions                          | 27 |  |  |  |  |
|   |    | 6.5.2                    | 2 Approved Criteria                        | 27 |  |  |  |  |
|   |    | 6.5.3                    | 3 Key Environmental Performance            | 27 |  |  |  |  |

|    | 6.  | 5.4  | Management Measures                                         | 27 |
|----|-----|------|-------------------------------------------------------------|----|
|    | 6.  | 5.5  | Proposed Improvements                                       | 27 |
|    | 6.6 |      | Heritage                                                    | 27 |
|    | 6.  | 6.1  | EIS Predictions                                             | 27 |
|    | 6.  | 6.2  | Approved Criteria                                           | 27 |
|    | 6.  | 6.3  | Key Environmental Performance                               | 27 |
|    | 6.  | 6.4  | Management Measures                                         | 28 |
|    | 6.  | 6.5  | Proposed Improvements                                       | 28 |
|    | 6.7 |      | Acid Sulphate Soils Management and Management of Fines      | 28 |
|    | 6.  | 7.1  | Acid Sulphate Soils Management                              | 28 |
|    | 6.  | 7.2  | Fines Management                                            | 29 |
|    | 6.8 |      | Summary of Environmental Performance                        | 30 |
| 7  | W   | /AT  | ER MANAGEMENT                                               | 31 |
|    | 7.1 |      | EIS Predictions                                             | 31 |
|    | 7.2 |      | Approved Criteria                                           | 31 |
|    | 7.3 |      | Surface Water                                               | 31 |
|    | 7.4 |      | Surface Water Monitoring – Extraction Pond                  | 34 |
|    | 7.5 |      | Groundwater Results                                         | 36 |
|    | 7.6 |      | Flood Storage Capacity                                      | 39 |
|    | 7.7 |      | Water Take                                                  | 39 |
| 8  | R   | EH/  | ABILITATION AND LANDSCAPE MANAGEMENT                        | 40 |
|    | 8.1 |      | Rehabilitation Performance during the Reporting Period      | 40 |
|    | 8.2 |      | Summary of Current Rehabilitation and Performance           | 41 |
|    | Reh | abil | itation monitoring of established rehabilitation has shown: | 41 |
|    | 8.3 |      | Actions for the Next Reporting Period                       | 43 |
| 9  | С   | OM   | MUNITY                                                      | 44 |
|    | 9.1 |      | Community Engagement Activities                             | 44 |
|    | 9.2 |      | Community Contributions                                     | 44 |
|    | 9.3 |      | Complaints                                                  | 44 |
| 1  | 0   | INE  | DEPENDENT AUDIT                                             | 45 |
| 1  | 1   | INC  | CIDENTS AND NON-COMPLIANCE                                  | 46 |
| 1: | 2   | AC   | TIVITIES TO BE COMPLETED IN THE NEXT REPORTING PERIOD       | 48 |
| 1: | 3   | RE   | FERENCES                                                    | 49 |
| 14 | 4   | AP   | PENDICES                                                    | 50 |

#### TABLES

| Table 1: Statement of Commitments                                                           | 7    |
|---------------------------------------------------------------------------------------------|------|
| Table 2: DPE Compliance Status Key                                                          | 7    |
| Table 3: Non-Compliances of PA 06-0030 for 2017                                             | 8    |
| Table 4: Annual Review Requirements                                                         | 12   |
| Table 5: Approvals for the Dunloe Sand Quarry Operations                                    |      |
| Table 6: EPL Fee-Based Activity at the Dunloe Sand Quarry                                   | 14   |
| Table 7: Total Product Distributed (Dunloe Sand Quarry)                                     | . 15 |
| Table 8: Actions Required from Annual Review – DPE                                          | . 16 |
| Table 9: Actions required from Annual Review – Holcim Proposed Actions                      | . 18 |
| Table 10: Monthly Rainfall at the Dunloe Sand Quarry for 2017                               | . 19 |
| Table 11: Noise Criteria for the Dunloe Sand Quarry (PA 06_0030)                            | . 19 |
| Table 12: Noise Monitoring Assessment for the Dunloe Sand Quarry (MAC, 2017)                | 21   |
| Table 13: Long Term Impact Assessment Criteria for Deposited Dust                           | .22  |
| Table 14: Short Term Impact Assessment Criteria for Particulate Matter                      | 22   |
| Table 15: Long Term Impact Assessment Criteria for Particulate Matter                       | .22  |
| Table 16: 2017 Dust Monitoring (Depositional Dust)                                          | .23  |
| Table 17: Depositional Dust Monitoring Summary (2016-2017)                                  | .23  |
| Table 18: Particulate Matter (PM <sub>10</sub> ) 2017 Dust Monitoring at Dunloe Sand Quarry | .24  |
| Table 19: Estimated Operational Times, Periods and Truck Movements (EIS 2007)               | .25  |
| Table 20: Operational Times, Periods and Truck Movements                                    | . 26 |
| Table 21: Environmental Performance at the Dunloe Sand Quarry in 2017                       | . 30 |
| Table 22: Monthly Surface Water Quality Criteria – Extraction Pond                          | 31   |
| Table 23: Quarterly Surface Water Quality Criteria – Extraction Pond                        | . 32 |
| Table 24: Monthly Monitoring Criteria – Blue Green Algae                                    | . 32 |
| Table 25: Quarterly Surface Water Quality Criteria – Surrounding Environment                | . 32 |
| Table 26: Monthly Groundwater Quality Criteria – Surrounding Environment                    | . 33 |
| Table 27: Quarterly Groundwater Quality Criteria – Surrounding Environment                  | . 33 |
| Table 28: Monthly Extraction Pond Water Quality Monitoring 2017 Results                     | . 34 |
| Table 29: Quarterly Extraction Pond Chemical Analysis Monitoring 2017 Results               | . 34 |
| Table 30: Surface Water Quality Monitoring 2017 Results – Blue Green Algae                  | . 35 |
| Table 31: Monthly Groundwater Quality Monitoring 2017 Results                               | . 37 |
| Table 32: Quarterly Groundwater Quality Monitoring 2017 Results                             | . 38 |
| Table 33: Rehabilitation Performance in 2017                                                | .40  |
| Table 34: Rehabilitation and Disturbance Status                                             | 41   |
| Table 35: Rehabilitation and Closure Actions for the Next Reporting Period                  | .43  |
| Table 36: Summary of Incidents and Non - Compliances                                        | .46  |
| Table 37: Improvement Actions for 2018                                                      | . 48 |

### FIGURES

| Figure 1: Aerial view of the Dunloe Sand Quarry 2016, located at Dunloe Park, Pottsville | 9  |
|------------------------------------------------------------------------------------------|----|
| Figure 2: Site Location and Layout                                                       | 10 |
| Figure 3: Environmental Monitoring Locations                                             | 11 |
| Figure 4: Rehabilitation and Disturbance                                                 | 42 |

### APPENDICES

| Appendix 1 | Dunloe Sand Quarry Noise Monitoring 2017                                 |
|------------|--------------------------------------------------------------------------|
| Appendix 2 | Dunloe Sand Quarry Longterm Environmental Monitoring                     |
| Appendix 3 | Dunloe Sand Quarry Rehabilitation and Ecological Monitoring              |
| Appendix 4 | Dunloe Sand Quarry Truck Movement Summary 2017                           |
| Appendix 5 | Dunloe Sand Quarry Summary of 2016 Acid Sulphate Soil Monitoring Results |

# SITE DETAILS

| Name of operation                                        | Dunloe Sand Quarry         |  |
|----------------------------------------------------------|----------------------------|--|
| Name of operator                                         | Holcim (Australia) Pty Ltd |  |
| Development consent / project approval #                 | Project Approval 06- 0030  |  |
| Name of holder of development consent / project approval | Holcim (Australia) Pty Ltd |  |
| Annual review start date                                 | January 1, 2017            |  |
| Annual review end date                                   | December 31, 2017          |  |
|                                                          |                            |  |

I, **Daniel Dwyer**, certify that this audit report is a true and accurate record of the compliance status of the **DUNLOE SAND QUARRY** for the period of **JANUARY 2017- DECEMBER 2017** and that I am authorised to make this statement on behalf of **HOLCIM (AUSTRALIA) PTY LTD**. Note.

- a) The Annual Review is an 'environmental audit' for the purposes of section 122B(2) of the Environmental Planning and Assessment Act 1979. Section 122E provides that a person must not include false or misleading information (or provide information for inclusion in) an audit report produced to the Minister in connection with an environmental audit if the person knows that the information is false or misleading in a material respect. The maximum penalty is, in the case of a corporation, \$1 million and for an individual,\$250,000.
- b) The Crimes Act 1900 contains other offences relating to false and misleading information: section 192G (Intention to defraud by false or misleading statement—maximum penalty 5 years imprisonment); sections 307A, 307B and 307C (False or misleading applications/information/documents—maximum penalty 2 years imprisonment or \$22,000, or both).

| Name of authorised    | reporting officer      | Daniel Dwyer                |          |  |
|-----------------------|------------------------|-----------------------------|----------|--|
| Title of authorised r | eporting officer       | Quarry Supervisor           |          |  |
| Signature of author   | ised reporting officer | de                          |          |  |
| Date                  |                        | 29 March 2018               |          |  |
| Revision              | 2                      | Purpose DPE Review Comments |          |  |
| Author                | Victoria Musgrove      | Date                        | 11/10/18 |  |

# **1 STATEMENT OF COMPLIANCE**

The statement of commitments for the 2017 reporting period for the Dunloe Sand Quarry is provided in **Table 1. Table 3** details the non-compliances of Project Approval (PA) 06-0030 identified within the 2017 reporting period.

#### **Table 1: Statement of Commitments**

| Were all conditions of the relevant approval(s) complied with? |  |  |  |  |  |  |
|----------------------------------------------------------------|--|--|--|--|--|--|
| PA 06_0030 NO - see Table 3 for further details.               |  |  |  |  |  |  |
| EPL 13077 Yes                                                  |  |  |  |  |  |  |

#### Table 2: DPE Compliance Status Key

| Risk level | Colour code   | Description                                                                                                                                                                                                         |  |  |  |
|------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| High       | Non-compliant | Non-compliance with potential for significant environmental consequences, regardless of the likelihood of occurrence                                                                                                |  |  |  |
| Medium     | Non-compliant | <ul> <li>Non-compliance with:</li> <li>potential for serious environmental consequences, but is unlikely to occur; or</li> <li>potential for moderate environmental consequences, but is likely to occur</li> </ul> |  |  |  |
| Low        | Non-compliant | <ul> <li>Non-compliance with:</li> <li>potential for moderate environmental consequences, but is unlikely to occur; or</li> <li>potential for low environmental consequences, but is likely to occur</li> </ul>     |  |  |  |
| Admin NC   | Non-compliant | Only to be applied where the non-compliance does not result in<br>any risk of environmental harm (e.g. submitting a report to<br>government later than required under approval conditions)                          |  |  |  |

## Table 3: Non-Compliances of PA 06-0030 for 2017

| Relevant<br>approval | Condition                  |                                                                                                                   | Cond                                                                     | ition Descriptio                                                                       | n                                                                    | Compliance<br>Status | Section addressed in<br>Annual Review           |
|----------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------|-------------------------------------------------|
|                      |                            | The Proponent shall cause additional excerning privately owned land.                                              | ensure tha<br>eedances                                                   | at dust generated<br>of the criteria list                                              | by the project does not<br>ed in Tables 3 to 5 at any                |                      |                                                 |
|                      |                            | Pollutant                                                                                                         | Averagi                                                                  | ing period                                                                             | Criterion                                                            |                      |                                                 |
|                      |                            | Particulate matter < 10 μm<br>(PM <sub>10</sub> )                                                                 | 24                                                                       | hour                                                                                   | 50 μg/m <sup>3</sup>                                                 |                      |                                                 |
|                      |                            | Table 3: Short Term Impact                                                                                        | Assessment Cri                                                           | iteria for Particulate Matter                                                          |                                                                      |                      |                                                 |
|                      | Schedule 3,<br>Condition 6 | Pollutant                                                                                                         | Averagin                                                                 | g period                                                                               | Criterion                                                            |                      |                                                 |
| PA 06_               |                            | Total suspended<br>particulate (TSP) matter                                                                       | Annual                                                                   |                                                                                        | 90 μg/m <sup>3</sup>                                                 | Non- compliant       | Section 6.2 (Air Quality) and                   |
| 0030                 |                            | Particulate matter < 10<br>µm (PM <sub>10</sub> )                                                                 | Annual                                                                   |                                                                                        | β0 μg/m <sup>3</sup>                                                 | i ton compliant      | Section 11.                                     |
|                      |                            | Table 4: Long Term Impact A                                                                                       | Assessment Cri                                                           | teria for Particulate Matter                                                           |                                                                      |                      |                                                 |
|                      |                            | Pollutant Averag                                                                                                  | ging period                                                              | Maximum increase in<br>deposited dust level                                            | Maximum total<br>deposited dust level                                |                      |                                                 |
|                      |                            | Deposited dust A                                                                                                  | nnual                                                                    | 2 g/m <sup>2</sup> /month                                                              | 4 g/m <sup>2</sup> /month                                            |                      |                                                 |
|                      |                            | Table 5: Long Term Impact J<br>Note: Deposited dust is asse<br>3580.10.1-2003: Method<br>Deposited Matter - Gravi | Assessment Cri<br>Issed as insolub<br>Is for Sampling<br>Imetric Method. | teria for Deposited Dust<br>le solids as defined by St.<br>and Analysis of Ambient Air | andards Australia, 1991, AS/NZS<br>- Determination of Particulates - |                      |                                                 |
| PA 06_<br>0030       | Schedule 3,<br>Condition 7 | The Proponent shall for the project to the s                                                                      | prepare ar<br>satisfactio                                                | nd implement a D<br>n of the Director-                                                 | oust Monitoring Program<br>General.                                  | Non- compliant       | Section 6.2 (Air Quality)<br>and<br>Section 11. |

# 2 INTRODUCTION

The Dunloe Sand Quarry was granted Project Approval (PA06\_0030) Quarry on 24 November 2008, with a subsequent modification (Mod 1) to this approval granted on 28 August 2009. The Dunloe Sand Quarry operations are located approximately 4.5 km south-southwest of Pottsville on the Pottsville Mooball Road.

The site is located adjacent to Mooball Creek, and is approximately 4km upstream of the creek mouth. Surrounding properties are currently used for agricultural purposes including sugar cane farming and grazing.



Figure 1: Aerial view of the Dunloe Sand Quarry 2016, located at Dunloe Park, Pottsville.



© 2017. Whilst every care has been taken to prepare this map, GHD (and Sixmaps, LPI) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: Aerial Imagery: Sixmaps (2017 - NSW LPI), LPI DCDB: Cadastre, 2012; LPI DTDB: Topo base data, 2012. Created by:mking3



VOT Ply Ltd 4/30 Olennrood Dilve, Thomlon NSW 2021 PO Box 1335, Greenfulls NSW 2020 ph: (07) 4020 6412 email: mail@rgl.com.au enrecycl.com.au ABM 79 103 635 353

Figure 3: Environmental Monitoring Locations

Holcim commenced operations on the site on August 1, 2016 with all previous responsibilities falling under the management of Ramtech Pty Ltd (Ramtech). Ramtech have previously been responsible for the commencement and operation of the site since Project Approval was granted in 2007.

In accordance with Schedule 5, Condition 5 of the modified Development Consent the site is required to undertake an Annual Review of the site in accordance with the conditions provided in **Table 4**.

|                   | Condition                                                                                                                                                                                             | Section Addressed in Annual<br>Review |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|--|
| 5. A<br>Wii<br>AE | 5. ANNUAL REPORTING<br>Within 12 months of the date of this approval, and annually thereafter, the Proponent shall submit an<br>AEMR to the Director-General and relevant agencies. This report must: |                                       |  |  |  |  |
| a)                | identify the standards and performance measures that apply to the project;                                                                                                                            | Section 4 and 6                       |  |  |  |  |
| b)                | describe the works carried out in the last 12 months;                                                                                                                                                 | Section 4 and 6                       |  |  |  |  |
| <i>c)</i>         | describe the works that will be carried out in the next 12 months;                                                                                                                                    | Section 13                            |  |  |  |  |
| d)                | include a summary of the complaints received during the past<br>year, and compare this to the complaints received in previous<br>years;                                                               | Section 9.3                           |  |  |  |  |
| e)                | include a summary of the monitoring results for the project during the past year;                                                                                                                     | Section 6 and 7                       |  |  |  |  |
| f)                | include an analysis of these monitoring results against the relevant: • impact assessment criteria/limits; • monitoring results from previous years; and • predictions in the EA;                     | Section 6 and 7                       |  |  |  |  |
| g)                | identify any trends in the monitoring results over the life of the                                                                                                                                    | Section 6 and 7                       |  |  |  |  |
|                   | project;                                                                                                                                                                                              | Appendix 2                            |  |  |  |  |
| h)                | identify any non-compliance during the previous year; and                                                                                                                                             | Section 6, 7 and 11                   |  |  |  |  |
| i)                | describe what actions were, or are being, taken to ensure compliance.                                                                                                                                 | Section 6, 7 and 11                   |  |  |  |  |

#### **Table 4: Annual Review Requirements**

This Annual Review has also been prepared in accordance with the *Annual Review Guideline: post approvals requirements for state significance mining developments* (October 2015). This report documents the environmental performance of the site from January to December 2017.

# 2.1 Name and Contact Details

The key contact details for the site are outlined below:

#### **Quarry Supervisor**

Daniel Dwyer 0411 795 060 daniel.dwyer@lafargeholcim.com

#### North NSW Aggregates Manager

Chris Hamilton Work: +61 2 6656 8620 Mob: +61 429 790 213 chris.s.hamilton@lafargeholcim.com

#### **Quarry Manager**

Garth Stacey Work: +61 2 6687 8566 Mob: +61 429 790 217 garth.stacey@lafargeholcim.com

#### Planning & Environment Coordinator NSW/ACT

Amy Nelson Holcim (Australia) Pty Ltd Work: +61 2 9412 6572 Mob: +61 (0)429 790 923 amy.nelson@lafargeholcim.com

# **3 APPROVALS**

The site operates under the approvals listed in Table 5.

#### Table 5: Approvals for the Dunloe Sand Quarry Operations

| Approval                                                                                                                            | Regulatory Authority |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| PA 06_0300                                                                                                                          | NSW DPE              |
| EPL No. 13077                                                                                                                       | NSW EPA              |
| Bore Licence 30BL183076, 30BL183077,<br>30BL183078, 30BL183079, 30BL183080,<br>30BL183081, 30BL183082, 30BL183084 and<br>30BL183086 | NSW DPI Water        |

Holcim holds EPL 13077 which covers its activities at the Dunloe Sand Quarry. **Table 6** outlines these licensing limits.

#### Table 6: EPL Fee-Based Activity at the Dunloe Sand Quarry

| Scheduled Activity    | Fee Based Activity             | Scale                                                                   |
|-----------------------|--------------------------------|-------------------------------------------------------------------------|
| Extractive Activities | Land-based extractive activity | >100,000 – 500,000 T annual<br>capacity to extract, process or<br>store |

# **4 OPERATIONS SUMMARY**

# 4.1 Exploration

There was no exploration undertaken at the Dunloe Sand Quarry during the 2017 reporting period.

# 4.2 Land Preparation

During the 2017 reporting period there was some clearing of grassland and paddocks (approximately 1 Ha) within the existing extraction limit boundary in preparation for quarrying. There was no vegetation removal during 2017 (removal of trees).

# 4.3 Construction Activities

There were no construction activities undertaken at the Dunloe Sand Quarry during the 2017 reporting period.

# 4.4 Quarry Operations

The Dunloe Sand Quarry officially commenced operations under Holcim on August 1, 2016. Development activities undertaken in 2017 included:

- Stripping of topsoil and overburden within the existing extraction limit boundary;
- Load and haul activities;
- Washing, screening and stockpiling of product;
- Overburden removal and stockpiling;
- Maintenance of rehabilitation undertaken in the north and eastern areas of the site; and
- Load out and sales of topsoil, brickies loam and concrete sands to the local market.

Operating hours in 2017 were undertaken between 7am to 5pm, Monday to Friday and 7am-12pm on Saturdays. These timeframes were applied for all operations on-site with no works occurring outside the approved operating hours.

All activities took place within the approved operating hours in 2017.

**Table 7** includes a summary of the operations undertaken during the reporting period against the development consent conditions regarding product transported from the Dunloe Sand Quarry.

#### Table 7: Total Product Distributed (Dunloe Sand Quarry)

| Material                   | Approval Limit<br>(Tonnes) | 2016 Reporting<br>Period<br>(Tonnes) | 2017 Reporting<br>Period<br>(Tonnes) |
|----------------------------|----------------------------|--------------------------------------|--------------------------------------|
| Product Distributed- Total | 300,000                    | 65,730.30                            | 150,339                              |

# 4.5 Next Reporting Period

Development activities proposed at the Dunloe Sand Quarry in 2018, include:

- Stripping of topsoil and overburden within the existing extraction limit boundary;
- Load and Haul Activities;
- Washing, screening and stockpiling of product;
- Overburden removal and stockpiling;
- Maintenance of rehabilitation undertaken north eastern area; and
- Load out and sales of topsoil, brickies loam and concrete sands to the local market.

# 5 ACTIONS REQUIRED FROM PREVIOUS ANNUAL REVIEW

Actions required by the 2016 Annual Review are listed in **Table 8**. These items have been closed out in accordance with the conditions of the Project Approval. Ongoing actions and their current compliance status are provided in **Table 9**.

| Aspect                                                 | Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Compliance<br>Status                                                                    |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|                                                        | <ul> <li>The Department letter of 19 October 2016 requested a number of changes be incorporated into future AEMRs.</li> <li>The following changes have not been incorporated into the 2016 AEMR as requested:</li> <li>i) The name/number of all relevant approvals held, including but not limited to: FPL water licences and</li> </ul>                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |
|                                                        | groundwater bore licences. The Department<br>Review of the 2016 AEMR notes that changes<br>occurred during the reporting period should also be<br>identified (e.g. the EPL Licence was transferred on<br>12 September 2016).                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                         |
|                                                        | <ul> <li>Reporting and discussion of all relevant monitoring<br/>results (Schedule 5, Condition 5 f) and a<br/>comparison against monitoring results from<br/>previous years (the minimum, maximum, historical<br/>average, trends).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |
| Outstanding<br>actions from<br>previous AEMR<br>Review | <ul> <li>Figures showing the approved site boundary (plus a legend denoting as such) and its location with regional context, and a figure of the site on a current aerial photograph showing the approved site boundary, approved extraction areas and the current rehabilitation areas as defined in Schedule 3, Condition 26a (plus a legend denoting as such).</li> </ul>                                                                                                                                                                                                                                                                                                                      | i– Section 3<br>ii – Section 6.<br>Appendix 2.<br>iii - Figure 1-3<br>iv –Table 4 and 7 |
|                                                        | iv) A table that outlines actions required for last year's<br>AEMR and details the status of the actions and a<br>reference as to where each action has been<br>addressed within the AEMR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | v – Section 6 and<br>Appendix 1                                                         |
|                                                        | <ul> <li>Tabulated noise monitoring data for the full<br/>reporting period with the raw data appended to the<br/>report.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |
|                                                        | A report on the performance of the rehabilitation vegetation.<br>Include a comparison of monitoring results to previous<br>year's results and against the rehabilitation and revegetation<br>objectives. Also, please list the identified improvements that<br>were noted in the revised AEMR. The Department's review<br>of the 2016 AEMR notes that the AEMR includes a number<br>of the routine quarterly rehabilitation monitoring sheets in an<br>Appendix. These sheets are not dated and poorly identify<br>the monitoring locations. The AEMR and sheets refer to<br>photographs yet none are provided. As such the<br>information provide has not addressed the Department's<br>request. |                                                                                         |

| Table 8: Actions Required from Annual Review – DP |
|---------------------------------------------------|
|---------------------------------------------------|

| Aspect                 | Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Compliance<br>Status                                       |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Rehabilitation<br>Bond | In accordance with Schedule 3, Condition 30, the<br>Department requests that the rehabilitation bond calculation<br>be reviewed and submitted to the Director General for their<br>satisfaction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Previously<br>updated.                                     |
| Annual production data | Annual production data has not been provided in the specific format required under Schedule 3, Condition 45. This non-compliance was also identified in the Independent Environmental Audit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Section 4.4                                                |
| Annual<br>Reporting    | In accordance with Schedule 5, Condition 5, AEMR's are to<br>be submitted annually which comprises and analyse the<br>monitoring results for the project for the past year. The<br>AEMR reissued in 2016 reported on monitoring data from<br>December 2014 till June 2015. This current report covers<br>the period from the 1 January 2016 to 31 December 2016.<br>The Department requests the monitoring results for the<br>period 1 July 2015 to 31 December 2016 be included as<br>part of this report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | This Annual<br>Review covers the<br>2017 Calendar<br>Year. |
| Annual<br>Reporting    | In accordance with Schedule 5, Condition 5(h), the non-<br>compliance with the analysis of samples for DLP locations,<br>as notified in Sasha Peterson's email dated 1 August 2016,<br>has not been included in the AEMR as advised by the<br>Department under email of 17 August 2016.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Included in revised<br>version of the<br>2016 AEMR.        |
| Annual<br>Reporting    | <ul> <li>In accordance with Schedule 5, Condition 5(f), the<br/>Department notes the following anomalies, and seeks<br/>further clarification: <ol> <li>Appendix 2 only includes blue green algae<br/>monitoring results only for the first two quarters of<br/>2016. Please advise the status of the 2016 third<br/>and fourth quarter monitoring data. It is also noted<br/>that monitoring is not being undertaken in<br/>accordance with the frequency specified in the<br/>approved management (i.e. fortnightly).</li> <li>Holcim Fines Managements Action Plan<br/>(20/10/2016) identifies that site staff will undertake<br/>monthly pond depth surveys to ensure all fines are<br/>interned below a depth of approximately 8 metres<br/>(+/-1 metres) on the bed of the pond. This was to<br/>commence in October 2016. The Department<br/>requests a summary of monitoring be included in<br/>the AEMR for the reporting period.</li> </ol> </li> <li>iii) pH levels recorded in the extraction pond ranged<br/>between 3.5 and 4.9 which is below interim target<br/>criteria (5.0 to 8.5). Please provide further advice<br/>as to how this issue is being addressed.</li> </ul> | i – Appendix 2<br>ii - Section 6.8<br>iii – Section 7.3    |
| Annual<br>Reporting    | Revision of environmental management and monitoring<br>strategies/plan/programs in accordance with Schedule 5,<br>Condition 8, please advise that status of the review of<br>environmental management and monitoring<br>strategies/plans/programs in Schedules 3 and 5 as a result<br>of the Independent Environmental Audit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Covered in<br>previous AEMR<br>submission                  |

| Aspect                          | Requirement                                                                                                                                                                                                                                                                                                                                   | Compliance<br>Status                        |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Presentation of monitoring data | <ul> <li>The Department suggests:</li> <li>ii) The units of measurement and performance criteria and EA predictions be noted in tables.</li> <li>iii) Monitoring data which is not within target criteria are highlighted.</li> <li>Graphs of monitoring data also include performance criteria and EA predictions, as applicable.</li> </ul> | Covered in previous report and this report. |
| Administrative matters          | Section 8 of the AEMR 2016 states that a copy of the external stakeholder reporting database register is attached. The database has not been attached as indicated.                                                                                                                                                                           | Attached to the<br>revised 2016<br>AEMR     |
| Access to<br>Information        | The Department notes that the company's website contains various environmental and community documents. The Department requests that the website be updated to include the management plans for the site.                                                                                                                                     | Holcim website has been updated.            |

## Table 9: Actions required from Annual Review – Holcim Proposed Actions

| Commitment                                                                                                                                                                | Compliance Status                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Independent Environmental Audit - Staff will close out all actions associated with the 2016 IEA.                                                                          | Actions closed out                                                          |
| Progressive Rehabilitation - The site will continue to progressively rehabilitate available areas on the northern and eastern boundary lines.                             | Progressive rehabilitation<br>is completed by the lease<br>owner – Ramtech. |
| Development Application (Truck Movements Modification) - Application to modify the current Project Approval condition limiting truck movement to 4 (in and out) per hour. | Section 6.4                                                                 |
| EMP Review - Development of a new Environmental Management Plan with alignment to Holcim Australia's Environmental Management System.                                     | Still being developed                                                       |

# **6 ENVIRONMENTAL PERFORMANCE**

# 6.1 Meteorological Monitoring

Monthly rainfall data for 2017 has been provided in Table 10.

#### Table 10: Monthly Rainfall at the Dunloe Sand Quarry for 2017

| Monthly Rainfall (mm) |     |     |     |     |     |     |     |     | Total |     |     |     |       |
|-----------------------|-----|-----|-----|-----|-----|-----|-----|-----|-------|-----|-----|-----|-------|
|                       | Jan | Feb | Mar | Apr | Мау | Jun | Jul | Aug | Sep   | Oct | Nov | Dec | 2017  |
|                       | 0   | 98  | 280 | 49  | 76  | 102 | 22  | 0   | 0     | 191 | 167 | 34  | 1,019 |

No meteorological trends are currently available.

# 6.2 Noise

## 6.2.1 EIS Predictions

The EIS (2007) stated that modelling of noise levels likely to originate from the proposal indicate that operations within the south west corner of the southern extraction pond (stage 2) may generate levels which exceed the relevant noise impact requirements.

The EIS (2007) stated that to mitigate this minor impact, the dredge is to have acoustical treatment when operating within the southern extraction pond.

## 6.2.2 Approved Criteria

In accordance with Schedule 3, Condition 2 of PA 06\_0030, the approved noise criteria for the Dunloe Sand Quarry are outlined in **Table 11**.

#### Table 11: Noise Criteria for the Dunloe Sand Quarry (PA 06\_0030)

|         | Receiver Location                                                                                                                                                                                                                                                                                                                                    | Day L <sub>Aeq (15 min)</sub> dB(A)                                                                                                                                                                                            |                                                                                                                                                                                        |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Residences on privately-owned land                                                                                                                                                                                                                                                                                                                   | 48                                                                                                                                                                                                                             |                                                                                                                                                                                        |
| No      | tes:                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                |                                                                                                                                                                                        |
| No<br>• | tes:<br>Noise from the site is to be measured at the m                                                                                                                                                                                                                                                                                               | nost affected point within the residu                                                                                                                                                                                          | ential boundary, or at the mos                                                                                                                                                         |
| No<br>• | tes:<br>Noise from the site is to be measured at the m<br>affected point within 30 metres of the dwelling<br>to determine compliance with the identified noi                                                                                                                                                                                         | nost affected point within the reside<br>where the dwelling is more than<br>ise limits, except where otherwise                                                                                                                 | antial boundary, or at the mos<br>30 metres from the boundary<br>specified below.                                                                                                      |
| •       | tes:<br>Noise from the site is to be measured at the m<br>affected point within 30 metres of the dwelling<br>to determine compliance with the identified noi<br>Where it can be demonstrated that direct me<br>means of determining compliance may be accu                                                                                           | nost affected point within the reside<br>where the dwelling is more than<br>ise limits, except where otherwise<br>easurement of noise from the pro<br>eptable (see Chapter 11 of the NS                                        | ential boundary, or at the mos<br>30 metres from the boundary<br>specified below.<br>ject is impractical, alternativ<br>W Industrial Noise Policy).                                    |
| •       | tes:<br>Noise from the site is to be measured at the m<br>affected point within 30 metres of the dwelling<br>to determine compliance with the identified noi<br>Where it can be demonstrated that direct me<br>means of determining compliance may be acc<br>The modification factors presented in Section<br>measured noise level where applicable. | nost affected point within the reside<br>a where the dwelling is more than<br>ise limits, except where otherwise<br>easurement of noise from the pro<br>eptable (see Chapter 11 of the NS<br>4 of the NSW Industrial Noise Pol | ential boundary, or at the mos<br>30 metres from the boundary<br>specified below.<br>ject is impractical, alternativ<br>W Industrial Noise Policy).<br>icy shall also be applied to th |

#### The identified hoise emission limits apply under meteorological conditions of wind speed up to sm/s metres above ground level, and temperature inversion conditions.

## 6.2.3 Key Environmental Performance

Attended noise monitoring was undertaken quarterly at the Dunloe Sand Quarry by Muller Acoustic Consulting on the following dates:

- 29 March 2017;
- 20 June 2017;
- 3 September 2017; and
- 15 December 2017.

The compliance assessments for each residential receiver (R1, R2, R3 and R4) are presented in **Table 12**.

The assessments identified that noise emissions generated by the Dunloe Sand Quarry were in compliance with relevant statutory noise criteria specified in the Project Approval on all occasion's at all assessed residential receivers.

#### Longterm Trends:

Noise monitoring completed over a number of years for this project has generally been inaudible and within criteria. This continued for noise monitoring in 2017.

#### **Comparison to EIS Predictions:**

As noise levels were within criteria in 2017, results were within the EIS predictions.

### 6.2.4 Management Measures

Management measures relating to noise are outlined within the Dunloe Sand *Environmental Management Plan* and the *Noise Management and Monitoring Program*. These include:

- Restrict hours of operation of the Sand Quarry to Monday to Friday 7.00 am to 5.00 pm and Saturday 7.00 to 12.00 pm;
- No work on Sundays or Public Holidays;
- All trucks to be well maintained and fitted with residential mufflers;
- Acoustic testing at commencement of quarry operations to ensure compliance with noise limit criteria;
- Dredge to be fitted with suitable mufflers if noise limit criteria is exceeded;
- Trucks to be limited to a speed of 25km/h on internal roads; and
- Prescribed buffer zones around the extraction ponds to be planted and maintained.

### 6.2.5 Proposed Improvements

There are no proposed improvements related to noise management.

|                        |                  | Quarrying                                    | Q1                                                         |              | Q2                                                         |              | Q3                                                         |              | Q4                                                         |              |
|------------------------|------------------|----------------------------------------------|------------------------------------------------------------|--------------|------------------------------------------------------------|--------------|------------------------------------------------------------|--------------|------------------------------------------------------------|--------------|
| Assessment R<br>Period | Receive<br>r No. | Noise<br>Criteria<br>LAeq <sub>(15min)</sub> | Quarry<br>Noise<br>Contribution<br>LAeq <sub>(15min)</sub> | Compliant    |
|                        | R1               | 48                                           | Nil                                                        | ~            | Nil                                                        | $\checkmark$ | Nil                                                        | $\checkmark$ | Nil                                                        | $\checkmark$ |
| Dav                    | R2               | 48                                           | Nil                                                        | ~            | Nil                                                        | $\checkmark$ | Nil                                                        | $\checkmark$ | Nil                                                        | $\checkmark$ |
| Day                    | R3               | 48                                           | Nil                                                        | $\checkmark$ | Nil                                                        | $\checkmark$ | Nil                                                        | $\checkmark$ | Nil                                                        | $\checkmark$ |
|                        | R4               | 48                                           | Nil                                                        | $\checkmark$ | Nil                                                        | $\checkmark$ | Nil                                                        | $\checkmark$ | Nil                                                        | $\checkmark$ |

# 6.3 Air Quality

### 6.3.1 EIS Predictions

The EIS (2017) Executive Summary states the following:

Airborne particulate matter concentrations and dust deposition from the proposed development have been predicted to exceed the relevant requirements prescribed by the Office of Environment and Heritage at three of the eight monitoring locations.

In particular, exceedances are expected as a result of dust generated from the use of unsealed access roads by haul vehicles. In order to meet prescribed requirements, proposed dust controls include sealing of the entire internal roadway length, planting of a vegetated buffer along the southern boundary adjoining Warwick Park Road and the proposed outbound internal road.

## 6.3.2 Approved Criteria

The site is required to monitor dust deposition in accordance with the criteria listed in **Table 13**, **Table 14** and **Table 15**.

#### Table 13: Long Term Impact Assessment Criteria for Deposited Dust

| Pollutant      | Averaging Period | Maximum increase in<br>deposited dust level | Maximum total<br>deposited dust level |
|----------------|------------------|---------------------------------------------|---------------------------------------|
| Deposited Dust | Annual           | 2 g/m <sup>2</sup> /month                   | 4 g/m <sup>2</sup> /month             |

#### Table 14: Short Term Impact Assessment Criteria for Particulate Matter

| Pollutant                                    | Averaging Period | Criterion            |
|----------------------------------------------|------------------|----------------------|
| Particulate Matter 10 µm (PM <sub>10</sub> ) | 24 Hour          | 50 μg/m <sup>3</sup> |

#### Table 15: Long Term Impact Assessment Criteria for Particulate Matter

| Pollutant                                    | Averaging Period | Criterion            |
|----------------------------------------------|------------------|----------------------|
| Total suspended particulate (TSP) matter     | Annual           | 90 μg/m <sup>3</sup> |
| Particulate Matter 10 µm (PM <sub>10</sub> ) | Annual           | 30 µg/m <sup>3</sup> |

#### 6.3.3 Key Environmental Performance

#### 6.3.3.1 Depositional Dust

Dust deposition monitoring was undertaken at 4 locations across the 2017 reporting period (see **Table 16**). All four monitoring points were found to be well below the annual average  $(4g/m^2)$  and in compliance with the Project Approval. However it should be noted, there was an error with sampling depositional dust, with thirteen monitoring events occurring instead of twelve.

| Of and Date                              |           | DDG1               | DDG2               | DDG3               | DDG4               |
|------------------------------------------|-----------|--------------------|--------------------|--------------------|--------------------|
| Start Date                               | End Date  | (g/m²/month)       |                    |                    |                    |
| 01-Jan-17                                | 30-Jan-17 | 0.3                | 0.2                | 0.5                | 0.3                |
| 30-Jan-17                                | 27-Feb-17 | 0.3                | 0.2                | 0.2                | 0.3                |
| 27-Feb-17                                | 22-Mar-17 | 0.2                | 0.1                | 2.4                | 0.3                |
| 22-Mar-17                                | 19-Apr-17 | 0.2                | 0.9                | 1                  | 0.3                |
| 19-Apr-17                                | 17-May-17 | 0.8                | 0.8                | 1.4                | 0.7                |
| 17-May-17                                | 14-Jun-17 | 0.2                | 0.2                | 0.2                | 0.2                |
| 14-Jun-17                                | 12-Jul-17 | 0.3                | <0.1               | 0.2                | 0.3                |
| 12-Jul-17                                | 09-Aug-17 | 0.1                | <0.1               | 0.2                | 0.5                |
| 09-Aug-17                                | 06-Sep-17 | 0.5                | 0.2                | 0.5                | 0.5                |
| 06-Sep-17                                | 04-Oct-17 | 0.7                | 0.6                | 2.4                | 0.9                |
| 04-Oct-17                                | 01-Nov-17 | 0.5                | 0.3                | 0.8                | 0.5                |
| 01-Nov-17                                | 29-Nov-17 | 0.1                | 0.2                | 0.3                | <0.1               |
| 29-Nov-17                                | 28-Dec-17 | 0.4                | 0.3                | 0.2                | 0.2                |
| Minimum Insoluble Solids                 |           | 0.1                | <0.1               | 0.2                | <0.1               |
| Maximum Insoluble Solids                 |           | 0.8                | 0.9                | 2.4                | 0.9                |
| Annual Average (4g/m <sup>2</sup> /year) |           | 0.35               | 0.32               | 0.79               | 0.39               |
| Result                                   |           | Within<br>Criteria | Within<br>Criteria | Within<br>Criteria | Within<br>Criteria |

Table 16: 2017 Dust Monitoring (Depositional Dust)

A comparison of results from 2016 and 2017 has been undertaken in **Table 17**. The monthly average at all gauges remained below the allowable maximum increase of 2 g/m<sup>2</sup>/month.

|                            |                                                | Monitoring Period |      |
|----------------------------|------------------------------------------------|-------------------|------|
| Dust Depositional<br>Gauge | Monitoring Summary for Annual Review<br>Period | 2017              | 2016 |
|                            |                                                | (g/m²/month)      |      |
|                            | Min. Insoluble Solids                          | 0.1               | 0.13 |
| DDG1                       | Max. Insoluble Solids                          | 0.8               | 0.8  |
|                            | Insoluble Solids Reporting Period Average      | 0.35              | 0.41 |
|                            | Min. Insoluble Solids                          | <0.1              | 0.4  |
| DDG2                       | Max. Insoluble Solids                          | 0.9               | 4.7  |
|                            | Insoluble Solids Reporting Period Average      | 0.32              | 1.23 |
|                            | Min. Insoluble Solids                          | 0.2               | 0.2  |
| DDG3                       | Max. Insoluble Solids                          | 2.4               | 1.6  |
|                            | Insoluble Solids Reporting Period Average      | 0.79              | 0.48 |
|                            | Min. Insoluble Solids                          | <0.1              | 0.3  |
| DDG4                       | Max. Insoluble Solids                          | 0.9               | 1.6  |
|                            | Insoluble Solids Reporting Period Average      | 0.39              | 0.57 |

#### Longterm Trends:

The annual average depositional dust levels recorded in the 2017 reporting period at all monitoring locations are generally consistent with those recorded in 2016. The maximum increase in annual average deposited dust levels remained within 0.31 g/m<sup>2</sup>/month at all monitoring locations, well below the 2 g/m<sup>2</sup>/month criteria.

#### Comparison to EIS Predictions:

The results for depositional dust were within the predicted limits of the EIS predictions.

#### 6.3.3.2 PM<sub>10</sub> Monitoring

 $\mathsf{PM}_{10}$  monitoring is required to be undertaken in accordance with the criteria provided in **Table 14** and **Table 15**.

During 2016, the DPE advised Holcim of the requirement to undertake monitoring at the Dunloe Sand Quarry, unless changes were made to the site *Air Quality Management Plan*.

The updated Dust Monitoring Program, proposing  $PM_{10}$  monitoring only be required once extraction on the site exceeded 200,000 tonnes per annum, was submitted to the DPE for approval on 23 October 2016. During this time, Holcim worked to procure a mobile  $PM_{10}$  monitor whilst an updated management plan was under review by DPE.

On 15 November 2016, Holcim received what was mistakenly understood by the former Holcim Planning & Environment Coordinator, to be approval of the Dust Monitoring Program, subject to the comment from DPE being noted and complied with. This happened prior obtaining the mobile  $PM_{10}$  monitor arriving on site.

Holcim provided DPE a letter on 22 September 2017 detailing the reasons behind the site's failure to monitor  $PM_{10}$ . Holcim were issued with an Official Caution from DPE on 4 October 2017.

Results of PM<sub>10</sub> monitoring undertaken since November 2017 have been provided in Table 18.

| Date Sampled                  | Sampling Period<br>(hours) | ΡΜ <sub>10</sub><br>(μg/m <sup>3</sup> ) | Compliance with Criteria<br>(50 μg/m <sup>3</sup> in 24hr)        |
|-------------------------------|----------------------------|------------------------------------------|-------------------------------------------------------------------|
| 02-Nov-17                     | 24                         | 32                                       | Within criteria                                                   |
| 08-Nov-17                     | 24                         | 12                                       | Within criteria                                                   |
| 14-Nov-17                     | 24                         | 18                                       | Within criteria                                                   |
| 20-Nov-17 and<br>26-Nov-17    | 48                         | 18                                       | Result inadmissible. Filter was not changed and ran twice         |
| 02-Dec-17                     | 24                         | 12                                       | Within criteria                                                   |
| 08-Dec-17                     | 24                         | 15                                       | Within criteria                                                   |
| 14-Dec-17                     | 24                         | 13                                       | Within criteria                                                   |
| 20-Dec-17 and<br>26-Dec-17    | 48                         | 15                                       | Result inadmissible. Filter was not changed due to holiday period |
| Annual Average (30µg/m³/year) |                            | N                                        | ot yet reportable                                                 |

#### Table 18: Particulate Matter (PM<sub>10</sub>) 2017 Dust Monitoring at Dunloe Sand Quarry

The Long Term Impact Assessment Criteria (annual average) is not yet reportable due to results only being collected for two months of the 2017 reporting period.

During the 2017 reporting period extraction remained below 200,000 tonnes per annum. The site has maintained dust suppression techniques throughout the reporting period in accordance with the requirements of the EMP. No issues associated with dust from operations were identified in 2017.

### 6.3.4 Management Measures

Management measures relating to air quality are outlined within the *Dunloe Sand Quarry Environmental Management Plan and Dust Monitoring Program*. These include:

- Sealing Access and Egress road from the Quarry to Pottsville Road;
- The wheel shaker screen is to be utilised by all traffic leaving the quarry. To ensure the effectiveness of the shaker screen, the product removed from vehicles is to be removed from under the screen at least twice per week;
- The route for trucks within the quarry will be wet down daily by a water sprinkler/spray system;
- Additional vegetation rehabilitation areas throughout the site contributing as a buffer to Mooball creek and surrounding areas;
- Loaded trucks will be covered before exiting the site;
- Dust that is transported onto the access road immediately outside the active quarry area will be removed from the road at least once per month using a local street sweeper;
- Visual daily inspections of all stockpiles will be undertaken to ensure that dust emissions do not occur;
- Visual review of exposed areas, and whether these areas are generating dust, should be undertaken daily;
- It is expected that dust generation would be limited to freshly disturbed areas. To facilitate dampening, a portable hose or water spray/sprinkler system is installed. The system installed is capable of servicing the entire site;
- Topsoil will not be stripped during windy weather conditions; and
- Six monthly audits of dust levels are to be undertaken by management.

### 6.3.5 **Proposed Improvements**

Completion of monitoring as per the EMP and Development Consent requirements.

# 6.4 Traffic Management

### 6.4.1 EIS Predictions

Operating times and the volume of material within the resource will see the requirement for 18 full time employees plus additional contract maintenance personnel as may be required. Operations will be conducted Monday to Saturday. No operations are to be undertaken on Sunday or public holidays.

#### Table 19: Estimated Operational Times, Periods and Truck Movements (EIS 2007)

| Yearly Operation | Days Per<br>Week | Hours per<br>Week | Daily Times Operating                           | Truck<br>Movements<br>per Hour |
|------------------|------------------|-------------------|-------------------------------------------------|--------------------------------|
| 50 weeks/year    | 5.5              | 46                | Mon-Fri: 7:30am -5:00pm<br>Sat: 7:30am -12:30pm | 4                              |

## 6.4.2 Approved Criteria

Operations will be conducted Monday to Saturday. No operations are to be undertaken on Sunday or public holidays as per the Development Consent (Schedule 3 Condition 3).

| Yearly Operation | Days Per<br>Week | Hours per<br>Week | Daily Times Operating                           | Truck<br>Movements<br>per Hour |
|------------------|------------------|-------------------|-------------------------------------------------|--------------------------------|
| 52 weeks/year    | 5.5              | 55                | Mon-Fri: 7:30am -5:00pm<br>Sat: 7:30am -12:00pm | 8*                             |

Table 20: Operational Times, Periods and Truck Movements

\* Not to exceed more than 8 heavy vehicle movements (in and out) per hour

Internal roads are signposted to a 25-30km/h speed limit.

### 6.4.3 Key Environmental Performance

Holcim staff were notified during due diligence activities by representatives of Ramtech that operations prior to the acquisition by Holcim were based on a maximum of 8 movements per hour (ie - 8 in, 8 out). The DPE compliance team has since notified Holcim that this interpretation is incorrect and the site is only allowed 4 movements per hour (ie - 4 in, 4 out).

Holcim has operated in accordance with revised truck movements since direction was given by the DPE on October 20, 2016. It is noted that Holcim are currently undertaking an application to modify this condition to allow greater flexibility to hourly and daily movements for trucks entering and exiting the site. The modification is currently within the Response to Submissions stage.

Daily records of truck movements are recorded by Holcim. Based on the records all truck movements were 4 movements per hour or below. A summary of the daily truck movements are illustrated within **Appendix 4**.

Traffic travelling to and from the site continued to make use of the Pacific Highway, via the Cudgera Creek interchange during the 2017 reporting period.

In summary:

- There was a total of 4382 trucks recorded leaving site during 2017; and
- Haulage occurred at an average of 17.5 trucks during haulage days during 2017.

#### 6.4.4 Management Measures

Management measures relating to air quality are outlined within the *Dunloe Sand Quarry Environmental Management Plan* and the *Traffic Management Procedure*. These include:

- Construction of a dedicated haulage road (sealed) to provide vehicular access between the sand extraction area and Pottsville-Mooball Road;
- Average truck movements limited to 8 trips per hour (4 in, 4 out);
- All vehicles to observe speed limits for public roads;
- No trucks are to leave the site via Warwick Park Road;
- Appropriate advisory signage placed on public roads to notify of trucks entering Pottsville Mooball Road;
- Appropriate relevant advisory signage placed along the haulage road (especially approaches to the intersections with Kelleher's Road and Pottsville Mooball Road);
- Truck speed on the internal roads is to be limited to a maximum of 25km/h;
- All loaded vehicles entering or leaving the site are to have their loads covered; and
- Holcim shall ensure that all loaded vehicles leaving the site are cleaned of materials that may fall on the road before they leave the site.

#### 6.4.5 **Proposed Improvements**

There are no proposed changes to transport management.

# 6.5 Biodiversity

### 6.5.1 EIS Predictions

As part of the EIS (2007), a number of threatened species were identified within the surrounding vegetated areas of the site with none being found, or expected to occur, within the previously disturbed areas of the site (including proposed extraction areas).

Rehabilitation and revegetation measures proposed will provide improved flora and fauna links, additional food resources for identified threatened species, improved opportunities for breeding through the installation of breeding boxes and other benefits associated with visual screening and the like.

No clearing of vegetation is required in respect of the proposal, inclusive of haulage routes and operational areas.

## 6.5.2 Approved Criteria

There are no specific criteria associated with biodiversity management for the site. Activities need to be completed in accordance with the EIS.

### 6.5.3 Key Environmental Performance

There were no biodiversity issues identified during the Annual Review period. During the 2017 reporting period, vegetation clearance was limited to exotic pasture grassland within the approved extraction boundary. There was no removal of trees due to a lack thereof and hence a pre-clearance survey and fauna spotter-catcher was not required.

There was some minor weed spraying at the site in 2017.

### 6.5.4 Management Measures

Management measures relating to biodiversity are outlined within the *Dunloe Sand Quarry Rehabilitation and Revegetation Management Plan* and the *Dunloe Sand Vegetation Management Plan*. These include:

- Detailed clearing protocol as per Section 5.1 of the *Dunloe Sand Quarry Rehabilitation and Revegetation Management Plan;*
- Weed management;
- Installation of next boxes; and
- Ecological monitoring.

#### 6.5.5 **Proposed Improvements**

Continuation of weed management during 2018.

# 6.6 Heritage

#### 6.6.1 EIS Predictions

A heritage assessment focusing on both Aboriginal and non-Aboriginal heritage was completed for the EIS (2007), with no areas of concern identified.

### 6.6.2 Approved Criteria

There are no specific criteria associated with heritage relating to the project.

### 6.6.3 Key Environmental Performance

There were no issues relating to Aboriginal and historic heritage during the reporting period. There is a potential heritage item at site which has been cordoned off (prior to 2017) following consultation with an Aboriginal heritage specialist.

### 6.6.4 Management Measures

Management measures relating to heritage are outlined within the *Dunloe Sand Quarry Aboriginal Cultural Heritage Management Plan*. These include:

- Consultation with Aboriginal stakeholders during the preparation of the EIS;
- Records of known sites of Aboriginal heritage significance;
- Detailed excavation strategy and control of any finds;
- Inspections;
- Training of staff and contractors through the induction process; and
- Procedure for impacts of unexpected finds.

#### 6.6.5 **Proposed Improvements**

No proposed improvements.

# 6.7 Acid Sulphate Soils Management and Management of Fines

Holcim undertakes fines management in accordance with Conditions 10 and 11, Schedule 3 of Project Approval 06\_0030, in the following manner:

10. The Proponent shall ensure that all excavated potential acid sulfate soil fines material is returned back to below the watertable as soon as possible to prevent oxidation. No potential acid sulfate soil shall be removed from the site, unless adequately neutralised in accordance with methods approved under the Soil and Water Management Plan.

11. The Proponent shall ensure that all potential acid sulfate soil fines material is discharged into the pond at a depth of no less than 3 metres from the water surface, and that all fines are deposited to a final depth of at least 8 metres from the water surface, unless an alternative method(s) is approved by OOW and the Director-General.

Under the operation of Holcim, the site has undertaken a number of improvement works to ensure the effective management of Acid Sulphate Soils (ASS) and Potential Acid Sulphate Soils (PASS) during extraction, processing and sales operations. Details of specific management measures are outlined below.

### 6.7.1 Acid Sulphate Soils Sampling

Holcim undertakes acid sulphate soils sampling in advance of extraction. A sand core drilling program was undertaken in 2016, in accordance with the EMP, for an area of extraction required for the following 2-3 years. The drilling program was been developed and undertaken in line with the following activities:

- 1. A minimum of 2 sand cores are drilled per hectare;
- 2. All samples are sent to Soil Surveys Australia Pty Ltd for immediate testing in accordance with the ASSMAC Guidelines;
- 3. Soil Surveys Australia Pty Ltd (NATA Accredited lab) test results provided a volume per m<sup>2</sup> for lime to be seeded across each hectare before stripping takes place;
- 4. Lime was spread across the reserve and then stripped to expose the loam and sand product; and
- 5. Stockpiled topsoil is tested by a NATA accredited laboratory to confirm there is no presence of PASS.
- 6. A minimum of 2 sand cores are drilled per hectare;
- 7. All samples are sent to Soil Surveys Australia Pty Ltd for immediate testing in accordance with the ASSMAC Guidelines;

- 8. Soil Surveys Australia Pty Ltd (NATA Accredited lab) test results provided a volume per m<sup>2</sup> for lime to be seeded across each hectare before stripping takes place;
- 9. Lime was spread across the reserve and then stripped to expose the loam and sand product; and
- 10. Stockpiled topsoil is tested by a NATA accredited laboratory to confirm there is no presence of PASS.

The ongoing management of acid sulphate soils during extraction in the sampled area is undertaken in accordance with the site's Environmental Management Plan. A summary report of the 2016 acid sulphate soils monitoring results is included as **Appendix 5**.

## 6.7.2 Extraction

Excavation of loam, dredging and washing activities undertaken in accordance with the EMP and has been developed in line with the following activities:

- Excavated loam is stockpiled and tested by NATA accredited laboratory to confirm there is no presence of PASS;
- In the event that PASS is present in loam stockpiles a NATA accredited laboratory will provide a detailed report with liming rates for lime to be added by Holcim staff to screened loam to ensure no presence of PASS;
- 3. All dredged material is sent through the plant with fines re-interned below the 3 meter water mark at a depth of 8 metres in the returns pond; and
- 4. Cardno test production sand stockpiles on a testing regime to ensure that no PASS are present in concrete sands.

### 6.7.3 Stockpiling & Sales

Holcim have developed and implemented a testing regime using a NATA accredited laboratory to ensure compliance with PASS requirements for all sales of sand materials. This process includes:

- 1. Routine sampling of sales material stockpiles at designated locations; and
- 2. Implementation of a series of sales and production stockpiles to ensure any materials that have not been tested are isolated until tests confirm no presence of PASS thereafter sales loading occurs.

# 6.8 Summary of Environmental Performance

A summary of the performance of environmental management measures and sampling results for 2017 are detailed in Table 21.

| Aspect             | Approval Criteria / EIS Prediction                          | Performance during 2017<br>reporting period                                                                                                      | Trend / key management<br>implications                                                      | Implemented / proposed<br>management actions                                   |
|--------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Noise              | EIS predictions are all below development consent criteria. | Quarterly monitoring has met<br>the Development Consent<br>Criteria.                                                                             | Consistently meets criteria.                                                                | None Required.                                                                 |
| Air Quality        | EIS predictions are all below development consent criteria. | Dust deposition results are<br>within criteria of EPL, EIS<br>and Development Consent.<br>PM <sub>10</sub> monitoring only<br>recently commenced | Dust deposition has been<br>consistent with EIS and<br>previous Annual Review<br>reporting. | Complete monitoring as per<br>the EMP and Development<br>Consent requirements. |
| Traffic Management | EIS predictions are all below development consent criteria. | Met operating criteria<br>(number of trucks per day).                                                                                            | This is an improvement on some past years.                                                  | None Required.                                                                 |
| Water Management   | EIS predictions are all below development consent criteria. | Criteria meets EIS, EPL and<br>Development Consent<br>criteria.                                                                                  | Groundwater consistent with trend data.                                                     | Ensure water quality<br>monitoring is completed in<br>accordance with the EMP. |
| Biodiversity       | No impacts to threatened species. No criteria.              | No impacts                                                                                                                                       | Consistently no impacts.                                                                    | None required.                                                                 |
| Heritage           | No impacts to Aboriginal Heritage.<br>No criteria.          | No impacts                                                                                                                                       | Consistently no impacts.                                                                    | None required.                                                                 |

Table 21: Environmental Performance at the Dunloe Sand Quarry in 2017

# 7 WATER MANAGEMENT

# 7.1 EIS Predictions

The site is located within the Mooball Creek catchment and Sheens Creek sub-catchment areas. Detailed flood modelling confirms that the proposal will have no significant impact upon existing drainage regimes within the catchment.

Extraction operations have been designed in conformity with best practice environmental management procedures, including the use of appropriate sediment and water quality devices and the retention of ground cover in areas outside of the extraction ponds.

No negative impacts predicted to water quality with controls in place.

# 7.2 Approved Criteria

# 7.3 Surface Water

The site has undertaken monthly extraction pond water monitoring in accordance with the criteria listed in **Table 22**.

| Monthly Monitoring           |                         |                               |
|------------------------------|-------------------------|-------------------------------|
| Parameter                    | Interim Target Criteria | Baseline monitoring 9/06-8/07 |
| рН                           | 5.0 - 8.5               | 3.55-8.44 (6.49)              |
| Electrical Conductivity (EC) | <5.50 mS/cm             | 0.286 - 45mS/cm (11.930mS/cm) |
| Dissolved Oxygen (DO)        | >4.00 mg/L              | 0.81-7.49 (4.34)mg/L          |
| Turbidity                    | <20 (NTU)               | 3-67 (14.4) NTU               |
| Oil and Grease               | 10 mg/L                 |                               |

#### Table 22: Monthly Surface Water Quality Criteria – Extraction Pond

The site has undertaken quarterly extraction pond water monitoring within the surrounding environment in accordance with the criteria listed in **Table 23**.

#### Table 23: Quarterly Surface Water Quality Criteria – Extraction Pond

| Quarterly monitoring             |                                       |                                         |
|----------------------------------|---------------------------------------|-----------------------------------------|
| Quarterly monitoring shall inclu | de the above parameters as well as th | e parameters listed in the table below. |
| Parameter                        | Interim Target Criteria               | Baseline monitoring 9/06-8/07           |
| Manganese                        | 0.15 mg/L                             | 0.01 – 0.56 mg/L                        |
| Magnesium                        | 40 mg/L                               | 0.8 – 173.0 (20) mg/L                   |
|                                  |                                       | ·                                       |
|                                  |                                       |                                         |
| Sodium                           | 280 mg/L                              | 7-1770 (213) mg/L                       |
| Potassium                        | 17.5 mg/L                             | 0-71 (12) mg/L                          |
| Bicarbonate                      | 400 mg/CaCo3                          | -                                       |

| Dicarbonace   | 400 mg/cacos | -                          |
|---------------|--------------|----------------------------|
| Chloride      | 285 mg/L     | 15-3500 (356)mg/L          |
| Sulphate      | 175 mg/L     | 9-753 (100) mg/L           |
| Aluminium     | 0.75 mg/L    | <0.01-4.96 (0.50) mg/L     |
| Arsenic       | <0.005 mg/L  | <0.005 - 0.027 (0.01) mg/L |
| Iron          | <7.5 ug/L    | 0.03-43 (6.12) ug/L        |
| Chlorophyll a | 2-10 ug/L    | 2-10 ug/L                  |

The site has undertaken Blue Green Algae monitoring within the extraction ponds at the site in accordance with the criteria listed in **Table 24**.

#### Table 24: Monthly Monitoring Criteria – Blue Green Algae

| Algae and Blue-green algae | No.cells/mL (M.aeruginosa)           | <50,000 |
|----------------------------|--------------------------------------|---------|
|                            | mm <sup>3</sup> /L (total biovolume) | <4      |
|                            |                                      |         |

The site has undertaken quarterly creek water monitoring within the surrounding environment in accordance with the criteria listed in **Table 25**.

| nent |
|------|
| n    |

| Pollutant               | Unit of Measure | Interim Target Criteria | Baseline Monitoring<br>9/06-8/07 |
|-------------------------|-----------------|-------------------------|----------------------------------|
| рН                      | рН              | 5-5-7-5                 | 3.55-8.44 (6.49)                 |
| Electrical Conductivity | uS/cm           | 1800-24000              | 286-45000 (11930)                |
| Dissolved Oxygen        | mg/L            | >6                      | 0.81-7.49 (4.34)                 |
| Turbidity               | NTU             | <20                     | 3-67 (14.4)                      |
| Suspended Solids        | mg/L            | <25                     | 1.5-48 (19)                      |

#### Groundwater

The site has undertaken monthly groundwater monitoring within the surrounding environment in accordance with the criteria listed in **Table 26**.

| Parameter               | Interim Target Criteria | Baseline Monitoring 9/06-8/07 |
|-------------------------|-------------------------|-------------------------------|
|                         |                         | Range (mean)                  |
| pH                      | 4.2 - 7.0               | 3.58-7.54 (5.43)              |
| Electrical Conductivity | <2.0 mS/cm              | 0.07-6.47 (1.24)              |
| (EC)                    |                         |                               |
| Dissolved Oxygen (DO)   | >1.50 mg/L              | 0.16 - 4.83 (0.84)            |
| REDOX Potential         | Maximum (mg/L)          |                               |
| Groundwater level       | M (AHD)                 | 0.25-1.52 (0.68)              |

The site has undertaken quarterly groundwater monitoring within the surrounding environment in accordance with the criteria listed in **Table 27**.

| Parameter   | Interim Target Criteria | Baseline monitoring 9/06-8/07 |
|-------------|-------------------------|-------------------------------|
| Calcium     | 55                      | 0.7-114 (26)                  |
| Manganese   | 0.15                    | 0.01 - 0.56                   |
| Magnesium   | 40                      | 0.8 – 173.0 (20)              |
| Sodium      | 280                     | 7-1770 (213)                  |
| Potassium   | 17.5                    | 0-71 (12)                     |
| Bicarbonate | 400                     | -                             |
| Chloride    | 285                     | 15-3500 (356)                 |
| Alkalinity  | 185                     | 0-534 (109)                   |
| Sulphate    | 175                     | 9-753 (100)                   |
| Aluminium   | 0.75 <0.01-4.96 (       |                               |
| Arsenic     | nic 0.005 <0.005        |                               |
| Iron        | 7.5                     | 0.03-43 (6.12)                |

# 7.4 Surface Water Monitoring – Extraction Pond

A summary of results obtained from monthly sampling in the extraction pond is provided in Table 28.

| Parameter         | Unit  | Interim<br>Target<br>Criteria | Baseline<br>(2006/07) | Min  | Мах  | Average |
|-------------------|-------|-------------------------------|-----------------------|------|------|---------|
| рН                | -     | 5.0-8.5                       | 3.55-8.44             | 3.4  | 6.5  | 4.55    |
| EC                | uS/cm | <2000                         | 286-450               | 84   | 979  | 349.5   |
| DO                | Mg/L  | >4.00                         | 0.81-7.49             | 6.6  | 9.9  | 8.28    |
| Turbidity         | NTU   | <20                           | 3-67                  | 1    | 400  | 68.5    |
| Oil and<br>Grease | Mg/L  | 10                            | -                     | <5.0 | <5.0 | <5.0    |

Table 28: Monthly Extraction Pond Water Quality Monitoring 2017 Results

Results for pH have varied between 3.4 and 6.5 during the 2017 reporting period. pH results were below the lower limit of the interim target criteria on the majority of monitoring occasions throughout 2017, bringing the annual average below the interim target criteria. Other results were highly variable for EC and turbidity.

EC, dissolved oxygen and oil and grease remained within the interim target criteria for all monitoring occasions.

A summary of results obtained from quarterly chemical analysis in the extraction pond is provided in **Table 29**.

Results obtained from quarterly chemical analysis of extraction pond water shows the results to be generally in accordance with the baseline criteria and interim target criteria of the EMP.

| Parameter<br>(mg/L) | Interim<br>Target<br>Criteria | Baseline<br>(2006/07) | Min          | Мах          | Average      |
|---------------------|-------------------------------|-----------------------|--------------|--------------|--------------|
| Calcium             | 55                            | 0.7-114               | -            | -            | -            |
| Manganese           | 0.15                          | 0.01-0.56             | 0.12         | 0.57         | 0.275        |
| Magnesium           | 40                            | 0.8-173.0             | 2            | 10           | 4.43         |
| Sodium              | 280                           | 7-1,770               | 7            | 46           | 18           |
| Potassium           | 17.5                          | 0-71                  | 2            | 7            | 3.5          |
| Bicarbonate         | 400                           | -                     | -            | -            | -            |
| Chloride            | 285                           | 15-3,500              | 8            | 67           | 25.5         |
| Alkalinity          | 185                           | 0-534                 | <5           | <5           | <5           |
| Sulphate            | 175                           | 9-753                 | 25           | 260          | 104          |
| Aluminium           | 0.75                          | <0.01-4.96            | 0.17         | 5.6          | 1.68         |
| Arsenic             | 0.005                         | <0.005-0.027          | Not detected | Not detected | Not detected |
| Iron (Dissolved)    | 705                           | 0.03-43               | 0.04         | 1.7          | 0.48         |

Table 29: Quarterly Extraction Pond Chemical Analysis Monitoring 2017 Results

A copy of all extraction pond water quality and chemical analysis are included in **Appendix 2** of this report.

The results of the monthly algae monitoring for the 2017 reporting period are displayed within **Table 30.** 

| Date      | Cyanophyta<br>(cells/ml) | Chlorophyta<br>(cells/ml) |  |
|-----------|--------------------------|---------------------------|--|
|           | Criteria: <50,000        |                           |  |
| 30-Jan-17 | ND                       | 1,780                     |  |
| 27-Feb-17 | ND                       | 640                       |  |
| 22-Mar-17 | <1                       | 175                       |  |
| 19-Apr-17 | <5                       | 600                       |  |
| 17-May-17 | <5                       | 2,820                     |  |
| 14-Jun-17 | <5                       | 1,830                     |  |
| 12-Jul-17 | <5                       | 5,260                     |  |
| 09-Aug-17 | <5                       | 41,500                    |  |
| 06-Sep-17 | <5                       | 99,800                    |  |
| 04-Oct-17 | <5                       | 128,000                   |  |
| 01-Nov-17 | <5                       | 38,600                    |  |
| 19-Nov-17 | <5                       | 8,150                     |  |
| 28-Dec-17 | <5                       | 1,890                     |  |

#### Table 30: Surface Water Quality Monitoring 2017 Results – Blue Green Algae

The cyanophyta results remain below the detection limit throughout the 2017 reporting period.

The Chlorophyta results gathered at site across several years have illustrated some variability. It is noted that variations in Chlorophyta results are not identified as exceedances of the monitoring criteria listed in the EMP and the key to monitoring Blue Green Algae activity generally lies with cyanophyta readings. Advice previously received the Blue Green Algae expert nominated in the EMP (Paul Wright from the Tweed Laboratory) is that it is quite normal for Chlorophyta results to vary markedly and that high readings are not dangerous or indicative of any other potential cause for concern.

No visible algal blooms were noted by site staff during the 2017 reporting period.

#### Longterm Trends:

**Appendix 2** outlined the longterm monitoring data, including a summary of minimum, maximum and average for key parameters. Key parameters continued to follow longterm trends, including:

- Generally acidic pH readings,
- High variability of turbidity,
- Low levels of oil and grease;
- EC was highly variable, and generally lower than the longterm average.

#### Comparison to EIS Predictions:

There was no evidence of any detrimental impact from the Quarry on surface water. This is consistent with the EIS predictions.

# 7.5 Groundwater Results

Groundwater monitoring was undertaken at DLP 1, DLP 3, DLP 5, DLP 6 and DLP 7 during the 2017 reporting period. Results obtained at each bore in 2017 have been consistent at each location with no trends identified in the data showing any substantial changes in results since the 2015 and 2016 reporting periods.

DLP3 and DLP 7 present conductivity levels above the maximum interim target of 2000uS/cm<sup>2</sup> stated within the EMP, with this also being the case in 2016. These sites have also expressed similar levels of EC within legacy background testing and are not causing any environmental impacts outside of the existing environment.

DLP 7 sits immediately adjacent to the existing wetland, which act as a 'drawer' of permanently saline conditions in order to sustain its dominant vegetative makeup. It is therefore considered likely that some localised salinisation of surficial groundwater has occurred within the vicinity of DLP3 and DLP 7 due to tidal influences within these nearby waterways and wetlands. This trend has previously been identified in Annual Reports prepared under the previous operator and is considered to be consistent with the natural salinity levels in the local environment.

A summary of monthly groundwater results is provided in **Table 31**. A copy of all monthly groundwater monitoring has been provided in **Appendix 2** of this report.
| Location | Parameter  | Interim Target<br>Criteria | Minimum | Maximum | Average |
|----------|------------|----------------------------|---------|---------|---------|
|          | рН         | 4.2-7.0                    | 4       | 4.6     | 4.3     |
| DLPT     | EC (uS/cm) | <2.0                       | 103     | 197     | 133.8   |
|          | рН         | 4.2-7.0                    | 5.9     | 6.2     | 6       |
| DLP3     | EC (uS/cm) | <2.0                       | 7013    | 7970    | 7463.5  |
| DLP5     | рН         | 4.2-7.0                    | 4.5     | 5.5     | 5.1     |
|          | EC (uS/cm) | <2.0                       | 179     | 2200    | 405.5   |
|          | рН         | 4.2-7.0                    | 3.6     | 3.9     | 3.8     |
| DLP6     | EC (uS/cm) | <2.0                       | 822     | 1745    | 1269.7  |
|          | рН         | 4.2-7.0                    | 6.8     | 7.1     | 6.95    |
| DLP7     | EC (uS/cm) | <2.0                       | 344     | 3480    | 3125.4  |

Table 31: Monthly Groundwater Quality Monitoring 2017 Results

4

Quarterly Groundwater monitoring was undertaken at DLP 1, DLP 3, DLP 5, DLP 6 and DLP 7 during the 2017 reporting period. A summary of results is provided in **Table 32**. Results at DLP 1 and DLP 5 are within the expected interim target criteria for these locations.

| Location           | Parameter        | Interim Target<br>Criteria | Q1    | Q2    | Q3      | Q4    | Average |
|--------------------|------------------|----------------------------|-------|-------|---------|-------|---------|
|                    | Manganese (mg/L) | 0.15                       | 0.018 | 0.039 | 0.017   | 0.02  | 0.024   |
| DLFI               | Magnesium (mg/L) | 40                         | <0.5* | 1     | <0.5*   | 0.6   | 0.65    |
|                    | Manganese (mg/L) | 0.15                       | 0.67  | -     | 0.6     | 0.62  | 0.63    |
| DLP3 Magnesium (mg | Magnesium (mg/L) | 40                         | 130   | -     | 120     | 130   | 126.7   |
| DLP5 Manga         | Manganese (mg/L) | 0.15                       | 0.009 | -     | <0.005* | 0.11  | 0.060   |
|                    | Magnesium (mg/L) | 40                         | 2     | -     | <0.5*   | 41    | 14.5    |
|                    | Manganese (mg/L) | 0.15                       | 1.9   | 1.4   | 0.93    | 0.67  | 1.12    |
| DLP6               | Magnesium (mg/L) | 40                         | 12    | 17    | 11      | 8.8   | 14.45   |
| DLP7               | Manganese (mg/L) | 0.15                       | 0.076 | -     | 0.065   | 0.063 | 0.068   |
|                    | Magnesium (mg/L) | 40                         | 36    | -     | 38      | 38    | 37.3    |

| Table 32: Quarterly G | iroundwater Qu | uality Monitoring | 2017 Results |
|-----------------------|----------------|-------------------|--------------|
|-----------------------|----------------|-------------------|--------------|

Note: Where results are below the detectable limit (i.e. <0.5) the average has been calculated by removing the <.

### Longterm Trends:

Results for manganese and magnesium are similar to previous years. DLP3 has been consistently above the interim target criteria, with this a trend across several years.

A copy of all Quarterly groundwater monitoring has been attached as **Appendix 2** to this report.

#### **Comparison to EIS Predictions:**

There was no evidence of any detrimental impact from the Quarry on groundwater. This is consistent with the EIS predictions.

### 7.6 Flood Storage Capacity

In accordance with the recommendation detailed in the IEA the site is required to undertake the following condition to confirm flood storage:

### Schedule 3, Condition 17

The Proponent shall ensure that the flood storage capacity of the site is no less than the pre-existing flood storage capacity at all stages of the project. Details of the available flood storage capacity shall be reported in the AEMR.

The site has been constructed in accordance with the extraction plans approved by the DPE. The entire northern extraction area has been bunded to a height of approximately 1 metre along the perimeter of disturbance.

No significant changes to the layout or the landform (with exception to the creation of the extraction ponds) has been created by the site since operations commenced with the flood storage capacity maintained in accordance with the original storage levels at the commencement of the project.

### 7.7 Water Take

There is no water take associated with the Dunloe Sand Quarry.

## 8 REHABILITATION AND LANDSCAPE MANAGEMENT

### 8.1 Rehabilitation Performance during the Reporting Period

As part of the site's approved EMP, re-vegetation and regenerative landscaping is required (Appendix C of the EMP). Ongoing management of the surrounding vegetation is being carried out by Ramtech Pty Ltd over the lifetime of the Dunloe Sand Quarry operations.

The regenerative works have been undertaken via a combination of assisted and natural regrowth and all areas have been fenced so as to limit the intrusion of cattle. In this regard, depending on soil types and topography, each of the areas has been very successful in establishing quality regrowth.

The only limiting factors have been some cattle getting in and around existing fences (primarily at low tide where they have been able to traverse the creek lines.

A copy of all rehabilitation works, checklists and photos showing work areas have been attached as **Appendix 3** to this report.

A summary of rehabilitation at the Dunloe Sand Quarry is outlined in Table 33.

### Table 33: Rehabilitation Performance in 2017

| Guideline Requirement                                                                                                                                                                                                     | Site Comment                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extent of the operations and rehabilitation at completion of the reporting period                                                                                                                                         | Rehabilitation completed by the lease holder<br>Ramtech. Throughout 2017 the three<br>rehabilitation zones were managed and worked<br>on in accordance with the approved EMP<br>including invasive species removal and<br>monitoring.                                               |
| Agreed post- rehabilitation land use                                                                                                                                                                                      | The proposed rehabilitation aims to return the<br>land to an endangered ecological community<br>(EEC) Swamp Sclerophyll plus Eucalypt Open<br>Forest species and EEC Coastal Wetland within<br>the localised soaks.                                                                 |
| Key rehabilitation performance indicators                                                                                                                                                                                 | Criteria are outlined in the Rehabilitation and Revegetation Management Plan.                                                                                                                                                                                                       |
| Renovation or removal of buildings                                                                                                                                                                                        | None during reporting period                                                                                                                                                                                                                                                        |
| <ul> <li>Any other Rehabilitation taken including:</li> <li>Exploration activities;</li> <li>Infrastructure;</li> <li>Dams; and</li> <li>The installation or maintenance of fences, bunds and any other works.</li> </ul> | No rehabilitation of these features was<br>completed. Following the significant damage<br>caused by the flooding associated with the Ex.<br>tropical cyclone Debbie in 2017, boundary fence<br>maintenance was undertaken in the form of<br>removal of debris from fencing strands. |
| Any rehabilitation areas which have received formal sign off from DRG                                                                                                                                                     | None.                                                                                                                                                                                                                                                                               |
| Variations to activities undertaken to those proposed (including why there were variations and whether DRG was notified)                                                                                                  | No variations to the <i>Rehabilitation and Revegetation Management Plan.</i>                                                                                                                                                                                                        |
| Outcomes of trials, research projects and other initiatives                                                                                                                                                               | No specific trials, however a summary of monitoring results is outlined in <b>Appendix 3</b> .                                                                                                                                                                                      |
| Key issues that may affect successful rehabilitation                                                                                                                                                                      | There are several potential issues including<br>availability of material, seed stock, climatic<br>events, tidal inundation and rehabilitation<br>methodology.                                                                                                                       |

## 8.2 Summary of Current Rehabilitation and Performance

A summary of the rehabilitation and disturbance status is outlined in **Table 34**. This is also shown in **Figure 4**.

| Quarry Area Type                          | This Reporting Period<br>(Actual) | Next Reporting Period<br>(Forecast) |  |
|-------------------------------------------|-----------------------------------|-------------------------------------|--|
|                                           | Current AEMR Period (ha)          | Next AEMR Period (ha)               |  |
| A. Total Quarry Footprint                 | 32.2                              | 32.2                                |  |
| B. Total Active Disturbance               | 18.8                              | 18.8                                |  |
| C. Land Being Prepared for Rehabilitation | 0                                 | 0                                   |  |
| D. Land Under Active<br>Rehabilitation    | 13.4                              | 13.4                                |  |
| E. Completed Rehabilitation               | 0                                 | 0                                   |  |

#### Table 34: Rehabilitation and Disturbance Status

At the end of 2017 there was approximately 18.8 Ha of active disturbance and 13.4 Ha of active rehabilitation. There is no rehabilitation proposed in 2018.

Rehabilitation monitoring of established rehabilitation has shown:

- Dominant species are melaleuca, banksia and casuarina;
- Evidence of grass and leaf litter; and
- Some tree species greater than 8 metres high, shrub species greater than 3 m high and groundcover to 1 m.

A copy of monitoring is included in **Appendix 3**.



SLR Data\01 xts-SLR1630-SrvNTL1630-NTL1630.12370 Holkin

## 8.3 Actions for the Next Reporting Period

The DPE 2015 Annual Review Guidelines require the Annual Review to outline the rehabilitation actions proposed during the next reporting period. These actions are detailed in **Table 35**.

| Table 35 | Rehabilitation | and Closure | Actions for | r the Next | Reporting | Period  |
|----------|----------------|-------------|-------------|------------|-----------|---------|
|          | Renabilitation |             | Actions for |            | reporting | i chica |

| Requirement                                                                                                                                                                        | Site Comment                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Describe the steps to be undertaken to progress<br>agreement during next reporting period, where<br>final rehabilitation outcomes have not yet been<br>agreed between stakeholders | Rehabilitation to continue in 2018.                                                                                                                                                                       |
| Outline proposed rehabilitation trials, research<br>projects and other initiatives to be undertaken<br>during next reporting period                                                | Rehabilitation inspections/monitoring to continue.                                                                                                                                                        |
| Summary of rehabilitation activities proposed for next report period                                                                                                               | No specific rehabilitation proposed for 2017.The<br>three rehabilitation zones were managed and<br>worked on in accordance with the approved EMP<br>including invasive species removal and<br>monitoring. |

## 9 COMMUNITY

## 9.1 Community Engagement Activities

A Community Consultative Committee (CCC) meeting undertaken on 24 February 2017. The site implemented a CCC when under the operation of Ramtech as part of the conditions of consent. All minutes from each of the meetings undertaken in 2017, along with a copy of the complaints register and all publicly listed information including contacts for locals in the community is available on the Dunloe Sand Quarry webpage in accordance with the Development Consent requirements (<u>http://www.holcim.com.au/about-us/community-link/dunloe-sand-quarry-pottsville-nsw.html</u>).

Holcim has maintained community engagement measures, including:

- Maintenance of a website (containing publicly available documents);
- A telephone number, email and postal address (on the website) for community complaints and feedback;
- A copy of the Complaints Register is maintained on the company website; and
- All documents and items displayed on the website are regularly updated by Holcim staff.

## 9.2 Community Contributions

Holcim supplied some sand free of charge to local schools and the local horse association.

## 9.3 Complaints

Two community complaints were received in 2017:

- 1. 24/2/17 Stop sign faded at entry/exit to the Haul Road Holcim installed a new sign and remarked the solid stop line at the site entry; and
- 20/5/17 Noise complaint regarding truck noise from resident located opposite entrance Holcim engaged with the resident to confirm the nature of their concern and ensure open communication channels should further concerns arise; no further noise issues have been raised by this or other residents.

## **10 INDEPENDENT AUDIT**

The site undertook an IEA in 2016 in accordance with the timeframes of the Development Consent. All actions raised in the IEA have been undertaken in accordance with the recommendations made by Consultants Mark Rigby & Associates. All actions were closed out in 2016.

## **11 INCIDENTS AND NON-COMPLIANCE**

Table 36 summarises the incidents and non - compliances at the Dunloe Sand Quarry in 2017.

### Table 36: Summary of Incidents and Non - Compliances

| Date                                           | Incident                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                             |                                    |                                                   | Action                                                                        |     |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------|------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|-----|
| Date<br>Throughout the Annual<br>Review period | Incident         Schedule 3 Condition 6         The Proponent shall ensure that dust generated by the padditional exceedances of the criteria listed in Tables 3 owned land.         Pollutant       Averaging period       Criterion         Particulate matter < 10 µm                                                                                                                                  |                  |                                             |                                    | project does not cause<br>3 to 5 at any privately | Action Complete monitoring as per the EMP a Development Consent requirements. | and |
|                                                | Pollutant                                                                                                                                                                                                                                                                                                                                                                                                 | Averaging period | Maximum increase in<br>deposited dust level | Maximum total deposited dust level |                                                   |                                                                               |     |
|                                                | Deposited dust         Annual         2 g/m²/month         4 g/m²/month           Table 5: Long Term Impact Assessment Criteria for Deposited Dust         Note: Deposited dust is assessed as insoluble solids as defined by Standards Australia, 1991, AS/NZS 3580.10.1-2003; Methods for Sampling and Analysis of Ambient Air - Determination of Particulates - Deposited Matter - Gravimetric Method. |                  |                                             |                                    |                                                   |                                                                               |     |
|                                                | <ul> <li>Non - compliances related to:</li> <li>Not monitoring for PM10 during the entire Annual F</li> <li>Completion of thirteen monitoring events, instead of for depositional dust.</li> </ul>                                                                                                                                                                                                        |                  |                                             |                                    | Review period;<br>of 12 monitoring events         |                                                                               |     |

| Date                                   | Incident                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Action                                                                   |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Throughout the Annual<br>Review period | <ul> <li>Schedule 3 Condition 7</li> <li>The Proponent shall prepare and implement a Dust Monitoring Program for the project to the satisfaction of the Director-General.</li> <li>Non-compliances related to not fully implementing the Dust Monitoring Program: <ul> <li>Not monitoring for PM10 during the entire Annual Review period;</li> <li>Completion of thirteen monitoring events, instead of 12 monitoring events for depositional dust.</li> </ul> </li> </ul> | Complete monitoring as per the EMP and Development Consent requirements. |

## 12 ACTIVITIES TO BE COMPLETED IN THE NEXT REPORTING PERIOD

Holcim staff will undertake the following works and improvement measures and projects in 2018 to ensure compliance with the consent and to ensure that effective environmental management controls are in place and operating in accordance with the requirements of the Consent.

| Table 37: | Improvement | Actions | for | 2018 |
|-----------|-------------|---------|-----|------|
|-----------|-------------|---------|-----|------|

| Improvement Measure                                       | Activities                                                                                                                      |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Progressive Rehabilitation                                | The site will continue to progressively rehabilitate available areas on the northern and eastern boundary lines.                |
| Development Application (Truck<br>Movements Modification) | Application to modify the current Project Approval condition limiting truck movement to 4 (in and out) per hour.                |
| EMP Review                                                | Development of a new <i>Environmental Management Plan</i> with alignment to Holcim Australia's Environmental Management System. |
| Water Quality Monitoring                                  | Ensure water quality monitoring is completed in accordance with the EMP.                                                        |
| Dust Monitoring                                           | Ensure dust monitoring is completed in accordance with the EMP.                                                                 |

## **13 REFERENCES**

Craven Elliston Hayes (2017) Monitoring of Heritage Infrastructure Report; DPI Water (2017) Water Access Licence Usage; EPA (Ongoing) Environment Protection Licence) – 13077; Holcim (2017) Quarterly Environmental Monitoring Report; Holcim (2017) CCC Minutes; Pitt and Sherry (2018) Independent Environmental Audit – Cooma Road Quarry; Planit Consulting and Holcim (October 2016) *Environmental Management Plan*; and Planit Consulting (2007) Environmental Assessment – Dunloe Park.

## **14 APPENDICES**

## **APPENDIX 1**

## DUNLOE SAND QUARRY NOISE MONITORING 2017

# **Quarterly Noise Monitoring Assessment**

Dunloe Quarry, Pottsville, NSW, March 2017.



Prepared for : VGT Pty Limited (on behalf of Holcim Pty Ltd) April 2017

## **Document Information**

## Quarterly Noise Monitoring Assessment

## Dunloe Quarry, Pottsville, NSW

## March 2017

Prepared for: VGT Pty Limited (on behalf of Holcim Pty Ltd)

Prepared by: Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com

| Document ID  | Status | Date          | Written By    | Signed |
|--------------|--------|---------------|---------------|--------|
| MAC170440RP1 | Final  | 24 April 2017 | Oliver Muller | æ      |

#### DISCLAIMER

All documents produced by Muller Acoustic Consulting Pty Ltd (MAC) are prepared for a particular client's requirements and are based on a specific scope, circumstances and limitations derived between MAC and the client. Information and/or report(s) prepared by MAC may not be suitable for uses other than the original intended objective. No parties other than the client should use or reproduce any information and/or report(s) without obtaining permission from MAC. Any information and/or documents prepared by MAC is not to be reproduced, presented or reviewed except in full.



#### CONTENTS

| 1 |      | INTRODUCTION                     | 5  |
|---|------|----------------------------------|----|
| 2 |      | NOISE CRITERIA                   | 7  |
| 3 |      | METHODOLOGY                      | 9  |
|   | 3.1  | LOCALITY                         | 9  |
|   | 3.2  | NOISE MONITORING LOCATIONS       | 9  |
|   | 3.3  | ASSESSMENT METHODOLOGY           | 9  |
| 4 |      | RESULTS                          | 11 |
|   | 4.1  | ASSESSMENT RESULTS - LOCATION L1 | 11 |
|   | 4.2  | ASSESSMENT RESULTS - LOCATION L2 | 11 |
|   | 4.3  | ASSESSMENT RESULTS - LOCATION L3 | 12 |
|   | 4.4  | ASSESSMENT RESULTS - LOCATION L4 | 12 |
| 5 |      | NOISE COMPLIANCE ASSESSMENT      | 13 |
| 6 |      | CONCLUSION                       | 15 |
| А | PPEN | NDIX A - GLOSSARY OF TERMS       |    |



This page has been intentionally left blank



### 1 Introduction

Muller Acoustic Consulting Pty Ltd (MAC) has been commissioned by VGT Pty Limited (VGT) on behalf of Holcim Pty Ltd (Holcim) to complete a Noise Monitoring Assessment (NMA) for Dunloe Quarry ('the quarry'), Pottsville, NSW.

The monitoring has been conducted in accordance with the Dunloe Project Approval and Noise Management Plan at four representative monitoring locations.

The assessment has been conducted in accordance with the following documents:

- NSW Environment Protection Authority (EPA), Industrial Noise Policy (INP), 2000;
- Dunloe Noise Management Plan (NMP); and
- Standards Australia AS 1055.1:1997 Acoustics Description and measurement of environmental noise - General Procedures.

A glossary of terms, definitions and abbreviations used in this report is provided in Appendix A.



This page has been intentionally left blank



### 2 Noise Criteria

Schedule 3 Section 2 of the sites Project Approval, outlines the applicable noise criteria for residential receivers surrounding the quarry site.

The noise criteria are applicable when the site undertakes quarrying operations with the site permitted to operate 7am – 5pm Monday to Friday and 7am – 12am Saturday.

 Table 1 presents the noise criteria for each of the receivers as outlined in the Project Approval.

| Table 1 Noise Criteria                     |                                       |  |  |  |  |
|--------------------------------------------|---------------------------------------|--|--|--|--|
| Location                                   | Day LAeq(15min) Criteria <sup>2</sup> |  |  |  |  |
| All privately-owned receivers <sup>1</sup> | 48                                    |  |  |  |  |

Note 1: Receiver locations are shown in Figure 1.

Note 2: 7am – 5pm Monday to Friday and 7am – 12am Saturday.



This page has been intentionally left blank



### 3 Methodology

### 3.1 Locality

The quarry is located in Pottsville, NSW. Receivers in the locality surrounding the quarry are primarily rural/residential. The surroundings of the quarry include bushland and elevated areas, with the ocean located 2km to the east. The monitoring locations with respect to the quarry and assessed receivers are presented in the locality plan shown in **Figure 1**.

### 3.2 Noise Monitoring Locations

Four monitoring locations have been selected as part of the NMA and are listed below :

- L1 is located to the north-west of the quarry art the Dunloe Quarry entrance on Pottsville Road;
- L2 is located west of the quarry on the boundary of 574 Pottsville Road;
- L3 is located to the south-west of the quarry at the address of 122 Warwick Park Road; and
- L4 is located at 200 Warwick Park Road, south of the quarry.

### 3.3 Assessment Methodology

The attended noise surveys were conducted in general accordance with the procedures described in Australian Standard AS 1055-1997, "Acoustics - Description and Measurement of Environmental Noise and Dunloe Quarry's Conditions of Consent. The measurements were carried out using a Svantek Type 1, 971 noise analyser on Wednesday 29 March 2017. The acoustic instrumentation used carries current NATA calibration and complies with AS IEC 61672.1-2004-Electroacoustics - Sound level meters - Specifications. Calibration of all instrumentation was checked prior to and following measurements. Drift in calibration did not exceed ±0.5dBA.

Day assessment period measurements were conducted at each of the monitoring locations. Measurements were of 15 minutes in duration and where possible, throughout each survey the operator quantified the contribution of each significant noise source. Extraneous noise sources were excluded from the analysis as to calculate the LAeq(15min) quarry noise contribution for comparison against the applicable noise criteria.

In the event of quarry attributed noise being above the applicable statutory noise criteria, prevailing meteorological conditions for the monitoring period will be sourced from the quarries on-site meteorological station and analysed in accordance with Appendix E4 of the INP to determine the stability category present at the time of each measured sample.













### 4 Results

### 4.1 Assessment Results - Location L1

The monitored noise level contributions and observed meteorological conditions for each day survey period at L1 for Wednesday 29 March 2017 are presented in Table 2.

| Table 2 Operator-Attended Noise Survey Results – Location L1 |                  |                            |      |      |                                        |                      |
|--------------------------------------------------------------|------------------|----------------------------|------|------|----------------------------------------|----------------------|
| Dete                                                         | Time (hre)       | Descriptor (dBA re 20 µPa) |      |      | Mataanalaan                            | Description and SPL, |
| Date Time (                                                  | Time (fills)     | LAmax                      | LAeq | LA90 | Meteorology                            | dBA                  |
|                                                              | 13:36            | 89                         |      |      | Dir: North East<br>Wind Speed: 3.5 m/s | Birds 40 - 50        |
| 20/02/2017                                                   |                  |                            | 64 4 | 15   |                                        | Traffic 50 - 65      |
| 29/03/2011                                                   |                  |                            |      | 40   |                                        | Wind 40 - 48         |
|                                                              |                  |                            |      |      | Rain. Nii                              | Road Trains 60       |
|                                                              | Quarry Inaudible |                            |      |      |                                        |                      |

### 4.2 Assessment Results - Location L2

The monitored noise level contributions and observed meteorological conditions for each day survey period at L2 for Wednesday 29 March 2017 are presented in **Table 3**.

| Table 3 Operator-Attended Noise Survey Results – Location L2 |                  |                            |      |      |                                              |                      |  |
|--------------------------------------------------------------|------------------|----------------------------|------|------|----------------------------------------------|----------------------|--|
| Data                                                         | Time (hrs)       | Descriptor (dBA re 20 µPa) |      |      | Mataaralaau                                  | Description and SPL, |  |
| Dale                                                         |                  | LAmax                      | LAeq | LA90 | Meteorology                                  | dBA                  |  |
|                                                              | 13:58            | 91 64                      |      |      | Dir: North<br>Wind Speed: 3 m/s<br>Rain: Nil | Traffic 75           |  |
| 20/02/2017                                                   |                  |                            | 64   | 45   |                                              | Birds 36 - 46        |  |
| 29/03/2011                                                   |                  |                            |      | 40   |                                              | Wind 36 - 44         |  |
|                                                              |                  |                            |      |      |                                              | Insects              |  |
|                                                              | Quarry Inaudible |                            |      |      |                                              |                      |  |



### 4.3 Assessment Results - Location L3

The monitored noise level contributions and observed meteorological conditions for each day survey period at L3 for Wednesday 29 March 2017 are presented in Table 4.

| Table 4 Operator-Attended Noise Survey Results – Location L3 |            |                            |      |       |                                 |                              |  |
|--------------------------------------------------------------|------------|----------------------------|------|-------|---------------------------------|------------------------------|--|
| Data                                                         | Time (hrs) | Descriptor (dBA re 20 µPa) |      |       | Mataaralagu                     | Description and SDL dDA      |  |
| Dale                                                         |            | LAmax                      | LAeq | LA90  | Meteorology                     | Description and SFE, dBA     |  |
|                                                              | 14:18      | 74 49                      |      | 10 12 | Dir: North<br>Wind Speed: 4 m/s | Birds 36 – 46 – 53           |  |
| 20/02/2017                                                   |            |                            | 40   |       |                                 | Highway traffic 40 – 42 - 70 |  |
| 29/03/2017                                                   |            |                            | 49   | 42    |                                 | Insects 36                   |  |
|                                                              |            |                            |      |       | Raill. Nii                      | Wind 34 - 46                 |  |
|                                                              | Dunk       | Quarry Inaudible           |      |       |                                 |                              |  |

### 4.4 Assessment Results - Location L4

The monitored noise level contributions and observed meteorological conditions for each day survey period at L4 for Wednesday 29 March 2017 are presented in Table 5.

| Table 5 Operator-Attended Noise Survey Results – Location L4 |                  |                            |      |      |                     |                      |
|--------------------------------------------------------------|------------------|----------------------------|------|------|---------------------|----------------------|
| Data                                                         | Time (hrs)       | Descriptor (dBA re 20 µPa) |      |      | Mata anala any      | Description and SPL, |
| Date                                                         |                  | LAmax                      | LAeq | LA90 | - Meteorology       | dBA                  |
|                                                              |                  |                            |      |      |                     | Wind <40             |
|                                                              |                  |                            |      |      | Dir: North          | Traffic              |
| 29/03/2017                                                   | 14:37            | 65                         | 47   | 44   | Wind Speed: 3.5 m/s | Birds 40 - 50        |
|                                                              |                  |                            |      |      | Rain: Nil           | Livestock            |
|                                                              |                  |                            |      |      |                     | Aircraft 43 - 60     |
|                                                              | Quarry Inaudible |                            |      |      |                     |                      |



### 5 Noise Compliance Assessment

The compliance assessment for each residential receiver R1, R2, R3 and R4 are presented in **Table 6** for day assessment periods.

| Table 6 Daytime Noise Compliance Summary |                           |                          |              |  |  |  |
|------------------------------------------|---------------------------|--------------------------|--------------|--|--|--|
| Receiver                                 | Quarry Noise Contribution | Quarrying Noise Criteria | Complian     |  |  |  |
| No.                                      | LAeq(15min)               | LAeq(15min)              | Complies     |  |  |  |
| R1                                       | Nil                       | 48                       | $\checkmark$ |  |  |  |
| R2                                       | Nil                       | 48                       | $\checkmark$ |  |  |  |
| R3                                       | Nil                       | 48                       | $\checkmark$ |  |  |  |
| R4                                       | Nil                       | 48                       | $\checkmark$ |  |  |  |



This page has been intentionally left blank



### 6 Conclusion

MAC has completed a noise monitoring assessment for VGT Pty Ltd on behalf of Holcim Pty Ltd at the Dunloe Quarry, Pottsville, NSW. The assessment was completed to assess the quarry's compliance with the relevant criteria outlined in their Project Approval for relevant surrounding residential receivers.

Attended noise monitoring was undertaken on 29 March 2017 at representative monitoring locations, quarry noise contributions were compared against the relevant criteria. The assessment has identified that noise emissions generated by Dunloe Quarry comply with relevant statutory noise criteria specified in the Project Approval at all assessed residential receivers.



This page has been intentionally left blank



# Appendix A - Glossary of Terms



Table A1 provides a number of technical terms have been used in this report.

| Table 1A Glossary of Terms |                                                                                                       |  |  |  |  |  |
|----------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Term                       | Description                                                                                           |  |  |  |  |  |
| 1/3 Octave                 | Single octave bands divided into three parts                                                          |  |  |  |  |  |
| Octave                     | A division of the frequency range into bands, the upper frequency limit of each band being twice      |  |  |  |  |  |
|                            | the lower frequency limit.                                                                            |  |  |  |  |  |
| ABL                        | Assessment Background Level (ABL) is defined in the INP as a single figure background level for       |  |  |  |  |  |
|                            | each assessment period (day, evening and night). It is the tenth percentile of the measured LA90      |  |  |  |  |  |
|                            | statistical noise levels.                                                                             |  |  |  |  |  |
| Adverse Weather            | Weather effects that enhance noise (that is, wind and temperature inversions) that occur at a site    |  |  |  |  |  |
|                            | for a significant period of time (that is, wind occurring more than 30% of the time in any            |  |  |  |  |  |
|                            | assessment period in any season and/or temperature inversions occurring more than 30% of the          |  |  |  |  |  |
|                            | nights in winter).                                                                                    |  |  |  |  |  |
| Ambient Noise              | The noise associated with a given environment. Typically a composite of sounds from many              |  |  |  |  |  |
|                            | sources located both near and far where no particular sound is dominant.                              |  |  |  |  |  |
| A Weighting                | A standard weighting of the audible frequencies designed to reflect the response of the human         |  |  |  |  |  |
|                            | ear to noise.                                                                                         |  |  |  |  |  |
| dBA                        | Noise is measured in units called decibels (dB). There are several scales for describing noise, the   |  |  |  |  |  |
|                            | most common being the 'A-weighted' scale. This attempts to closely approximate the frequency          |  |  |  |  |  |
|                            | response of the human ear.                                                                            |  |  |  |  |  |
| dB(Z), dB(L)               | Decibels Linear or decibels Z-weighted.                                                               |  |  |  |  |  |
| Hertz (Hz)                 | The measure of frequency of sound wave oscillations per second - 1 oscillation per second             |  |  |  |  |  |
|                            | equals 1 hertz.                                                                                       |  |  |  |  |  |
| LA10                       | A noise level which is exceeded 10 $\%$ of the time. It is approximately equivalent to the average of |  |  |  |  |  |
|                            | maximum noise levels.                                                                                 |  |  |  |  |  |
| LA90                       | Commonly referred to as the background noise, this is the level exceeded 90 % of the time.            |  |  |  |  |  |
| LAeq                       | The summation of noise over a selected period of time. It is the energy average noise from a          |  |  |  |  |  |
|                            | source, and is the equivalent continuous sound pressure level over a given period.                    |  |  |  |  |  |
| LAmax                      | The maximum root mean squared (rms) sound pressure level received at the microphone during a          |  |  |  |  |  |
|                            | measuring interval.                                                                                   |  |  |  |  |  |
| RBL                        | The Rating Background Level (RBL) is an overall single figure background level representing           |  |  |  |  |  |
|                            | each assessment period over the whole monitoring period. The RBL is used to determine the             |  |  |  |  |  |
|                            | intrusiveness criteria for noise assessment purposes and is the median of the ABL's.                  |  |  |  |  |  |
| Sound power level (LW)     | This is a measure of the total power radiated by a source. The sound power of a source is a           |  |  |  |  |  |
|                            | fundamental location of the source and is independent of the surrounding environment. Or a            |  |  |  |  |  |
|                            | measure of the energy emitted from a source as sound and is given by :                                |  |  |  |  |  |
|                            | = 10.log10 (W/Wo)                                                                                     |  |  |  |  |  |
|                            | Where : W is the sound power in watts and Wo is the sound reference power at 10-12 watts.             |  |  |  |  |  |



| Table A2 Common Noise Sources and Their Typical Sound Pressure Levels (SPL), dBA |                     |  |  |  |
|----------------------------------------------------------------------------------|---------------------|--|--|--|
| Source                                                                           | Typical Sound Level |  |  |  |
| Threshold of pain                                                                | 140                 |  |  |  |
| Jet engine                                                                       | 130                 |  |  |  |
| Hydraulic hammer                                                                 | 120                 |  |  |  |
| Chainsaw                                                                         | 110                 |  |  |  |
| Industrial workshop                                                              | 100                 |  |  |  |
| Lawn-mower (operator position)                                                   | 90                  |  |  |  |
| Heavy traffic (footpath)                                                         | 80                  |  |  |  |
| Elevated speech                                                                  | 70                  |  |  |  |
| Typical conversation                                                             | 60                  |  |  |  |
| Ambient suburban environment                                                     | 40                  |  |  |  |
| Ambient rural environment                                                        | 30                  |  |  |  |
| Bedroom (night with windows closed)                                              | 20                  |  |  |  |
| Threshold of hearing                                                             | 0                   |  |  |  |

Table A2 provides a list of common noise sources and their typical sound level.









Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com


# Quarterly Noise Monitoring Assessment

Dunloe Quarry, June 2017



Prepared for : VGT Pty Ltd (on behalf of Holcim Pty Ltd) July 2017

# Document Information

## **Quarterly Noise Monitoring Assessment**

## Dunloe Quarry, Pottsville, NSW

# June 2017

Prepared for: VGT Pty Limited (on behalf of Holcim Pty Ltd)

Prepared by: Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com

| Document ID  | Status | Date        | Written By    | Signed |
|--------------|--------|-------------|---------------|--------|
| MAC170440RP2 | Final  | 6 July 2017 | Oliver Muller | al.    |

DISCLAIMER

All documents produced by Muller Acoustic Consulting Pty Ltd (MAC) are prepared for a particular client's requirements and are based on a specific scope, circumstances and limitations derived between MAC and the client. Information and/or report(s) prepared by MAC may not be suitable for uses other than the original intended objective. No parties other than the client should use or reproduce any information and/or report(s) without obtaining permission from MAC. Any information and/or documents prepared by MAC is not to be reproduced, presented or reviewed except in full.



#### CONTENTS

| 1 | ١١  | NTRODUCTION                         | 5  |
|---|-----|-------------------------------------|----|
| 2 | N   | OISE CRITERIA                       | 7  |
| 3 | N   | IETHODOLOGY                         | 9  |
|   | 3.1 | LOCALITY                            | 9  |
|   | 3.2 | NOISE MONITORING LOCATIONS          | 9  |
|   | 3.3 | ASSESSMENT METHODOLOGY              | 9  |
| 4 | R   | ESULTS                              | 11 |
|   | 4.1 | ASSESSMENT RESULTS - LOCATION R1    | 11 |
|   | 4.2 | ASSESSMENT RESULTS - LOCATION R2    | 11 |
|   | 4.3 | ASSESSMENT RESULTS - LOCATION R3    | 12 |
|   | 4.4 | ASSESSMENT RESULTS - LOCATION R4    | 12 |
| 5 | N   | OISE COMPLIANCE ASSESSMENT          | 13 |
| 6 | D   | ISCUSSION                           | 15 |
|   | 6.1 | DISCUSSION OF RESULTS - LOCATION R1 | 15 |
|   | 6.2 | DISCUSSION OF RESULTS - LOCATION R2 | 15 |
|   | 6.3 | DISCUSSION OF RESULTS - LOCATION R3 | 15 |
|   | 6.4 | DISCUSSION OF RESULTS - LOCATION R4 | 15 |
| 7 | С   | ONCLUSION                           | 17 |
|   |     |                                     |    |

APPENDIX A - GLOSSARY OF TERMS





#### 1 Introduction

Muller Acoustic Consulting Pty Ltd (MAC) has been commissioned by VGT Pty Limited (VGT) on behalf of Holcim Pty Ltd (Holcim) to complete a Noise Monitoring Assessment (NMA) for Dunloe Quarry ('the quarry'), Pottsville, NSW.

The monitoring has been conducted in accordance with the Dunloe Project Approval and Noise Management Plan at four representative monitoring locations. This assessment represents the operations undertaken during Quarter 2 of 2017.

The assessment has been conducted in accordance with the following documents:

- NSW Environment Protection Authority (EPA), Industrial Noise Policy (INP), 2000;
- Dunloe Noise Management Plan (NMP), 2016; and
- Standards Australia AS 1055.1:1997 Acoustics Description and measurement of environmental noise - General Procedures.

A glossary of terms, definitions and abbreviations used in this report is provided in Appendix A.





#### 2 Noise Criteria

Schedule 3 Section 2 of the sites Project Approval, outlines the applicable noise criteria for residential receivers surrounding the quarry site.

The noise criteria are applicable when the site undertakes quarrying operations with the site permitted to operate 7am – 5pm Monday to Friday and 7am – 12pm Saturday.

 Table 1 presents the noise criteria for each of the receivers as outlined in the Project Approval.

| Table 1 Noise Criteria                     |                                       |
|--------------------------------------------|---------------------------------------|
| Location                                   | Day LAeq(15min) Criteria <sup>2</sup> |
| All privately-owned receivers <sup>1</sup> | 48                                    |

Note 1: Receiver locations are shown in Figure 1.

Note 2: 7am – 5pm Monday to Friday and 7am – 12pm Saturday.





#### 3 Methodology

#### 3.1 Locality

The quarry is located in Pottsville, NSW. Receivers in the locality surrounding the quarry are primarily rural/residential. The surroundings of the quarry include bushland and elevated areas, with the ocean located 2km to the east. The monitoring locations with respect to the quarry and assessed receivers are presented in the locality plan shown in **Figure 1**.

#### 3.2 Noise Monitoring Locations

Four monitoring locations have been selected as part of the NMA and are listed below:

- R1 is located at the property on Kellehers Road situated north of the quarry;
- R2 is located west of the quarry on the boundary of 574 Pottsville Road;
- R3 is located to the south-west of the quarry at the address of 122 Warwick Park Road; and
- R4 is located at 265 Warwick Park Road, south of the quarry.

#### 3.3 Assessment Methodology

The attended noise surveys were conducted in general accordance with the procedures described in Australian Standard AS 1055-1997, "Acoustics - Description and Measurement of Environmental Noise and Dunloe Quarry's Conditions of Consent. The measurements were carried out using a Svantek Type 1, 971 noise analyser on Tuesday 20 June 2017. The acoustic instrumentation used carries current NATA calibration and complies with AS IEC 61672.1-2004-Electroacoustics - Sound level meters - Specifications. Calibration of all instrumentation was checked prior to and following measurements. Drift in calibration did not exceed ±0.5dBA.

Day assessment period measurements were conducted at each of the monitoring locations. Measurements were of 15 minutes in duration and where possible, throughout each survey the operator quantified the contribution of each significant noise source. Extraneous noise sources were excluded from the analysis as to calculate the LAeq (15min) quarry noise contribution for comparison against the applicable noise criteria.

In the event of quarry attributed noise being above the applicable statutory noise criteria, prevailing meteorological conditions for the monitoring period will be sourced from the quarry's on-site meteorological station and analysed in accordance with Appendix E4 of the INP to determine the stability category present at the time of each measured sample.





### FIGURE 1 LOCALITY PLAN REF: MAC170440







#### 4 Results

#### 4.1 Assessment Results - Location R1

The monitored noise level contributions and observed meteorological conditions for each day survey period at R1 for Tuesday 20 June 2017 are presented in **Table 2**.

| Table 2 Operator-Attended Noise Survey Results – Location R1 |                                        |                            |      |         |                   |                          |
|--------------------------------------------------------------|----------------------------------------|----------------------------|------|---------|-------------------|--------------------------|
| Data                                                         | Time (hrs)                             | Descriptor (dBA re 20 µPa) |      | 20 µPa) |                   | Description and SPL dPA  |
| Date                                                         | Time (fills)                           | LAmax                      | LAeq | LA90    | Meteorology       | Description and SFE, dBA |
|                                                              |                                        |                            |      |         |                   | Insects <30              |
|                                                              |                                        |                            |      |         | Dir: SW           | Birds 46-58              |
| 20/06/17                                                     | 10:37                                  | 72                         | 55   | 49      | Wind Speed: 4 m/s | Wind in trees 38-43      |
|                                                              |                                        |                            |      |         | Rain: Nil         | Distant traffic <35      |
|                                                              |                                        |                            |      |         |                   | Livestock <35            |
|                                                              | Dunloe Quarry LAeq(15min) Contribution |                            |      |         |                   | Quarry Inaudible         |

#### 4.2 Assessment Results - Location R2

The monitored noise level contributions and observed meteorological conditions for each day survey period at R2 for Tuesday 20 June 2017 are presented in **Table 3**.

| Table 3 Operator-Attended Noise Survey Results – Location R2 |              |                            |      |      |                     |                               |
|--------------------------------------------------------------|--------------|----------------------------|------|------|---------------------|-------------------------------|
| Date                                                         | Time (bro)   | Descriptor (dBA re 20 µPa) |      |      |                     | Description and CDL dDA       |
|                                                              | Time (fills) | LAmax                      | LAeq | LA90 | - Meleorology       | Description and SPL, dBA      |
|                                                              |              |                            |      |      |                     | Highway traffic 43-54         |
| 20/06/17                                                     | 11:05        | 83                         | 62   | 51   | Dir: S              | Local traffic 46-81           |
|                                                              |              |                            |      |      | Wind Speed: 1.5 m/s | Birds 55-70                   |
|                                                              |              |                            |      |      | Rain: Nil           | Wind in trees 36-43           |
|                                                              |              |                            |      |      |                     | Local residential noise 54-79 |
| Dunloe Quarry LAeq(15min) Contribution                       |              |                            |      |      | Quarry Inaudible    |                               |



#### 4.3 Assessment Results - Location R3

The monitored noise level contributions and observed meteorological conditions for each day survey period at R3 for Tuesday 20 June 2017 are presented in **Table 4**.

| Table 4 Operator-Attended Noise Survey Results – Location R3 |            |                            |       |      |                              |                          |
|--------------------------------------------------------------|------------|----------------------------|-------|------|------------------------------|--------------------------|
| Date                                                         | Time (bre) | Descriptor (dBA re 20 µPa) |       |      | Motoorology                  | Description and SPL dPA  |
|                                                              | Time (TIS) | LAmax                      | LAeq  | LA90 | Meteorology                  | Description and SFE, dBA |
| 00/00/17                                                     |            |                            | 74 50 |      | Dir: SW<br>Wind Speed: 3 m/s | Wind in trees 38-42      |
|                                                              | 44.00      | 74                         |       | 45   |                              | Birds 41-56              |
| 20/06/17                                                     | 11.20      | 74                         | 50    | 45   |                              | Distant traffic <35      |
|                                                              |            |                            |       |      | Rain. Nii                    | Local traffic 51-73      |
| Dunloe Quarry LAeq(15min) Contribution                       |            |                            |       |      | Quarry Inaudible             |                          |

#### 4.4 Assessment Results - Location R4

The monitored noise level contributions and observed meteorological conditions for each day survey period at R4 for Tuesday 20 June 2017 are presented in **Table 5**.

| Table 5 Operator-Attended Noise Survey Results – Location R4 |              |                            |      |             |                   |                          |
|--------------------------------------------------------------|--------------|----------------------------|------|-------------|-------------------|--------------------------|
| Date                                                         | Time (hrs)   | Descriptor (dBA re 20 µPa) |      | Mataanalaan |                   |                          |
|                                                              | Time (fills) | LAmax                      | LAeq | LA90        | Meteorology       | Description and SPL, dBA |
|                                                              |              |                            |      |             | Dir: SW           | Pirde 28 56              |
| 20/06/17                                                     | 11:50        | 67                         | 48   | 41          | Wind Speed: 3 m/s | Wind in troop 48,52      |
|                                                              |              |                            |      |             | Rain: Nil         | Wind in trees 40-55      |
| Dunloe Quarry LAeq(15min) Contribution                       |              |                            |      |             | Quarry Inaudible  |                          |



### 5 Noise Compliance Assessment

The compliance assessment for each residential receiver R1, R2, R3 and R4 are presented in **Table 6** for day assessment periods.

| Table 6 Day | time Noise Compliance Summary |                       |              |
|-------------|-------------------------------|-----------------------|--------------|
| Receiver    | Quarry Noise Contribution     | Quarry Noise Criteria | Compliant    |
| No.         | LAeq(15min)                   | LAeq(15min)           | Compliant    |
| R1          | Nil                           | 48                    | $\checkmark$ |
| R2          | Nil                           | 48                    | $\checkmark$ |
| R3          | Nil                           | 48                    | $\checkmark$ |
| R4          | Nil                           | 48                    | $\checkmark$ |





#### 6 Discussion

#### 6.1 Discussion of Results - Location R1

Dunloe Quarry remained inaudible at location R1 during the June 2017 monitoring assessment. Quarry contributions therefore satisfy the relevant LAeq criteria of 48dBA. Extraneous sources audible included insects, birds, wind in trees, distant traffic and livestock. All extraneous noises remained generally constant during the 15-minute measurements at R1.

#### 6.2 Discussion of Results - Location R2

Dunloe Quarry remained inaudible at location R2 during the June 2017 monitoring assessment. Quarry contributions therefore satisfied the relevant LAeq criteria of 48dBA. Highway traffic dominated the June measurements at R2. Other extraneous sources include birds, wind in trees, local traffic and local residential noise. All extraneous noises remained generally constant during the 15-minute measurement at R2.

#### 6.3 Discussion of Results - Location R3

Quarry noise was inaudible during the June 2017 survey period at R3, satisfying the daytime criteria of 48dBA. Non-mining noise sources included birds, wind in trees, distant and local traffic. All extraneous noises remained mostly constant during the 15-minute measurement at R3.

#### 6.4 Discussion of Results - Location R4

Holcim Quarry hum was inaudible throughout the June 2017 monitoring quarter at R4. Therefore, quarry emissions satisfied the relevant daytime noise limit of 48dBA. Extraneous non-quarrying sources include wind in trees and birds.





#### 7 Conclusion

Muller Acoustic Consulting Pty Ltd (MAC) has completed a Noise Monitoring Assessment for VGT Pty Ltd on behalf of Holcim Pty Ltd at the Dunloe Quarry, Pottsville, NSW. The assessment was completed to assess the quarry's compliance with the relevant criteria outlined in their Project Approval for relevant surrounding residential receivers for the Quarter 2, June 2017 assessment.

Attended noise monitoring was undertaken on 20 June 2017 at representative monitoring locations, quarry noise contributions were compared against the relevant criteria. The assessment has identified that noise emissions generated by Dunloe Quarry comply with relevant statutory noise criteria specified in the Project Approval at all assessed residential receivers.





# Appendix A - Glossary of Terms



 Table A1 provides a number of technical terms have been used in this report.

| Table 1A Glossary of Te | rms                                                                                                 |
|-------------------------|-----------------------------------------------------------------------------------------------------|
| Term                    | Description                                                                                         |
| 1/3 Octave              | Single octave bands divided into three parts                                                        |
| Octave                  | A division of the frequency range into bands, the upper frequency limit of each band being twice    |
|                         | the lower frequency limit.                                                                          |
| ABL                     | Assessment Background Level (ABL) is defined in the INP as a single figure background level for     |
|                         | each assessment period (day, evening and night). It is the tenth percentile of the measured LA90    |
|                         | statistical noise levels.                                                                           |
| Adverse Weather         | Weather effects that enhance noise (that is, wind and temperature inversions) that occur at a site  |
|                         | for a significant period of time (that is, wind occurring more than 30% of the time in any          |
|                         | assessment period in any season and/or temperature inversions occurring more than 30% of the        |
|                         | nights in winter).                                                                                  |
| Ambient Noise           | The noise associated with a given environment. Typically a composite of sounds from many            |
|                         | sources located both near and far where no particular sound is dominant.                            |
| A Weighting             | A standard weighting of the audible frequencies designed to reflect the response of the human       |
|                         | ear to noise.                                                                                       |
| dBA                     | Noise is measured in units called decibels (dB). There are several scales for describing noise, the |
|                         | most common being the 'A-weighted' scale. This attempts to closely approximate the frequency        |
|                         | response of the human ear.                                                                          |
| dB(Z), dB(L)            | Decibels Linear or decibels Z-weighted.                                                             |
| Hertz (Hz)              | The measure of frequency of sound wave oscillations per second - 1 oscillation per second           |
|                         | equals 1 hertz.                                                                                     |
| LA10                    | A noise level which is exceeded 10 % of the time. It is approximately equivalent to the average of  |
|                         | maximum noise levels.                                                                               |
| LA90                    | Commonly referred to as the background noise, this is the level exceeded 90 % of the time.          |
| LAeq                    | The summation of noise over a selected period of time. It is the energy average noise from a        |
|                         | source, and is the equivalent continuous sound pressure level over a given period.                  |
| LAmax                   | The maximum root mean squared (rms) sound pressure level received at the microphone during a        |
|                         | measuring interval.                                                                                 |
| RBL                     | The Rating Background Level (RBL) is an overall single figure background level representing         |
|                         | each assessment period over the whole monitoring period. The RBL is used to determine the           |
|                         | intrusiveness criteria for noise assessment purposes and is the median of the ABL's.                |
| Sound power level (LW)  | This is a measure of the total power radiated by a source. The sound power of a source is a         |
|                         | fundamental location of the source and is independent of the surrounding environment. Or a          |
|                         | measure of the energy emitted from a source as sound and is given by :                              |
|                         | = 10.log10 (W/Wo)                                                                                   |
|                         | Where : W is the sound power in watts and Wo is the sound reference power at 10-12 watts.           |



| Table A2 Common Noise Sources and Their Typical Sound Pressure Levels (SPL), dBA |                     |  |  |  |
|----------------------------------------------------------------------------------|---------------------|--|--|--|
| Source                                                                           | Typical Sound Level |  |  |  |
| Threshold of pain                                                                | 140                 |  |  |  |
| Jet engine                                                                       | 130                 |  |  |  |
| Hydraulic hammer                                                                 | 120                 |  |  |  |
| Chainsaw                                                                         | 110                 |  |  |  |
| Industrial workshop                                                              | 100                 |  |  |  |
| Lawn-mower (operator position)                                                   | 90                  |  |  |  |
| Heavy traffic (footpath)                                                         | 80                  |  |  |  |
| Elevated speech                                                                  | 70                  |  |  |  |
| Typical conversation                                                             | 60                  |  |  |  |
| Ambient suburban environment                                                     | 40                  |  |  |  |
| Ambient rural environment                                                        | 30                  |  |  |  |
| Bedroom (night with windows closed)                                              | 20                  |  |  |  |
| Threshold of hearing                                                             | 0                   |  |  |  |

 Table A2 provides a list of common noise sources and their typical sound level.







Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com



# Quarterly Noise Monitoring Assessment

Dunloe Quarry, September 2017



Prepared for : VGT Pty Ltd (on behalf of Holcim Pty Ltd) October 2017

# Document Information

## **Quarterly Noise Monitoring Assessment**

## Dunloe Quarry, Pottsville, NSW

# September 2017

Prepared for: VGT Pty Limited (on behalf of Holcim Pty Ltd)

Prepared by: Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com

| Document ID  | Status | Date            | Written By    | Signed |
|--------------|--------|-----------------|---------------|--------|
| MAC170440RP3 | Final  | 16 October 2017 | Oliver Muller | al.    |

DISCLAIMER

All documents produced by Muller Acoustic Consulting Pty Ltd (MAC) are prepared for a particular client's requirements and are based on a specific scope, circumstances and limitations derived between MAC and the client. Information and/or report(s) prepared by MAC may not be suitable for uses other than the original intended objective. No parties other than the client should use or reproduce any information and/or report(s) without obtaining permission from MAC. Any information and/or documents prepared by MAC is not to be reproduced, presented or reviewed except in full.



#### CONTENTS

| 1 | IN  | ITRODUCTION                         | 5  |
|---|-----|-------------------------------------|----|
| 2 | Ν   | OISE CRITERIA                       | 7  |
| 3 | Μ   | ETHODOLOGY                          | 9  |
|   | 3.1 | LOCALITY                            | 9  |
|   | 3.2 | NOISE MONITORING LOCATIONS          | 9  |
|   | 3.3 | ASSESSMENT METHODOLOGY              | 9  |
| 4 | R   | ESULTS                              | 11 |
|   | 4.1 | ASSESSMENT RESULTS - LOCATION R1    | 11 |
|   | 4.2 | ASSESSMENT RESULTS - LOCATION R2    | 11 |
|   | 4.3 | ASSESSMENT RESULTS - LOCATION R3    | 12 |
|   | 4.4 | ASSESSMENT RESULTS - LOCATION R4    | 12 |
| 5 | Ν   | OISE COMPLIANCE ASSESSMENT          | 13 |
| 6 | D   | ISCUSSION                           | 15 |
|   | 6.1 | DISCUSSION OF RESULTS - LOCATION R1 | 15 |
|   | 6.2 | DISCUSSION OF RESULTS - LOCATION R2 | 15 |
|   | 6.3 | DISCUSSION OF RESULTS - LOCATION R3 | 15 |
|   | 6.4 | DISCUSSION OF RESULTS - LOCATION R4 | 15 |
| 7 | С   | ONCLUSION                           | 17 |
|   |     |                                     |    |

APPENDIX A - GLOSSARY OF TERMS





#### 1 Introduction

Muller Acoustic Consulting Pty Ltd (MAC) has been commissioned by VGT Pty Limited (VGT) on behalf of Holcim Pty Ltd (Holcim) to complete a Noise Monitoring Assessment (NMA) for Dunloe Quarry ('the quarry'), Pottsville, NSW.

The monitoring has been conducted in accordance with the Dunloe Project Approval and Noise Management Plan at four representative monitoring locations. This assessment represents the operations undertaken during Quarter 3 of 2017.

The assessment has been conducted in accordance with the following documents:

- NSW Environment Protection Authority (EPA), Industrial Noise Policy (INP), 2000;
- Dunloe Noise Management Plan (NMP), 2016; and
- Standards Australia AS 1055.1:1997 Acoustics Description and measurement of environmental noise - General Procedures.

A glossary of terms, definitions and abbreviations used in this report is provided in Appendix A.





#### 2 Noise Criteria

Schedule 3 Section 2 of the sites Project Approval, outlines the applicable noise criteria for residential receivers surrounding the quarry site.

The noise criteria are applicable when the site undertakes quarrying operations with the site permitted to operate 7am – 5pm Monday to Friday and 7am – 12pm Saturday.

 Table 1 presents the noise criteria for each of the receivers as outlined in the Project Approval.

| Table 1 Noise Criteria                     |                                       |  |  |  |  |  |
|--------------------------------------------|---------------------------------------|--|--|--|--|--|
| Location                                   | Day LAeq(15min) Criteria <sup>2</sup> |  |  |  |  |  |
| All privately-owned receivers <sup>1</sup> | 48                                    |  |  |  |  |  |

Note 1: Receiver locations are shown in Figure 1.

Note 2: 7am – 5pm Monday to Friday and 7am – 12pm Saturday.





#### 3 Methodology

#### 3.1 Locality

The quarry is located in Pottsville, NSW. Receivers in the locality surrounding the quarry are primarily rural/residential. The surroundings of the quarry generally consist of coastal bushland and elevated and undulating topography. The monitoring locations with respect to the quarry and assessed receivers are presented in the locality plan shown in **Figure 1**.

#### 3.2 Noise Monitoring Locations

Four monitoring locations have been selected as part of the NMA and are listed below:

- R1 is located at the property on Kellehers Road situated north of the quarry;
- R2 is located west of the quarry on the boundary of 574 Pottsville Road;
- R3 is located to the south-west of the quarry at the address of 122 Warwick Park Road; and
- R4 is located at 265 Warwick Park Road, south of the quarry.

#### 3.3 Assessment Methodology

The attended noise surveys were conducted in general accordance with the procedures described in Australian Standard AS 1055-1997, "Acoustics - Description and Measurement of Environmental Noise and Dunloe Quarry's Conditions of Consent. The measurements were carried out using a Svantek Type 1, 971 noise analyser on Wednesday 20 September 2017. The acoustic instrumentation used carries current NATA calibration and complies with AS IEC 61672.1-2004-Electroacoustics - Sound level meters - Specifications. Calibration of all instrumentation was checked prior to and following measurements. Drift in calibration did not exceed ±0.5dBA.

Day assessment period measurements were conducted at each of the monitoring locations. Measurements were of 15 minutes in duration and where possible, throughout each survey the operator quantified the contribution of each significant noise source. Extraneous noise sources were excluded from the analysis as to calculate the LAeq (15min) quarry noise contribution for comparison against the applicable noise criteria.





### FIGURE 1 LOCALITY PLAN REF: MAC170440







#### 4 Results

#### 4.1 Assessment Results - Location R1

The monitored noise level contributions and observed meteorological conditions for each day survey period at R1 for Wednesday 20 September 2017 are presented in **Table 2**.

| Table 2 Operator-Attended Noise Survey Results – Location R1 |            |                            |      |             |                          |                         |
|--------------------------------------------------------------|------------|----------------------------|------|-------------|--------------------------|-------------------------|
| Date Time (hrs)                                              | Time (bro) | Descriptor (dBA re 20 µPa) |      |             | Motoorology              | Description and SDL dDA |
|                                                              | LAmax      | LAeq                       | LA90 | Meteorology | Description and SFL, dBA |                         |
|                                                              |            | 66                         | 44   | 36          | Dir: SE                  | Wind in trees 38-56     |
| 20/09/17                                                     | 13:32      |                            |      |             | Wind Speed: 2.5 m/s      | Livestock <56           |
|                                                              |            |                            |      |             | Rain: Nil                | Birds <42               |
| Dunloe Quarry LAeq(15min) Contribution                       |            |                            |      |             |                          | Quarry Inaudible        |

#### 4.2 Assessment Results - Location R2

The monitored noise level contributions and observed meteorological conditions for each day survey period at R2 for Wednesday 20 September 2017 are presented in **Table 3**.

| Table 3 Operator-Attended Noise Survey Results – Location R2 |             |                            |      |      |                   |                               |
|--------------------------------------------------------------|-------------|----------------------------|------|------|-------------------|-------------------------------|
| Date Tir                                                     | Time (bre)  | Descriptor (dBA re 20 µPa) |      |      | Motoorology       | Description and SDL dDA       |
|                                                              | Time (III3) | LAmax                      | LAeq | LA90 | Meteorology       | Description and of L, dDA     |
|                                                              |             |                            |      |      |                   | Birds <49                     |
|                                                              |             |                            |      |      | Dir: SE           | Local residential noise 47-64 |
| 20/09/17                                                     | 13:58       | 85                         | 63   | 45   | Wind Speed: 2 m/s | Local traffic 48-84           |
|                                                              |             |                            |      |      | Rain: Nil         | Wind in trees <39             |
|                                                              |             |                            |      |      |                   | Distant traffic 38-46         |
| Dunloe Quarry LAeq(15min) Contribution   Quarry Inaudible    |             |                            |      |      |                   | Quarry Inaudible              |



#### 4.3 Assessment Results - Location R3

The monitored noise level contributions and observed meteorological conditions for each day survey period at R3 for Wednesday 20 September 2017 are presented in **Table 4**.

| Table 4 Operator-Attended Noise Survey Results – Location R3 |            |                            |       |             |                          |                                  |
|--------------------------------------------------------------|------------|----------------------------|-------|-------------|--------------------------|----------------------------------|
| Date Time (hrs)                                              | Time (bro) | Descriptor (dBA re 20 µPa) |       |             | Mataaralagu              | Description and CDL dDA          |
|                                                              | LAmax      | LAeq                       | LA90  | Meteorology | Description and SPL, UDA |                                  |
|                                                              |            | ) 65                       | 44 37 |             | Dir: S                   | Birds <38<br>Wind in trees 36-46 |
| 20/09/17 14                                                  | 14:20      |                            |       | 37          | Wind Speed: 1.5 m/s      |                                  |
|                                                              |            |                            |       |             | Rain: Nil                |                                  |
| Dunloe Quarry LAeq(15min) Contribution                       |            |                            |       |             |                          | Quarry Inaudible                 |

#### 4.4 Assessment Results - Location R4

The monitored noise level contributions and observed meteorological conditions for each day survey period at R4 for Wednesday 20 September 2017 are presented in **Table 5**.

| Table 5 Operator-Attended Noise Survey Results – Location R4 |            |                            |      |      |                     |                          |
|--------------------------------------------------------------|------------|----------------------------|------|------|---------------------|--------------------------|
| Dete                                                         | Time (bre) | Descriptor (dBA re 20 µPa) |      |      | Mataaralaan         | Description and CDL dDA  |
| Date Time (firs)                                             |            | LAmax                      | LAeq | LA90 | Meteorology         | Description and SPL, UDA |
|                                                              |            | 65                         | 45   | 38   | Dir: S              | Win in trees 36-44       |
| 20/09/17 14                                                  | 14:39      |                            |      |      | Wind Speed: 1.8 m/s | Birds <36                |
|                                                              |            |                            |      |      | Rain: Nil           | Aircraft 44-56           |
| Dunloe Quarry LAeq(15min) Contribution                       |            |                            |      |      |                     | Quarry Inaudible         |



### 5 Noise Compliance Assessment

The compliance assessment for each residential receiver R1, R2, R3 and R4 are presented in **Table 6** for day assessment periods.

| Table 6 Daytime Noise Compliance Summary |                           |                       |              |  |  |  |  |
|------------------------------------------|---------------------------|-----------------------|--------------|--|--|--|--|
| Receiver                                 | Quarry Noise Contribution | Quarry Noise Criteria | Compliant    |  |  |  |  |
| No.                                      | LAeq(15min)               | LAeq(15min)           | Compliant    |  |  |  |  |
| R1                                       | Nil                       | 48                    | $\checkmark$ |  |  |  |  |
| R2                                       | Nil                       | 48                    | $\checkmark$ |  |  |  |  |
| R3                                       | Nil                       | 48                    | $\checkmark$ |  |  |  |  |
| R4                                       | Nil                       | 48                    | $\checkmark$ |  |  |  |  |




#### 6 Discussion

#### 6.1 Discussion of Results - Location R1

Dunloe Quarry remained inaudible at location R1 during the September 2017 monitoring assessment. Quarry contributions therefore satisfy the relevant LAeq criteria of 48dBA. Extraneous sources audible included birds, wind in trees and livestock. All extraneous noises remained generally constant during the 15-minute measurements at R1.

#### 6.2 Discussion of Results - Location R2

Dunloe Quarry remained inaudible at location R2 during the September 2017 monitoring assessment. Quarry contributions therefore satisfied the relevant LAeq criteria of 48dBA. Highway traffic dominated the September measurements at R2. Other extraneous sources include birds, wind in trees, local traffic, distant traffic and local residential noise. All extraneous noises remained generally constant during the 15-minute measurement at R2.

#### 6.3 Discussion of Results - Location R3

Quarry noise was inaudible during the September 2017 survey period at R3, satisfying the daytime criteria of 48dBA. Non-quarrying noise sources included birds and wind in trees. All extraneous noises remained mostly constant during the 15-minute measurement at R3.

#### 6.4 Discussion of Results - Location R4

Quarry emissions were inaudible throughout the September 2017 monitoring quarter at R4. Therefore, quarry emissions satisfied the relevant daytime noise limit of 48dBA. Extraneous non-quarrying sources include wind in trees, aircraft and birds.





#### 7 Conclusion

Muller Acoustic Consulting Pty Ltd (MAC) has completed a Noise Monitoring Assessment for VGT Pty Ltd on behalf of Holcim Pty Ltd at the Dunloe Quarry, Pottsville, NSW. The assessment was completed to assess the quarry's compliance with the relevant criteria outlined in their Project Approval for relevant surrounding residential receivers for the Quarter 3, September 2017 assessment.

Attended noise monitoring was undertaken on 20 September 2017 at representative monitoring locations, quarry noise contributions were compared against the relevant criteria. The assessment has identified that noise emissions generated by Dunloe Quarry comply with relevant statutory noise criteria specified in the Project Approval at all assessed residential receivers.





## Appendix A - Glossary of Terms



 Table A1 provides a number of technical terms have been used in this report.

| Table 1A Glossary of Te | rms                                                                                                 |
|-------------------------|-----------------------------------------------------------------------------------------------------|
| Term                    | Description                                                                                         |
| 1/3 Octave              | Single octave bands divided into three parts                                                        |
| Octave                  | A division of the frequency range into bands, the upper frequency limit of each band being twice    |
|                         | the lower frequency limit.                                                                          |
| ABL                     | Assessment Background Level (ABL) is defined in the INP as a single figure background level for     |
|                         | each assessment period (day, evening and night). It is the tenth percentile of the measured LA90    |
|                         | statistical noise levels.                                                                           |
| Adverse Weather         | Weather effects that enhance noise (that is, wind and temperature inversions) that occur at a site  |
|                         | for a significant period of time (that is, wind occurring more than 30% of the time in any          |
|                         | assessment period in any season and/or temperature inversions occurring more than 30% of the        |
|                         | nights in winter).                                                                                  |
| Ambient Noise           | The noise associated with a given environment. Typically a composite of sounds from many            |
|                         | sources located both near and far where no particular sound is dominant.                            |
| A Weighting             | A standard weighting of the audible frequencies designed to reflect the response of the human       |
|                         | ear to noise.                                                                                       |
| dBA                     | Noise is measured in units called decibels (dB). There are several scales for describing noise, the |
|                         | most common being the 'A-weighted' scale. This attempts to closely approximate the frequency        |
|                         | response of the human ear.                                                                          |
| dB(Z), dB(L)            | Decibels Linear or decibels Z-weighted.                                                             |
| Hertz (Hz)              | The measure of frequency of sound wave oscillations per second - 1 oscillation per second           |
|                         | equals 1 hertz.                                                                                     |
| LA10                    | A noise level which is exceeded 10 % of the time. It is approximately equivalent to the average of  |
|                         | maximum noise levels.                                                                               |
| LA90                    | Commonly referred to as the background noise, this is the level exceeded 90 % of the time.          |
| LAeq                    | The summation of noise over a selected period of time. It is the energy average noise from a        |
|                         | source, and is the equivalent continuous sound pressure level over a given period.                  |
| LAmax                   | The maximum root mean squared (rms) sound pressure level received at the microphone during a        |
|                         | measuring interval.                                                                                 |
| RBL                     | The Rating Background Level (RBL) is an overall single figure background level representing         |
|                         | each assessment period over the whole monitoring period. The RBL is used to determine the           |
|                         | intrusiveness criteria for noise assessment purposes and is the median of the ABL's.                |
| Sound power level (LW)  | This is a measure of the total power radiated by a source. The sound power of a source is a         |
|                         | fundamental location of the source and is independent of the surrounding environment. Or a          |
|                         | measure of the energy emitted from a source as sound and is given by :                              |
|                         | = 10.log10 (W/Wo)                                                                                   |
|                         | Where : W is the sound power in watts and Wo is the sound reference power at 10-12 watts.           |



| Table A2 Common Noise Sources and Their Typical Sound Pressure Levels (SPL), dBA |                     |  |  |  |
|----------------------------------------------------------------------------------|---------------------|--|--|--|
| Source                                                                           | Typical Sound Level |  |  |  |
| Threshold of pain                                                                | 140                 |  |  |  |
| Jet engine                                                                       | 130                 |  |  |  |
| Hydraulic hammer                                                                 | 120                 |  |  |  |
| Chainsaw                                                                         | 110                 |  |  |  |
| Industrial workshop                                                              | 100                 |  |  |  |
| Lawn-mower (operator position)                                                   | 90                  |  |  |  |
| Heavy traffic (footpath)                                                         | 80                  |  |  |  |
| Elevated speech                                                                  | 70                  |  |  |  |
| Typical conversation                                                             | 60                  |  |  |  |
| Ambient suburban environment                                                     | 40                  |  |  |  |
| Ambient rural environment                                                        | 30                  |  |  |  |
| Bedroom (night with windows closed)                                              | 20                  |  |  |  |
| Threshold of hearing                                                             | 0                   |  |  |  |

 Table A2 provides a list of common noise sources and their typical sound level.







Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com



# Quarterly Noise Monitoring Assessment

Dunloe Quarry, December 2017

Muller Acoustic Consulting

Prepared for : VGT Pty Ltd (on behalf of Holcim Pty Ltd) December 2017

## Document Information

### **Quarterly Noise Monitoring Assessment**

### Dunloe Quarry, Pottsville, NSW

### December 2017

Prepared for: VGT Pty Limited (on behalf of Holcim Pty Ltd)

Prepared by: Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com

| Document ID  | Status | Date             | Written By    | Signed |
|--------------|--------|------------------|---------------|--------|
| MAC170440RP4 | Final  | 22 December 2017 | Oliver Muller | al.    |

DISCLAIMER

All documents produced by Muller Acoustic Consulting Pty Ltd (MAC) are prepared for a particular client's requirements and are based on a specific scope, circumstances and limitations derived between MAC and the client. Information and/or report(s) prepared by MAC may not be suitable for uses other than the original intended objective. No parties other than the client should use or reproduce any information and/or report(s) without obtaining permission from MAC. Any information and/or documents prepared by MAC is not to be reproduced, presented or reviewed except in full.



#### CONTENTS

| 1 | 11    | NTRODUCTION                         | 5  |
|---|-------|-------------------------------------|----|
| 2 | N     | OISE CRITERIA                       | 7  |
| 3 | N     | IETHODOLOGY                         | 9  |
|   | 3.1   | LOCALITY                            | 9  |
|   | 3.2   | NOISE MONITORING LOCATIONS          | 9  |
|   | 3.3   | ASSESSMENT METHODOLOGY              | 9  |
| 4 | R     | ESULTS                              | 11 |
|   | 4.1   | ASSESSMENT RESULTS - LOCATION R1    | 11 |
|   | 4.2   | ASSESSMENT RESULTS - LOCATION R2    | 11 |
|   | 4.3   | ASSESSMENT RESULTS - LOCATION R3    | 12 |
|   | 4.4   | ASSESSMENT RESULTS - LOCATION R4    | 12 |
| 5 | N     | OISE COMPLIANCE ASSESSMENT          | 13 |
| 6 | D     | ISCUSSION                           | 15 |
|   | 6.1   | DISCUSSION OF RESULTS - LOCATION R1 | 15 |
|   | 6.2   | DISCUSSION OF RESULTS - LOCATION R2 | 15 |
|   | 6.3   | DISCUSSION OF RESULTS - LOCATION R3 | 15 |
|   | 6.4   | DISCUSSION OF RESULTS - LOCATION R4 | 15 |
| 7 | С     | ONCLUSION                           | 17 |
| A | PPENI | DIX A - GLOSSARY OF TERMS           |    |





#### 1 Introduction

Muller Acoustic Consulting Pty Ltd (MAC) has been commissioned by VGT Pty Limited (VGT) on behalf of Holcim Pty Ltd (Holcim) to complete a Noise Monitoring Assessment (NMA) for Dunloe Quarry ('the quarry'), Pottsville, NSW.

The monitoring has been conducted in accordance with the Dunloe Project Approval and Noise Management Plan at four representative monitoring locations. This assessment represents the operations undertaken during Quarter 4 of 2017.

The assessment has been conducted in accordance with the following documents:

- NSW Environment Protection Authority (EPA), Noise Policy for Industry (NPI), 2017;
- Dunloe Noise Management Plan (NMP), 2016; and
- Standards Australia AS 1055.1:1997 Acoustics Description and measurement of environmental noise - General Procedures.

A glossary of terms, definitions and abbreviations used in this report is provided in Appendix A.





#### 2 Noise Criteria

Schedule 3 Section 2 of the sites Project Approval, outlines the applicable noise criteria for residential receivers surrounding the quarry site.

The noise criteria are applicable when the site undertakes quarrying operations with the site permitted to operate 7am – 5pm Monday to Friday and 7am – 12pm Saturday.

 Table 1 presents the noise criteria for each of the receivers as outlined in the Project Approval.

| Table 1 Noise Criteria                     |                                            |  |  |  |
|--------------------------------------------|--------------------------------------------|--|--|--|
| Location                                   | Day dBA, LAeq(15min) Criteria <sup>2</sup> |  |  |  |
| All privately-owned receivers <sup>1</sup> | 48                                         |  |  |  |

Note 1: Receiver locations are shown in Figure 1.

Note 2: 7am – 5pm Monday to Friday and 7am – 12pm Saturday.





#### 3 Methodology

#### 3.1 Locality

The quarry is located in Pottsville, NSW. Receivers in the locality surrounding the quarry are primarily rural/residential. The surroundings of the quarry generally consist of coastal bushland and elevated and undulating topography. The monitoring locations with respect to the quarry and assessed receivers are presented in the locality plan shown in **Figure 1**.

#### 3.2 Noise Monitoring Locations

Four monitoring locations have been selected as part of the NMA and are listed below:

- R1 is located at the property on Kellehers Road situated north of the quarry;
- R2 is located west of the quarry on the boundary of 574 Pottsville Road;
- R3 is located to the south-west of the quarry at the address of 122 Warwick Park Road; and
- R4 is located at 265 Warwick Park Road, south of the quarry.

#### 3.3 Assessment Methodology

The attended noise surveys were conducted in general accordance with the procedures described in Australian Standard AS 1055-1997, "Acoustics - Description and Measurement of Environmental Noise and Dunloe Quarry's Conditions of Consent. The measurements were carried out using a Svantek Type 1, 971 noise analyser on Friday 15 December 2017. The acoustic instrumentation used carries current NATA calibration and complies with AS IEC 61672.1-2004-Electroacoustics - Sound level meters - Specifications. Calibration of all instrumentation was checked prior to and following measurements. Drift in calibration did not exceed ±0.5dBA.

Measurements were conducted at each monitoring location during the day assessment period. Measurements were of 15 minutes in duration and where possible, throughout each survey the operator quantified the contribution of each significant noise source. Extraneous noise sources were excluded from the analysis as to calculate the LAeq(15min) quarry noise contribution for comparison against the applicable noise criteria.





### FIGURE 1 LOCALITY PLAN REF: MAC170440







#### 4 Results

#### 4.1 Assessment Results - Location R1

The monitored noise level contributions and observed meteorological conditions for each day survey period at R1 for Friday 15 December 2017 are presented in **Table 2**.

| Table 2 Operator-Attended Noise Survey Results – Location R1 |            |                            |       |      |                  |                          |  |  |
|--------------------------------------------------------------|------------|----------------------------|-------|------|------------------|--------------------------|--|--|
| Data                                                         | Time (bre) | Descriptor (dBA re 20 µPa) |       |      |                  | Description and CDL dDA  |  |  |
| Date Lime (hrs)                                              |            | LAmax                      | LAeq  | LA90 | Meteorology      | Description and SPL, dBA |  |  |
|                                                              |            | 09:51 61                   | 40 00 |      | Birds 39-45      |                          |  |  |
| 15/10/17                                                     | 09:51      |                            |       | 00   | Wind Speed: 1m/s | Distant traffic 36-40    |  |  |
| 15/12/17                                                     |            |                            | 43    | 30   |                  | Wind in trees 40-56      |  |  |
|                                                              |            |                            |       |      | Kain. Nii        | Insects <36              |  |  |
|                                                              | Dun        | Quarry Inaudible           |       |      |                  |                          |  |  |

#### 4.2 Assessment Results - Location R2

The monitored noise level contributions and observed meteorological conditions for each day survey period at R2 for Friday 15 December 2017 are presented in **Table 3**.

| Table 3 Operator-Attended Noise Survey Results – Location R2 |               |                            |    |    |                    |                          |
|--------------------------------------------------------------|---------------|----------------------------|----|----|--------------------|--------------------------|
| Date                                                         | Time - (h.m.) | Descriptor (dBA re 20 µPa) |    |    | Meteorology        | Description and SPL, dBA |
| Date                                                         | Time (Tits)   | LAmax LAeq LA90            |    |    |                    |                          |
|                                                              |               |                            |    |    | Dir: N             | Highway traffic 54-60    |
| 15/12/17                                                     | 10:12         | 88                         | 66 | 51 | Wind Speed: 0.5m/s | Local traffic 58-87      |
|                                                              |               |                            |    |    | Rain: Nil          | Birds <50                |
| Dunloe Quarry LAeq(15min) Contribution Quarry Inaudible      |               |                            |    |    |                    |                          |



#### 4.3 Assessment Results - Location R3

The monitored noise level contributions and observed meteorological conditions for each day survey period at R3 for Friday 15 December 2017 are presented in **Table 4.** 

| Table 4 Operator-Attended Noise Survey Results – Location R3 |             |                            |      |      |                  |                          |
|--------------------------------------------------------------|-------------|----------------------------|------|------|------------------|--------------------------|
| Dete                                                         | Time (brs)  | Descriptor (dBA re 20 µPa) |      |      | Mataoralogy      | Description and SPL_dBA  |
| Date                                                         | Time (III3) | LAmax                      | LAeq | LA90 | Meteorology      | Description and SFE, dBA |
|                                                              |             |                            |      |      |                  | Distant traffic 41-54    |
|                                                              |             |                            |      |      | Dir: NE          | Local traffic 49-56      |
| 15/12/17                                                     | 10:31       | 68                         | 53   | 45   | Wind Speed: 1m/s | Birds 43-61              |
|                                                              |             |                            |      |      | Rain: Nil        | Wind in trees 45-47      |
|                                                              |             |                            |      |      |                  | Aircraft 48-55           |
|                                                              | Dunic       | Quarry Inaudible           |      |      |                  |                          |

#### 4.4 Assessment Results - Location R4

The monitored noise level contributions and observed meteorological conditions for each day survey period at R4 for Friday 15 December 2017 are presented in **Table 5**.

| Table 5 Operator-Attended Noise Survey Results – Location R4 |            |                            |      |      |                    |                          |
|--------------------------------------------------------------|------------|----------------------------|------|------|--------------------|--------------------------|
| Data                                                         | Time (hre) | Descriptor (dBA re 20 µPa) |      |      | Matagradami        |                          |
| Date Time (hrs)                                              |            | LAmax                      | LAeq | LA90 | Meteorology        | Description and SPL, UDA |
|                                                              |            | Dir: NE                    |      |      |                    | Wind in troos 40.60      |
| 15/12/17                                                     | 10:51      | 65                         | 55   | 50   | Wind Speed: 1.5m/s | Aircraft 40 61           |
|                                                              |            |                            |      |      | Rain: Nil          | AllCraft 49-01           |
|                                                              | Dunic      | Quarry Inaudible           |      |      |                    |                          |



### 5 Noise Compliance Assessment

The compliance assessment for each residential receiver R1, R2, R3 and R4 are presented in **Table 6** for day assessment periods.

| Table 6 Daytime Noise Compliance Summary |                           |                                   |              |  |  |  |  |
|------------------------------------------|---------------------------|-----------------------------------|--------------|--|--|--|--|
| Poopiyor No                              | Quarry Noise Contribution | Quarry Noise Criteria             | Compliant    |  |  |  |  |
| Receiver no.                             | dBA, LAeq(15min)          | dBA, LAeq(15min) dBA, LAeq(15min) |              |  |  |  |  |
| R1                                       | Nil                       | 48                                | $\checkmark$ |  |  |  |  |
| R2                                       | Nil                       | 48                                | $\checkmark$ |  |  |  |  |
| R3                                       | Nil                       | 48                                | $\checkmark$ |  |  |  |  |
| R4                                       | Nil                       | 48                                | $\checkmark$ |  |  |  |  |





#### 6 Discussion

#### 6.1 Discussion of Results - Location R1

Quarry noise was inaudible at location R1 during the December 2017 monitoring assessment, and therefore satisfies the relevant criteria of 48dBA LAeq15-min. Extraneous noise sources included birds, wind in trees, distant traffic and insects. All extraneous noises remained generally constant during the 15-minute measurements at R1.

#### 6.2 Discussion of Results - Location R2

Quarry noise remained inaudible at location R2 during the December 2017 monitoring assessment. Quarry contributions therefore satisfied the relevant criteria of 48dBA LAeq15-min. Highway and local traffic dominated the December 2017 measurements at R2 and extraneous sources including birds and insects which were barely audible although remained generally constant during the 15-minute measurement at R2.

#### 6.3 Discussion of Results - Location R3

Quarry noise was inaudible during the December 2017 survey period at R3, satisfying the daytime criteria of 48dBA LAeq15-min. Non-quarrying noise sources included birds, wind in trees, aircraft, distant and local traffic. Extraneous noises remained constant during the 15-minute measurement at R3.

#### 6.4 Discussion of Results - Location R4

Quarry emissions were inaudible throughout the December 2017 monitoring quarter at R4. Therefore, quarry emissions satisfied the relevant daytime noise limit of 48dBA LAeq15-min. Extraneous non-quarrying sources include wind in trees and aircraft.





#### 7 Conclusion

Muller Acoustic Consulting Pty Ltd (MAC) has completed a Noise Monitoring Assessment (NMA) for VGT Pty Ltd on behalf of Holcim Pty Ltd at the Dunloe Quarry, Pottsville, NSW. The assessment was completed to assess the quarry's compliance with the relevant criteria outlined in their Project Approval for relevant surrounding residential receivers for the Quarter 4, December 2017 assessment.

Attended noise monitoring was undertaken on 15 December 2017 at representative monitoring locations, with quarry noise contributions compared against the relevant criteria. The assessment has identified that noise emissions generated by Dunloe Quarry comply with relevant statutory noise criteria specified in the Project Approval at all assessed residential receivers.





## Appendix A - Glossary of Terms



 Table A1 provides a number of technical terms have been used in this report.

| Table 1A Glossary of Te | erms                                                                                                  |
|-------------------------|-------------------------------------------------------------------------------------------------------|
| Term                    | Description                                                                                           |
| 1/3 Octave              | Single octave bands divided into three parts                                                          |
| Octave                  | A division of the frequency range into bands, the upper frequency limit of each band being twice      |
|                         | the lower frequency limit.                                                                            |
| ABL                     | Assessment Background Level (ABL) is defined in the NPI as a single figure background level for       |
|                         | each assessment period (day, evening and night). It is the tenth percentile of the measured LA90      |
|                         | statistical noise levels.                                                                             |
| Adverse Weather         | Weather effects that enhance noise (that is, wind and temperature inversions) that occur at a site    |
|                         | for a significant period of time (that is, wind occurring more than 30% of the time in any            |
|                         | assessment period in any season and/or temperature inversions occurring more than 30% of the          |
|                         | nights in winter).                                                                                    |
| Ambient Noise           | The noise associated with a given environment. Typically a composite of sounds from many              |
|                         | sources located both near and far where no particular sound is dominant.                              |
| A Weighting             | A standard weighting of the audible frequencies designed to reflect the response of the human         |
|                         | ear to noise.                                                                                         |
| dBA                     | Noise is measured in units called decibels (dB). There are several scales for describing noise, the   |
|                         | most common being the 'A-weighted' scale. This attempts to closely approximate the frequency          |
|                         | response of the human ear.                                                                            |
| dB(Z), dB(L)            | Decibels Linear or decibels Z-weighted.                                                               |
| Hertz (Hz)              | The measure of frequency of sound wave oscillations per second - 1 oscillation per second             |
|                         | equals 1 hertz.                                                                                       |
| LA10                    | A noise level which is exceeded 10 $\%$ of the time. It is approximately equivalent to the average of |
|                         | maximum noise levels.                                                                                 |
| LA90                    | Commonly referred to as the background noise, this is the level exceeded 90 % of the time.            |
| LAeq                    | The summation of noise over a selected period of time. It is the energy average noise from a          |
|                         | source, and is the equivalent continuous sound pressure level over a given period.                    |
| LAmax                   | The maximum root mean squared (rms) sound pressure level received at the microphone during a          |
|                         | measuring interval.                                                                                   |
| RBL                     | The Rating Background Level (RBL) is an overall single figure background level representing           |
|                         | each assessment period over the whole monitoring period. The RBL is used to determine the             |
|                         | intrusiveness criteria for noise assessment purposes and is the median of the ABL's.                  |
| Sound power level (LW)  | This is a measure of the total power radiated by a source. The sound power of a source is a           |
|                         | fundamental location of the source and is independent of the surrounding environment. Or a            |
|                         | measure of the energy emitted from a source as sound and is given by :                                |
|                         | = 10.log10 (W/Wo)                                                                                     |
|                         | Where : W is the sound power in watts and Wo is the sound reference power at 10-12 watts.             |



| Table A2 Common Noise Sources and Their Typical Sound Pressure Levels (SPL), dBA |                     |  |  |  |
|----------------------------------------------------------------------------------|---------------------|--|--|--|
| Source                                                                           | Typical Sound Level |  |  |  |
| Threshold of pain                                                                | 140                 |  |  |  |
| Jet engine                                                                       | 130                 |  |  |  |
| Hydraulic hammer                                                                 | 120                 |  |  |  |
| Chainsaw                                                                         | 110                 |  |  |  |
| Industrial workshop                                                              | 100                 |  |  |  |
| Lawn-mower (operator position)                                                   | 90                  |  |  |  |
| Heavy traffic (footpath)                                                         | 80                  |  |  |  |
| Elevated speech                                                                  | 70                  |  |  |  |
| Typical conversation                                                             | 60                  |  |  |  |
| Ambient suburban environment                                                     | 40                  |  |  |  |
| Ambient rural environment                                                        | 30                  |  |  |  |
| Bedroom (night with windows closed)                                              | 20                  |  |  |  |
| Threshold of hearing                                                             | 0                   |  |  |  |

 Table A2 provides a list of common noise sources and their typical sound level.







Muller Acoustic Consulting Pty Ltd PO Box 262, Newcastle NSW 2300 ABN: 36 602 225 132 P: +61 2 4920 1833 www.mulleracoustic.com



## **APPENDIX 2**

## DUNLOE SAND QUARRY LONGTERM ENVIRONMENTAL MONITORING

#### Longterm Depositional Dust Monitoring at Dunloe Sands Quarry

| Defeilerenteil         | Dete       | Landar       | D1         | D2         | D3         | D4         |
|------------------------|------------|--------------|------------|------------|------------|------------|
| Data located           | Date       | Location     | g/m2/month | g/m2/month | g/m2/month | g/m2/month |
| Appendix of 2015 AEMR  | 17-07-2015 | Dunloe Sands | 0.3        | 0.2        | 0.7        | 0.4        |
| Appendix of 2015 AEMR  | 19-08-2015 | Dunloe Sands | 0.3        | 0.3        | 0.2        | 0.2        |
| Appendix of 2015 AEMR  | 17-09-2015 | Dunloe Sands | 0.5        | 1.6        | 0.4        | 0.5        |
| Appendix of 2015 AEMR  | 21-10-2015 | Dunloe Sands | 0.1        | 0.6        | 0.2        | 0.1        |
| Appendix of 2015 AEMR  | 25-11-2015 | Dunloe Sands | 0.3        | 1.7        | 0.6        | 0.5        |
| Appendix of 2015 AEMR  | 16-12-2015 | Dunloe Sands | 0.7        | 0.8        | 0.4        | 0.6        |
| 2016 AEMR              | Jan-16     | Dunloe Sands | 0.3        | 0.4        | 0.5        | 0.6        |
| 2016 AEMR              | Feb-16     | Dunloe Sands | 0.4        | 0.6        | 0.5        | 0.5        |
| 2016 AEMR              | Mar-16     | Dunloe Sands | 0.2        | 4.7        | 0.3        | 0.5        |
| 2016 AEMR              | Apr-16     | Dunloe Sands | 0.2        | 1.6        | 0.2        | 0.8        |
| 2016 AEMR              | May-16     | Dunloe Sands | 0.3        | 1.2        | 0.3        | 1.6        |
| 2016 AEMR              | Jun-16     | Dunloe Sands | 0.3        | 1.1        | 1.6        | 0.5        |
| 2016 AEMR              | Jul-16     | Dunloe Sands | 0.13       | 0.52       | 0.41       | 0.39       |
| 2016 AEMR              | Aug-16     | Dunloe Sands | 0.6        | 0.5        | 0.3        | 0.4        |
| 2016 AEMR              | Sep-16     | Dunloe Sands | 0.8        | 0.5        | 0.4        | 0.3        |
| 2016 AEMR              | Oct-16     | Dunloe Sands | 0.8        | 0.5        | 0.4        | 0.3        |
| 2016 AEMR              | Nov-16     | Dunloe Sands | 0.4        | 1.9        | 0.3        | 0.4        |
| 2016 AEMR              | Dec-16     | Dunloe Sands | 0.5        | 1.7        | 0.6        | 0.5        |
| 2017 Q1 Env Mon report | 30-01-2017 | Dunloe Sands | 0.3        | 0.2        | 0.5        | 0.3        |
| 2017 Q1 Env Mon report | 27-02-2017 | Dunloe Sands | 0.3        | 0.2        | 0.2        | 0.3        |
| 2017 Enviro Monitoring | 22-03-2017 | Dunloe Sands | 0.2        | 0.1        | 2.4        | 0.3        |
| 2017 Enviro Monitoring | 19-04-2017 | Dunloe Sands | 0.2        | 0.9        | 1          | 0.3        |
| 2017 Enviro Monitoring | 17-05-2017 | Dunloe Sands | 0.8        | 0.8        | 1.4        | 0.7        |
| 2017 Enviro Monitoring | 14-06-2017 | Dunloe Sands | 0.2        | 0.2        | 0.2        | 0.2        |
| 2017 Enviro Monitoring | 12-07-2017 | Dunloe Sands | 0.3        | 0.1        | 0.2        | 0.3        |
| 2017 Enviro Monitoring | 09-08-2017 | Dunloe Sands | 0.1        | 0.1        | 0.2        | 0.5        |
| 2017 Enviro Monitoring | 06-09-2017 | Dunloe Sands | 0.5        | 0.2        | 0.5        | 0.5        |
| 2017 Enviro Monitoring | 04-10-2017 | Dunloe Sands | 0.7        | 0.6        | 2.4        | 0.9        |
| 2017 Enviro Monitoring | 01-11-2017 | Dunloe Sands | 0.5        | 0.3        | 0.8        | 0.5        |
| 2017 Enviro Monitoring | 29-11-2017 | Dunloe Sands | 0.1        | 0.2        | 0.3        | 0.1        |
| 2017 Enviro Monitoring | 28-12-2017 | Dunloe Sands | 0.4        | 0.3        | 0.2        | 0.2        |
|                        |            | Minimum      | 0.1        | 0.1        | 0.2        | 0.1        |
|                        |            | Maximum      | 0.8        | 4.7        | 2.4        | 1.6        |
|                        |            | Average      | 0.38       | 0.79       | 0.60       | 0.46       |

#### Longterm Surrounding Surface Water Quality Monitoring at Dunloe Sands Quarry

| Data located          | Date       | Location   | рН   | EC       | DO<br>(membrane<br>electrode) | Turbidity | TSS   | Total<br>Phosphorus-P | Total-N | Calcium | Magnesium | Potassium | Sulfur as<br>Sulfate | Arsenic (Total) | Iron (Total) | Manganese<br>(Total) |
|-----------------------|------------|------------|------|----------|-------------------------------|-----------|-------|-----------------------|---------|---------|-----------|-----------|----------------------|-----------------|--------------|----------------------|
|                       |            |            | рН   | µScm-1   | mg/L                          | NTU       | mg/L  | mg/L                  | mg/L    | mg/L    | mg/L      | mg/L      | mg/L                 | mg/L            | mg/L         | mg/L                 |
| 2011/2012 AEMR        | Dec-11     | SW3        | 6    | 253      | 8.4                           |           | 8     | 0.03                  | 0.05    |         |           |           |                      |                 |              |                      |
| 2011/2012 AEMR        | Mar-12     | SW3        | 5.4  | 227      | 5.5                           |           | 11    | 0.02                  | 0.96    |         |           |           |                      |                 |              |                      |
| 2011/2012 AEMR        | Jun-12     | SW3        | 6    | 314      | 7.8                           | 36        | 12    | 0.05                  | 0.7     | 8.2     |           |           |                      |                 |              |                      |
| 2011/2012 AEMR        | 27-09-2012 | SW3        | 6.7  | 17676    | 7.6                           | 10        | 5.2   | 0.03                  | 0.52    |         |           |           |                      |                 |              |                      |
| 2012/2013 AEMR        | Dec-12     | SW3        | 6.7  | 25765    | 6                             |           | 14    | 0.04                  | 0.7     |         |           |           |                      |                 |              |                      |
| 2012/2013 AEMR        | Mar-13     | SW3        | 6.7  | 3489     | 6.8                           |           | 8.4   | 0.03                  | 0.53    |         |           |           |                      |                 |              |                      |
| 2012/2013 AEMR        | Jun-13     | SW3        | 6    | 692      | 7.2                           |           | 48    |                       |         |         |           |           |                      |                 |              |                      |
| 2012/2013 AEMR        | Sep-13     | SW3        | 7    | 17686    | 7.3                           |           | 14    | 0.02                  | 0.38    |         |           |           |                      |                 |              |                      |
| 2013/2014 AEMR        | 12-12-2013 | SW3        | 7.1  | 25681    | 5.8                           |           | 13    | 0.02                  | 0.34    |         |           |           |                      |                 |              |                      |
| 2013/2014 AEMR        | Mar-14     | SW3        | 3.7  | 1753     | 2.9                           |           | 42    | 0.05                  | 1.54    |         |           |           |                      |                 |              |                      |
| 2013/2014 AEMR        | 31-03-2014 | SW3        | 3.7  | 1753     | 2.9                           | 77        | 42    | 0.05                  | 1.54    |         |           |           |                      |                 |              |                      |
| 2013/2014 AEMR        | 25-06-2014 | SW3        | 5.7  | 19911    | 8.9                           | 14        | 9     | <0.02                 | 0.76    |         |           |           |                      |                 |              |                      |
| 2013/2014 AEMR        | Aug-14     | SW3        | 7.9  | 41455    | 8.4                           |           | 5.8   | <0.02                 | 0.2     |         |           | -         |                      |                 |              |                      |
| 2013/2014 AEMR        | 29-09-2014 | SW3        | 7.9  | 41455    | 8.4                           | 6.2       | 5.8   | <0.02                 | 0.2     | 123     | 16        | 7         | 505                  | <0.005          | 11           | 106                  |
| Appendix of 2015 AEMR | 15-12-2014 | SW3        | 7.7  | 30732    | 7.9                           | 9.9       | 35    | 0.03                  | 0.36    |         |           |           |                      |                 |              |                      |
| Appendix of 2015 AEMR | 26-03-2015 | SW3        | 3.7  | 1834     | 4.8                           | 54        | 23    | 0.04                  | 1.32    |         |           |           |                      |                 |              |                      |
| Appendix of 2015 AEMR | 24-04-2015 | SW3        | 6.5  | 12467    | 7.2                           | 7.8       | 4.0   | 0.15                  | 0.46    |         |           |           |                      |                 |              |                      |
| Appendix of 2015 AEMR | 17-09-2015 | SW3        | 6.7  | 15704    | 7.3                           | 33        | 20    | 0.02                  | 0.45    |         |           |           |                      |                 |              |                      |
| Appendix of 2015 AEMR | 11-12-2015 | SW3        | 6.5  | 15038    | 6.8                           | 13        | 24    | <0.02                 | 0.41    |         |           |           |                      |                 |              |                      |
| Appendix of 2016 AEMR | 24-03-2016 | SW3        | 3.8  | 2548     | 3.6                           | 54        | 24    | 0.06                  | 1.16    |         |           |           |                      |                 |              |                      |
| Appendix of 2016 AEMR | 30-06-2016 | SW3        | 5.5  | 1501.6   | 6.8                           | 31        | 25    | 0.03                  | 0.87    |         |           |           |                      |                 |              |                      |
| Appendix of 2016 AEMR | 29-09-2016 | SW3        | 6.7  | 38914    | 6.1                           |           | 5.6   | 0.02                  | 0.23    |         |           |           |                      |                 |              |                      |
| Appendix of 2016 AEMR | 20-12-2016 | SW3        | 7.4  | 36425    | 7.1                           |           | 6.2   | <0.02                 | 0.31    |         |           |           |                      |                 |              |                      |
|                       | Number o   | of Samples | 23   | 23       | 23                            | 12        | 23    | 17                    | 22      | 2       | 1         | 1         | 1                    | 0               | 1            | 1                    |
|                       |            | Minimum    | 3.7  | 227      | 2.9                           | 6.2       | 4     |                       | 0.05    | 8.2     | 16        | 7         | 505                  |                 | 11           | 106                  |
|                       |            | Maximum    | 7.9  | 41455    | 8.9                           | 77        | 48    |                       | 1.54    | 123     | 16        | 7         | 505                  |                 | 11           | 106                  |
|                       |            | Average    | 6.13 | 15359.72 | 6.59                          | 28.83     | 17.61 |                       | 0.64    | 65.60   | 16.00     | 7.00      | 505.00               |                 | 11.00        | 106.00               |
| 2011/2012 AEMR        | Dec-11     | SWA        | 6.4  | 1504     | 53                            |           | 12    | 0.03                  | 0.63    |         |           |           |                      |                 |              |                      |
| 2011/2012 AEMR        | Mar-12     | SW4        | 6    | 458      | 6.8                           |           | 67    | 0.00                  | 0.00    |         |           |           |                      |                 |              |                      |
| 2011/2012 AEMR        | lun-12     | SW4        | 62   | 805      | 8.6                           | 26        | 7.7   | 0.00                  | 0.01    | 10      |           |           |                      |                 |              |                      |
| 2011/2012 AEMR        | 27-09-2012 | SW4        | 7    | 23790    | 7                             | 51        | 10    | <0.02                 | 0.27    |         |           |           |                      |                 |              |                      |
| 2012/2013 AEMR        | Dec-12     | SW4        | 7    | 30543    | 57                            | 0.1       | 94    | <0.02                 | 0.39    | -       |           |           |                      |                 |              |                      |
| 2012/2013 AEMR        | Mar-13     | SW4        | 7.6  | 29821    | 7                             |           | 9.6   | 0.02                  | 0.54    | -       |           |           |                      |                 |              |                      |
| 2012/2013 AEMR        | lun-13     | SW4        | 5.9  | 890      | 7.4                           |           | 16    | 0.02                  | 0.01    | -       |           |           |                      |                 |              |                      |
| 2012/2013 AEMR        | Sen-13     | SW4        | 6.8  | 16825    | 72                            |           | 8.8   | 0.02                  | 0.41    |         |           |           |                      |                 |              |                      |
| 2013/2014 AEMR        | 12-12-2013 | SW4        | 6.7  | 17021    | 5.5                           |           | 15    | 0.02                  | 0.51    | -       |           |           |                      |                 |              |                      |
| 2013/2014 AEMR        | Mar-14     | SW4        | 3.8  | 1354     | 2.5                           |           | 41    | 0.04                  | 1 43    | -       |           |           |                      |                 |              |                      |
| 2013/2014 AFMR        | 31-03-2014 | SW4        | 3.8  | 1354     | 2.5                           | 76        | 41    | 0.04                  | 1.43    |         |           |           |                      |                 |              |                      |
| 2013/2014 AEMR        | 25-06-2014 | SW4        | 6.5  | 25363    | 8.4                           | 12        | 8     | <0.02                 | 0.5     | ł       | 1         |           |                      |                 |              |                      |
| 2013/2014 AFMR        | Aug-14     | SW4        | 7.1  | 22190    | 8.4                           | -         | 6     | <0.02                 | 0.31    | †       | 1         | 1         | 1                    | 1               |              | 1                    |
| 2013/2014 AEMR        | 29-09-2014 | SW4        | 7.1  | 22190    | 8.4                           | 9.8       | 6     | <0.02                 | 0.31    | t       | 1         |           |                      | 1               |              |                      |
| Appendix of 2015 AFMR | 15-12-2014 | SW4        | 8    | 29257    | 10                            | 11        | 33    | 0.05                  | 0.86    | t       | 1         |           |                      | 1               |              |                      |
| Appendix of 2015 AEMR | 26-03-2015 | SW4        | 3.7  | 1426     | 4.7                           | 48        | 24    | 0.1                   | 1.15    |         |           |           |                      |                 |              |                      |
| Appendix of 2015 AEMR | 24-04-2015 | SW4        | 6.4  | 12416    | 7.4                           | 22        | 18    | 0.02                  | 0.45    | t       | 1         |           |                      | 1               |              |                      |
| Appendix of 2015 AEMR | 17-09-2015 | SW4        | 6.7  | 8008     | 7.3                           | 19        | 11    | 0.02                  | 0.48    | t       | 1         |           |                      |                 |              |                      |
| Appendix of 2015 AEMR | 11-12-2015 | SW4        | 7.7  | 39859    | 7.5                           | 4.2       | 9.5   | 0.02                  | 0.24    | t       | 1         |           |                      | 1               |              |                      |
| Appendix of 2016 AFMR | 24-03-2016 | SW4        | 3.8  | 2721     | 5.5                           | 54        | 25    | 0.06                  | 1.15    | t       | 1         | 1         | 1                    | 1               |              | 1                    |
| Appendix of 2016 AEMR | 30-06-2016 | SW4        | 6.5  | 3468.2   | 8.4                           | 14        | 10    | 0.02                  | 0.7     | t       | 1         |           |                      |                 |              |                      |
| Appendix of 2016 AFMR | 29-09-2016 | SW4        | 6.9  | 37551    | 9.6                           | 1         | 66    | 0.02                  | 0.34    | t       | 1         | 1         | 1                    | 1               |              | 1                    |
| Appendix of 2016 AEMR | 20-12-2016 | SW4        | 6.9  | 17005    | 6.9                           |           | 8.5   | 0.03                  | 0.49    |         |           |           |                      |                 |              |                      |
|                       | Number     | of Samples | 23   | 23       | 23                            | 12        | 23    | 17                    | 22      | 1       |           |           |                      |                 |              |                      |
|                       | Number C   | Minimum    | 2.5  | 20       | 25                            | 4.2       | 25    |                       | 0.24    | 4       |           |           |                      |                 |              |                      |
|                       |            | Maximum    | 3.1  | 23       | 2.5                           | 4.2       | 0     |                       | 0.24    | 10      |           |           |                      |                 |              |                      |
|                       |            | waximum    | 8    | 39859    | 10                            | /0        | 00    |                       | 1.43    | 10      |           |           |                      |                 |              |                      |
|                       |            | Average    | 6.28 | 15035.62 | 6.87                          | 25.09     | 17.49 |                       | 0.64    | 10.00   |           |           |                      |                 |              |                      |

#### Longterm Surrounding Surface Water Quality Monitoring at Dunloe Sands Quarry

| 2011/2012 AEMR         | Dec-11     | SW9     | 6.4  | 657     | 7.8  |       | 13    | 0.03  | 0.53 |       |   |   |   |   |          |   |
|------------------------|------------|---------|------|---------|------|-------|-------|-------|------|-------|---|---|---|---|----------|---|
| 2011/2012 AEMR         | Mar-12     | SW9     | 6.1  | 704     | 6.5  |       | 36    | 0.09  | 1.31 |       |   |   |   |   |          |   |
| 2011/2012 AEMR         | Jun-12     | SW9     | 6.1  | 575     | 5.4  | 25    | 10    | 0.04  | 0.6  | 32    |   |   |   |   |          |   |
| 2011/2012 AEMR         | 27-09-2012 | SW9     | 7.3  | 13557   | 9.4  | 4.8   | 13    | 0.02  | 0.53 |       |   |   |   |   |          |   |
| 2012/2013 AEMR         | Dec-12     | SW9     | 6.8  | 17219   | 6.9  |       | 9.4   | 0.04  | 0.76 |       |   |   |   |   |          |   |
| 2012/2013 AEMR         | Mar-13     | SW9     | 6.7  | 3708    | 7.3  |       | 6.8   | 0.03  | 0.43 |       |   |   |   |   |          |   |
| 2012/2013 AEMR         | Jun-13     | SW9     | 4.9  | 305     | 6.5  |       | 27    |       |      |       |   |   |   |   |          |   |
| 2012/2013 AEMR         | Sep-13     | SW9     | 7    | 2753    | 9.9  |       | 29    | 0.13  | 1.34 |       |   |   |   |   |          |   |
| 2013/2014 AEMR         | 12-12-2013 | SW9     | 6.8  | 10096   | 5.2  |       | 20    | 0.05  | 0.81 |       |   |   |   |   |          |   |
| 2013/2014 AEMR         | Mar-14     | SW9     | 4.6  | 1431    | 2.1  |       | 40    | 0.13  | 1.64 |       |   |   |   |   |          |   |
| 2013/2014 AEMR         | 31-03-2014 | SW9     | 4.6  | 1431    | 2.1  | 30    | 40    | 0.13  | 1.64 |       |   |   |   |   |          |   |
| 2013/2014 AEMR         | 25-06-2014 | SW9     | 6.6  | 18376   | 7.9  | 60    | 16    | 0.05  | 0.67 |       |   |   |   |   |          |   |
| 2013/2014 AEMR         | Aug-14     | SW9     | 7.1  | 10705   | 9.3  |       | 20    | 0.03  | 0.6  |       |   |   |   |   |          |   |
| 2013/2014 AEMR         | 29-09-2014 | SW9     | 7.1  | 10705   | 9.3  | 36    | 20    | 0.03  | 0.6  |       |   |   |   |   |          |   |
| Appendix of 2015 AEMR  | 15-12-2014 | SW9     | 8    | 26966   | 10   | 33    | 37    | 0.05  | 1.52 |       |   |   |   |   |          |   |
| Appendix of 2015 AEMR  | 26-03-2015 | SW9     | 4.2  | 763     | 5.2  | 16    | 5.8   | 0.02  | 1.04 |       |   |   |   |   |          |   |
| Appendix of 2015 AEMR  | 24-04-2015 | SW9     | 6.2  | 4344    | 6.8  | 29    | 14    | 0.03  | 0.86 |       |   |   |   |   |          |   |
| Appendix of 2015 AEMR  | 17-09-2015 | SW9     | 6.6  | 7381    | 6.8  | 34    | 14    | 0.03  | 0.83 |       |   |   |   |   |          |   |
| Appendix of 2015 AEMR  | 11-12-2015 | SW9     | 7.1  | 5694    | 5.2  | 22    | 28    | 0.05  | 0.81 |       |   |   |   |   |          |   |
| Appendix of 2016 AEMR  | 24-03-2016 | SW9     | 6.1  | 4157    | 6.5  | 13    | 10    | 0.04  | 0.88 |       |   |   |   |   |          |   |
| Appendix of 2016 AEMR  | 30-06-2016 | SW9     | 6.6  | 2577.4  | 7.6  | 19    | 6.3   | 0.02  | 0.78 |       |   |   |   |   |          |   |
| Appendix of 2016 AEMR  | 29-09-2016 | SW9     | 6.8  | 35815   | 7.4  |       | 35    | <0.02 | 0.26 |       |   |   |   |   |          |   |
| Appendix of 2016 AEMR  | 20-12-2016 | SW9     | 6.9  | 21421   | 6.9  |       | 6.4   | 0.04  | 0.82 |       |   |   |   |   |          |   |
|                        | Number of  | Samples | 23   | 23      | 23   | 12    | 23    |       | 22   | 1     |   |   |   |   |          |   |
|                        | 1          | Minimum | 4.2  | 23      | 2.1  | 4.8   | 5.8   |       | 0.26 | 1     |   |   |   |   |          |   |
|                        | N          | laximum | 8    | 35815   | 10   | 60    | 40    |       | 1.64 | 32    |   |   |   |   |          |   |
|                        |            | Average | 6.37 | 8753.93 | 6.87 | 26.82 | 19.86 |       | 0.88 | 32.00 |   |   |   |   |          |   |
| 2011/2012 AEMR         | Dec-11     | SW10    | 6.2  | 492     | 7.5  |       | 23    | 0.04  | 0.54 |       |   |   |   |   |          |   |
| 2011/2012 AEMR         | Mar-12     | SW10    | 5.2  | 546     | 4.3  |       | 31    | 0.03  | 0.73 |       |   |   |   |   |          | - |
| 2011/2012 AEMR         | Jun=12     | SW10    | 6.4  | 805     | 67   | 45    | 22    | 0.07  | 0.86 | 35    |   |   |   |   |          | - |
| 2011/2012 AEMR         | 27-09-2012 | SW10    | 7.4  | 12749   | 9.4  | 7.7   | 14    | 0.04  | 0.84 |       |   |   |   |   |          | - |
| 2012/2013 AEMR         | Dec-12     | SW10    | 6.7  | 19403   | 6.9  |       | 7.4   | 0.03  | 0.71 |       |   |   |   |   |          | - |
| 2012/2013 AEMR         | Mar-13     | SW10    | 6.8  | 1025    | 5.6  |       | 16    | 0.05  | 0.77 |       |   |   |   |   |          |   |
| 2012/2013 AEMR         | Jun=13     | SW10    | 4.8  | 302     | 5.7  |       | 30    |       |      |       |   |   |   |   |          |   |
| 2012/2013 AEMR         | Sen-13     | SW10    | 7.8  | 2870    | 15   |       | 45    | 0.29  | 2.15 |       |   |   |   |   |          |   |
| 2013/2014 AEMR         | 12-12-2013 | SW10    | 6.8  | 15775   | 5    |       | 10    | 0.03  | 0.56 |       |   |   |   |   |          |   |
| 2013/2014 AEMR         | Mar-14     | SW10    | 4.6  | 1454    | 2.2  |       | 40    | 0.13  | 1.63 |       |   |   |   |   |          |   |
| 2013/2014 AEMR         | 31-03-2014 | SW10    | 4.6  | 1454    | 2.2  | 32    | 40    | 0.13  | 1.63 |       |   |   |   |   |          |   |
| 2013/2014 AEMR         | 25-06-2014 | SW10    | 6.5  | 17312   | 7.6  | 37    | 15    | 0.04  | 0.72 |       | 1 | 1 | 1 | 1 | <u> </u> | ł |
| 2013/2014 AEMR         | Aug-14     | SW10    | 7.2  | 9164    | 11   |       | 30    | 0.11  | 1.06 |       | 1 | 1 | 1 | 1 | <u> </u> | ł |
| 2013/2014 AEMR         | 29-09-2014 | SW10    | 7.2  | 9164    | 11   | 46    | 30    | 0.11  | 1.06 |       | 1 | 1 | 1 | 1 | <u> </u> | ł |
| Appendix of 2015 AFMR  | 15-12-2014 | SW10    | 7.6  | 26936   | 12   | 33    | 44    | 0.07  | 1.38 |       |   | l | İ |   |          | t |
| Appendix of 2015 AFMR  | 26-03-2015 | SW10    | 4.2  | 779     | 5.6  | 14    | 8.0   | 0.06  | 1.08 |       |   | l | İ |   |          | t |
| Appendix of 2015 AEMR  | 24-04-2015 | SW10    | 6.2  | 4381    | 6.5  | 25    | 15    | 0.03  | 0.87 |       |   |   |   |   |          |   |
| Appendix of 2015 AEMR  | 17-09-2015 | SW10    | 6.5  | 6756    | 7    | 37    | 21    | 0.04  | 0.98 |       |   |   |   |   |          |   |
| Appendix of 2015 AEMR  | 11-12-2015 | SW10    | 6.8  | 17660   | 57   | 54    | 9     | <0.02 | 0.33 |       |   |   |   |   |          |   |
| Appendix of 2016 AFMR  | 24-03-2016 | SW10    | 5.3  | 2967    | 7.1  | 7.4   | 4.8   | 0.04  | 0.77 |       | 1 | 1 | 1 | 1 | <u> </u> | ł |
| Appendix of 2016 AEMR  | 30-06-2016 | SW10    | 6.7  | 4893.3  | 7.1  | 7.1   | 4.8   | 0.02  | 0.61 |       |   |   |   |   | <u> </u> |   |
| Appendix of 2016 AEMR  | 29-09-2016 | SW10    | 6.9  | 35928   | 6.9  |       | 36    | 0.02  | 0.58 |       |   |   |   |   | <u> </u> |   |
| Appendix of 2016 AEMR  | 20-12-2016 | SW10    | 6.9  | 7210    | 7.8  |       | 10    | 0.04  | 0.81 |       |   |   |   |   | <u> </u> |   |
| Appendix of 2010 ALMIN | Number of  | Samples | 23   | 23      | 23   | 12    | 23    |       | 22   | 1     |   |   |   |   |          |   |
|                        |            | Minimum | 4.2  | 23      | 23   | 5.4   | 4.8   |       | 0.22 | 1     |   |   |   |   |          |   |
|                        |            | mmum    | 4.2  | 23      | 2.2  | 5.4   | 4.0   |       | 0.33 | 1     |   |   |   |   |          |   |
|                        |            | lovin   | 79   | 250.20  | 15   | 46    | 45    |       | 245  | 25    |   |   |   |   |          |   |
|                        | N          | laximum | 7.8  | 35928   | 15   | 46    | 45    |       | 2.15 | 35    |   |   |   | - |          |   |

#### Longterm Pond Water Quality Monitoring at Dunloe Sands Quarry

| Data located                               | Date         | Location | pН   | EC     | DO<br>(membrane<br>electrode) | *Redox<br>Potential | Alkalinity as<br>CaCO3 | Bicarbonate<br>as CaCO3 | Chloride | Turbidity | TSS   | Chlorophyll 'a' | Oil and Grease | Total<br>Phosphorus-P | Total-N | Ammonia | Calcium | Magnesium | Sodium | Potassium | Sulfur as<br>Sulfate | Aluminium<br>(Total) | Arsenic (Total) | Iron (Total) | Manganese<br>(Total) |
|--------------------------------------------|--------------|----------|------|--------|-------------------------------|---------------------|------------------------|-------------------------|----------|-----------|-------|-----------------|----------------|-----------------------|---------|---------|---------|-----------|--------|-----------|----------------------|----------------------|-----------------|--------------|----------------------|
|                                            |              |          | pН   | µScm-1 | mg/L                          | mV                  | mg/L                   | mg/L                    | mg/L     | NTU       | mg/L  | µg/L            | mg/L           | mg/L                  | mg/L    | mg/L    | mg/L    | mg/L      | mg/L   | mg/L      | mg/L                 | mg/L                 | mg/L            | mg/L         | mg/L                 |
| 2011/2012 AEMR                             | 30-05-2012   | Lake     | 5.8  | 133    | 8.9                           |                     |                        |                         |          | 190       | 84    |                 | <2             | 0.09                  | 0.66    |         |         |           |        |           |                      |                      |                 |              |                      |
| 2011/2012 AEMR                             | 27-06-2012   | Lake     | 6    | 143    | 9.4                           |                     | 3                      | 2                       | 8        | 34        | 23    |                 | 4              | 0.04                  | 0.38    |         | 13      | 1.5       | 6.3    | <5        | 41                   | 1.21                 | <0.005          | 1.01         | 0.03                 |
| 2011/2012 AEMR                             | 26-07-2012   | Lake     | 7    | 164    | 9.4                           |                     |                        |                         |          | 18        | 15    |                 | <2             | 0.02                  | 33      |         |         |           |        |           |                      |                      |                 |              | L                    |
| 2011/2012 AEMR                             | 27-08-2012   | Lake     | 5.7  | 188    | 9.3                           | 168                 |                        |                         |          | 100       | 70    |                 | 2              | 0.04                  | 0.44    |         |         |           |        | -         |                      |                      |                 |              |                      |
| 2011/2012 AEMR                             | 27-09-2012   | Lake 1   | 4.6  | 214    | 8.2                           |                     | <1                     | <1                      | 10       | 7.8       | 11    | _               | <2             | 0.02                  | 0.00    |         | 22      | 1.9       | 9      | <5        | 65                   | 0.47                 | <0.005          | 0.41         | 0.05                 |
| 2011/2012 AEMR                             | 29-10-2012   | Lake     | 4.2  | 240    | 8.5                           |                     |                        |                         |          | 2.9       | 4     |                 | <2             | <0.02                 | 0.09    |         |         |           |        |           |                      |                      |                 |              | -                    |
| 2012/2013 AEMR                             | 20-11-2013   | Lake     | 4.7  | 568    | 77                            | 160                 | 2                      | 1                       | 22       | 33        | 54    |                 | <2             | 0.04                  | 0.33    |         | 75      | 8.6       | 15     | 5         | 244                  | 8.92                 | <0.005          | 3 49         | 0.64                 |
| 2013/2014 AEMR                             | 30-01-2014   | Lake     | 4.4  | 650    | 7.9                           | 100                 | -                      |                         |          | 31        | 41    |                 | <2             | 0.03                  | 0.37    |         |         | 0.0       | 10     | Ŭ         | 244                  | 0.02                 | -0.000          | 0.40         | 0.04                 |
| 2013/2014 AEMR                             | 24-02-2014   | Lake     | 4.4  | 780    | 7.7                           |                     |                        |                         |          | 40        | 45    |                 | <2             | 0.04                  | 0.25    |         |         |           |        |           |                      |                      |                 |              |                      |
| 2013/2014 AEMR                             | 31-03-2014   | Lake     | 4.9  | 800    | 7.5                           |                     |                        |                         |          | 70        | 63    |                 | <2             | 0.04                  | 0.55    |         |         |           |        |           |                      |                      |                 |              |                      |
| 2013/2014 AEMR                             | 28-04-2014   | Lake     | 4.4  | 874    |                               |                     |                        |                         |          | 33        | 30    |                 | <2             | 0.03                  | 0.17    |         |         |           |        |           |                      |                      |                 |              |                      |
| 2013/2014 AEMR                             | 28-05-2014   | Lake     | 4.1  | 895    | 9.2                           |                     |                        |                         |          | 42        | 30    |                 | <2             | < 0.02                | 0.27    |         |         |           |        |           |                      |                      |                 |              |                      |
| 2013/2014 AEMR                             | 25-06-2014   | Lake     | 3.8  | 916    | 9.4                           |                     | <1                     | <1                      | 35       | 72        | 53    |                 | <2             | 0.08                  | 0.37    |         | 109     | 16        | 23     | 6         | 413                  | 26                   | < 0.005         | 12           | 1.05                 |
| 2013/2014 AEMR                             | 30-07-2014   | Lake     | 4.3  | 917    |                               |                     |                        |                         |          | 79        | 44    |                 | <2             | 0.02                  | 0.44    |         |         |           |        |           |                      |                      |                 |              |                      |
| 2013/2014 AEMR                             | 29-08-2014   | Lake     | 4.5  | 960    |                               |                     |                        |                         |          | 138       | 187   |                 | 5              | 0.05                  | 0.81    |         |         |           |        |           |                      |                      |                 |              |                      |
| 2013/2014 AEMR                             | 29-09-2014   | Lake     | 3.8  | 971    | 8                             |                     | <1                     | <1                      |          | 68        | 58    |                 |                | 0.03                  | 0.58    |         |         |           |        |           |                      |                      |                 |              |                      |
| Appendix of 2015 AEMR                      | 28-11-2014   | Lake     | 4    | 998    | 8.3                           |                     |                        |                         |          | 70        | 101   |                 | <2             | 0.07                  | 0.5     |         |         |           |        | -         |                      |                      |                 |              |                      |
| Appendix of 2015 AEMR                      | 15-12-2014   | Lake     | 4.4  | 1005   | 8                             | 004                 | NP                     | <1                      | 40       | 119       | 167   | _               | <2             | 0.14                  | 0.31    |         | 159     | 18        | 29     | /         | 394                  | 33                   | 0.008           | 11           | 1.23                 |
| Appendix of 2015 AEMR                      | 22-01-2015   | Lake 1   | 4.4  | 1029   | 7.4                           | 204                 |                        |                         |          | /8        | 96    |                 | <2             | 0.05                  | 0.32    |         |         |           |        |           |                      |                      |                 |              | -                    |
| Appendix of 2015 AEMR                      | 25-02-2015   | Lake 1   | 4.2  | 900    | 7.5                           |                     | ND                     | ND                      | 39       | 34        | 69    |                 | ~2             | 0.08                  | 0.0     |         | 02      | 12        | 22     | 6         | 360                  | 24.2                 | 0.003           | 5.61         | 1.03                 |
| Appendix of 2015 AEMR                      | 20-03-2015   | Lake     | 4.3  | 963    | 85                            |                     | 191                    | 111                     | 50       | 59        | 95    |                 | <2             | 0.25                  | 0.73    |         | 32      | 12        | 22     | 0         | 303                  | 24.2                 | 0.005           | 3.01         | 1.00                 |
| Appendix of 2015 AEMR                      | 28.05.2015   | Lake     | 4.0  | 927    | 9                             |                     |                        |                         |          | 52        | 85    |                 | <2             | 0.22                  | 0.44    |         |         |           |        |           |                      |                      |                 |              | 1                    |
| Appendix of 2015 AEMR                      | 17-09-2015   | Lake     | 4.5  | 928    | 8.9                           |                     | NP                     |                         | 35       | 56        | 61    | 6               | <2             | 0.1                   | 0.43    | 0.08    | 117     | 13        | 25     | 8         | 361                  | 19.3                 | 0.003           | 6.7          | 0.953                |
| Appendix of 2015 AEMR                      | 21-10-2015   | Lake     | 4.4  | 955    | 7.8                           |                     |                        |                         |          | 56        | 100   |                 | <2             | 0.08                  | 0.28    |         |         |           |        |           |                      |                      |                 |              |                      |
| Appendix of 2015 AEMR                      | 25-11-2015   | Lake     | 3.7  | 996    | 7.7                           |                     |                        |                         |          | 5.1       | 4     |                 | <2             | 0.03                  | 0.16    |         |         |           |        |           |                      |                      |                 |              |                      |
| Appendix of 2015 AEMR                      | 11-12-2015   | Lake 1   | 4.2  | 956    | 6.8                           |                     | <1                     | <1                      | 45       | 20        | 39    |                 | <2             | 0.39                  | 0.57    |         | 111     | 13        | 29     | 9         | 429                  | 14.3                 | 0.004           | 2.54         | 0.896                |
| Appendix of 2016 AEMR                      | 25-01-2016   | Pond     | 3.9  | 1002   | 7.3                           |                     |                        |                         |          | 7.9       |       |                 | 6              |                       |         |         |         |           |        |           |                      |                      |                 |              |                      |
| Appendix of 2016 AEMR                      | 24-02-2016   | Pond     | 4    | 1021   | 7.4                           |                     |                        |                         |          | 6.1       |       |                 | 2              |                       |         |         |         |           |        |           |                      |                      |                 |              |                      |
| Appendix of 2016 AEMR                      | 24-03-2016   | Pond     | 3.9  | 1060   | 7.9                           |                     |                        |                         |          | 7.2       |       |                 | 2              | 0.07                  | 0.12    |         | 112.71  | 14.14     | 43.28  | 9.32      | 382.38               | 10.93                | 0.002           | 1.24         | 0.88                 |
| Appendix of 2016 AEMR                      | 29-04-2016   | Pond     | 4.4  | 1037   | 8.6                           |                     |                        |                         |          | 7.7       |       |                 | 2              |                       |         |         |         |           |        |           |                      |                      |                 |              | L                    |
| Appendix of 2016 AEMR                      | 24-05-2016   | Pond     | 4.9  | 1029   | 8.4                           |                     |                        |                         |          |           |       | 40              | 4              | 0.00                  | 0.04    | -0.00   | 57.45   | 7.040     | 04.00  | 5.00      | 105.11               | 1.54                 | 0.000           | 0.44         | 0.50                 |
| Appendix of 2016 AEMR                      | 30-06-2016   | Pond     | 4./  | 518.9  | 9.8                           |                     |                        |                         |          | 4         |       | 10              | 2              | 0.02                  | 0.31    | <0.02   | 57.45   | 7.218     | 24.38  | 5.39      | 185.14               | 4.51                 | 0.002           | 0.41         | 0.50                 |
| Appendix of 2016 AEMR                      | 21-07-2016   | Pond     | 4.5  | 619    | 9.3                           |                     |                        |                         |          | 2         |       |                 | 2              |                       |         |         |         |           |        |           |                      |                      |                 |              | +                    |
| Appendix of 2016 AEMR                      | 31-08-2010   | Pond     | 41   | 651    | 9.7                           |                     |                        |                         |          | 26        |       | 10              | 2              |                       |         | <0.02   |         | 7.0       | 27     | 6         | 220                  | 2.93                 | 0.002           | 0.41         | 0.30                 |
| Appendix of 2016 AEMR                      | 27-10-2016   | Pond     | 4    | 684    | 84                            |                     |                        |                         |          | 7.2       |       | 10              | 2              |                       |         | -0.02   |         | 1.0       | 21     | Ŭ         | 220                  | 2.00                 | 0.002           | 0.41         | 0.00                 |
| Appendix of 2016 AEMR                      | 29-11-2016   | Pond     | 3.8  | 714    | 8                             |                     |                        |                         |          | 1.7       |       |                 | 2              |                       |         |         |         |           |        | 1         |                      |                      |                 |              |                      |
| Appendix of 2016 AEMR                      | 20-12-2016   | Pond     | 3.5  | 742    | 7.3                           |                     |                        |                         |          | 2.8       |       | 2               | 2              | <0.02                 | 0.19    | 0.03    |         | 9.3       | 29     | 7         | 251                  | 4.01                 | 0.001           | 0.71         | 0.48                 |
| 2017 Q1 Env Mon report                     | t 30-01-2017 | Pond     | 3.6  | 758    | 7.2                           |                     |                        |                         |          | 2.6       |       |                 | <2             |                       |         |         |         |           |        |           |                      |                      |                 |              |                      |
| 2017 Q1 Env Mon report                     | t 27-02-2017 | Pond     | 3.5  | 858    | 7.7                           |                     |                        |                         |          | 2.4       |       |                 | <2             |                       |         |         |         |           |        |           |                      |                      |                 |              |                      |
| 2017 Env Monitoring                        | 22-03-2017   | Pond     | 3.4  | 979    | 8.2                           |                     | <5                     |                         | 67       | 2.2       |       |                 | <5.0           | <0.05                 | 0.01    | 0.013   |         | 10        | 46     | 7         | 260                  | 5.6                  | <0.001          | 1.7          | 0.57                 |
| 2017 Env Monitoring                        | 19-04-2017   | Pond     | 6.5  | 84     | 7.6                           |                     |                        |                         |          | 400       |       |                 | <5.0           |                       |         | 1       |         |           |        | -         |                      |                      | 1               |              | <u> </u>             |
| 2017 Env Monitoring                        | 17-05-2017   | Pond     | 5.9  | 101    | 8.1                           |                     |                        |                         |          | 230       |       |                 | <5.0           |                       |         |         |         |           |        |           |                      |                      |                 |              | <u> </u>             |
| 2017 Env Monitoring                        | 14-06-2017   | Pond     | 4.8  | 115    | 9.5                           |                     | <5                     |                         | 8        | 100       |       |                 | <5.0           | 0.07                  | 0.07    | 0.03    |         | 2         | 7      | 2         | 25                   | 0.17                 | <0.001          | 0.04         | U.12                 |
| 2017 Env Monitoring                        | 12-07-2017   | Pond     | 4.3  | 153    | 9.2                           |                     |                        |                         |          | 5.5       |       |                 | <5.0           |                       |         |         |         |           |        | 1         |                      |                      |                 |              | +                    |
| 2017 Env Monitoring                        | 09-08-2017   | Pond     | 4.2  | 1/1    | 9.9                           |                     | <5                     |                         | 11       | 3.4       |       | +               | <5.0           | <0.05                 | 0.3     | <0.005  |         | 2         | 8      | 2         | 47                   | 0.35                 | <0.001          | 0.085        | 0.18                 |
| 2017 Env Monitoring                        | 04 10 2017   | Pond     | 4.3  | 229    | 8.6                           |                     | -5                     |                         |          | 1.6       |       |                 | <5.0           | ~0.05                 | 0.3     | ~0.005  |         | 2         | °      | 2         |                      | 0.30                 | ~0.001          | 0.000        | 0.10                 |
| 2017 Env Monitoring<br>2017 Env Monitoring | 04-10-2017   | Pond     | 4.0  | 271    | 8                             |                     |                        |                         |          | 2.9       |       | + +             | <5.0           |                       |         | 1       |         |           |        | 1         |                      |                      | 1               |              | 1                    |
| 2017 Env Monitoring                        | 29-11-2017   | Pond     | 4.3  | 303    | 7.6                           |                     | 1                      |                         |          | 4         |       |                 | <5.0           |                       |         | 1       |         |           |        | 1         |                      |                      | 1               |              | -                    |
| 2017 Env Monitoring                        | 28-12-2017   | Pond     | 4.1  | 339    | 7.8                           |                     | <5                     |                         | 16       | 1         |       | + +             | <5.0           | <0.05                 | <0.1    | < 0.005 |         | 3.7       | 11     | 3         | 84                   | 0.6                  | < 0.001         | 0.12         | 0.23                 |
| monitoring                                 |              | Minimum  | 3.4  | 84     | 6.6                           | 160                 |                        |                         | 8        | 1         | 4     | 2               |                |                       |         |         | 13      | 1.5       | 6.3    | 1         | 25                   | 0.17                 | 1               | 0.04         | 0.03                 |
|                                            |              | Maximum  | 7    | 1060   | 9.9                           | 204                 |                        |                         | 67       | 400       | 187   | 16              |                |                       |         |         | 159     | 18        | 46     | 1         | 429                  | 33                   |                 | 12           | 1.23                 |
|                                            |              | Average  | 4.45 | 653.48 | 8.22                          | 177.33              |                        |                         | 27.92    | 46.54     | 61.79 | 8.50            |                |                       |         |         | 86.82   | 8.77      | 22.12  |           | 235.66               | 9.78                 |                 | 2.97         | 0.58                 |

#### Longterm Pond Water Layer Monitoring at Dunloe Sands Quarry

| Data located          | Date       | Location   | рН   | EC     | DO<br>(membrane    | *Redox<br>Potential | Turbidity | TSS         | Total<br>Phosphorus- | Total-N |
|-----------------------|------------|------------|------|--------|--------------------|---------------------|-----------|-------------|----------------------|---------|
| Buta loodtou          | Duto       | Looudon    | рН   | uScm-1 | electrode)<br>mg/L | mV                  | NTU       | ma/L        | P<br>mg/L            | ma/L    |
| 2011/2012 AEMR        | 27-06-2012 | Lake 2m    | 6.1  | 144    | 9.4                | 257                 |           | <b>g</b> .= |                      |         |
| 2011/2012 AEMR        | 27-09-2012 | Lake 2m    | 4.6  | 214    | 8.2                |                     | 2.2       | 4.5         | 0.02                 |         |
| Appendix of 2015 AEMR | 26-03-2015 | Lake 2m    | 4.0  | 859    | 7.6                | 280                 |           |             |                      |         |
| Appendix of 2015 AEMR | 17-09-2015 | Lake 2m    | 4.5  | 915    | 8.8                | 185                 |           |             |                      |         |
| Appendix of 2015 AEMR | 11-12-2015 | Lake 2m    | 4.2  | 952    | 7.2                |                     | 19        | 44          | 0.13                 | 0.13    |
| Appendix of 2016 AEMR | 24-03-2016 | Lake 2m    | 4.3  | 1011   | 8                  |                     |           |             |                      |         |
| Appendix of 2016 AEMR | 30-06-2016 | Lake 2m    | 4.8  | 527.6  | 9.9                |                     |           |             |                      |         |
| Appendix of 2016 AEMR | 29-09-2016 | Lake 2m    | 4.1  | 647    | 8.8                |                     |           |             |                      |         |
| Appendix of 2016 AEMR | 20-12-2016 | Lake 2m    | 3.5  | 742    | 7.4                |                     |           |             |                      |         |
|                       | No o       | f Samples  | 9    | 9      | 9                  | 3                   | 2         | 2           | 2                    | 1       |
|                       |            | Minimum    | 3.5  | 144    | 7.2                | 185                 | 2.2       | 4.5         | 0.02                 | 0.13    |
|                       |            | Maximum    | 6.1  | 1011   | 9.9                | 280                 | 19        | 44          | 0.13                 | 0.13    |
|                       |            | Average    | 4.46 | 667.96 | 8.37               | 240.67              | 10.60     | 24.25       | 0.08                 | 0.13    |
| 2011/2012 AEMR        | 27-06-2012 | Lake 3m    | 6.1  | 144    | 9.5                | 267                 | 1         |             |                      |         |
| 2011/2012 AEMR        | 27-09-2012 | Lake 3m    | 4.6  | 214    | 8.2                |                     | 14        | 30          | 0.03                 |         |
| Appendix of 2015 AEMR | 26-03-2015 | Lake 3m    | 4.0  | 859    | 7.5                | 297                 |           |             |                      |         |
| Appendix of 2015 AEMR | 17-09-2015 | Lake 3m    | 4.5  | 915    | 8.7                | 200                 |           |             |                      |         |
| Appendix of 2015 AEMR | 11-12-2015 | Lake 3m    | 4.2  | 949    | 7.2                |                     | 19        | 96          | 0.07                 | 0.07    |
| Appendix of 2016 AEMR | 24-03-2016 | Lake 3m    | 4.4  | 1014   | 8.1                |                     |           |             |                      |         |
| Appendix of 2016 AEMR | 30-06-2016 | Lake 3m    | 4.9  | 510.8  | 9.8                |                     |           |             |                      |         |
| Appendix of 2016 AEMR | 29-09-2016 | Lake 3m    | 4.1  | 650    | 8.8                |                     |           |             |                      |         |
| Appendix of 2016 AEMR | 20-12-2016 | Lake 3m    | 3.6  | 742    | 7.7                |                     |           |             |                      |         |
|                       | No o       | f Samples  | 9    | 9      | 9                  | 3                   | 2         | 2           | 2                    | 1       |
|                       |            | Minimum    | 3.6  | 144    | 7.2                | 200                 | 14        | 30          | 0.03                 | 0.07    |
|                       |            | Maximum    | 6.1  | 1014   | 9.8                | 297                 | 19        | 96          | 0.07                 | 0.07    |
|                       |            | Average    | 4.49 | 666.42 | 8.39               | 254.67              | 16.50     | 63.00       | 0.05                 | 0.07    |
| 2011/2012 AEMR        | 27-06-2012 | Lake 4m    | 6.2  | 144    | 9.6                | 264                 |           |             |                      |         |
| 2011/2012 AEMR        | 27-09-2012 | Lake 4m    | 4.6  | 213    | 8.2                |                     | 5.8       | 9.2         | 0.02                 |         |
| Appendix of 2015 AEMR | 26-03-2015 | Lake 4m    | 4.0  | 860    | 7.5                | 312                 |           |             |                      |         |
| Appendix of 2015 AEMR | 17-09-2015 | Lake 4m    | 4.5  | 915    | 8.7                | 200                 |           |             |                      |         |
| Appendix of 2015 AEMR | 11-12-2015 | Lake 4m    | 4.2  | 952    | 7.5                |                     | 16        | 102         | 0.06                 | 0.06    |
| Appendix of 2016 AEMR | 24-03-2016 | Lake 4m    | 4.3  | 1.11   | 7.9                |                     |           |             |                      |         |
| Appendix of 2016 AEMR | 30-06-2016 | Lake 4m    | 4.8  | 517.4  | 9.9                |                     |           |             |                      |         |
| Appendix of 2016 AEMR | 29-09-2016 | Lake 4m    | 4    | 648    | 8.8                |                     |           |             |                      |         |
| Appendix of 2016 AEMR | 20-12-2016 | Lake 4m    | 3.6  | 742    | 1.1                |                     |           |             |                      |         |
|                       | No o       | f Samples  | 9    | 9      | 9                  | 3                   | 2         | 2           | 2                    | 1       |
|                       |            | Minimum    | 3.6  | 1.11   | 7.5                | 200                 | 5.8       | 9.2         | 0.02                 | 0.06    |
|                       |            | Maximum    | 6.2  | 952    | 9.9                | 312                 | 16        | 102         | 0.06                 | 0.06    |
|                       |            | Average    | 4.47 | 554.72 | 8.42               | 258.67              | 10.90     | 55.60       | 0.04                 | 0.06    |
| 2011/2012 AEMR        | 27-06-2012 | Lake 5m    | 6.5  | 144    | 9.5                | 261                 |           |             |                      |         |
| Appendix of 2015 AEMR | 26-03-2015 | Lake 5m    | 4.0  | 864    | 7.5                | 316                 |           |             |                      |         |
| Appendix of 2015 AEMR | 17-09-2015 | Lake 5m    | 4.4  | 913    | 8.7                | 210                 |           |             |                      |         |
| Appendix of 2015 AEMR | 11-12-2015 | Lake 5m    | 4.1  | 954    | 7.7                |                     | 12        | 22          | 0.06                 | 0.06    |
| Appendix of 2016 AEMR | 24-03-2016 | Lake 5m    | 4.7  | 1019   | 8.1                |                     |           |             |                      |         |
| Appendix of 2016 AEMR | 30-06-2016 | Lake 5m    | 4.8  | 515.5  | 9.9                |                     |           |             |                      |         |
| Appendix of 2016 AEMR | 29-09-2016 | Lake 5m    | 4    | b4/    | 8.8                |                     |           |             |                      |         |
| Appendix of 2016 AEMR | 20-12-2016 | Lake 5m    | 3.0  | 742    | 7.0                |                     |           |             |                      |         |
|                       | NO O       | of Samples | 8    | 8      | 8                  | 3                   | 1         | 1           | 1                    | 1       |
|                       |            | Minimum    | 3.6  | 144    | 7.5                | 210                 | 12        | 22          | 0.06                 | 0.06    |
|                       |            | Maximum    | 6.5  | 1019   | 9.9                | 316                 | 12        | 22          | 0.06                 | 0.06    |
|                       |            | Average    | 4.51 | 724.81 | 8.48               | 262.33              | 12.00     | 22.00       | 0.06                 | 0.06    |
| Appendix of 2016 AEMR | 30-06-2016 | Lake 6m    | 5.2  | 516.6  | 9.9                |                     |           |             |                      |         |
| Appendix of 2016 AEMR | 29-09-2016 | Lake 6m    | 4.5  | 627    | 8.4                |                     |           |             |                      |         |
| Appendix of 2016 AEMR | 20-12-2016 | Lake 6m    | 3.6  | 740    | 7.4                |                     |           |             |                      |         |
|                       | No o       | f Samples  | 3    | 3      | 3                  |                     |           |             |                      |         |
|                       |            | Minimum    | 3.6  | 516.6  | 7.4                |                     |           |             |                      |         |
|                       |            | Maximum    | 5.2  | 740    | 9.9                |                     |           |             |                      |         |
|                       |            | Average    | 4.43 | 627.87 | 8.57               |                     |           |             |                      |         |
|                       |            |            |      |        |                    |                     |           |             |                      |         |
### Longterm Algae Monitoring at Dunloe Sands Quarry

| Deta la set a la                 | D-1        | Lacet    | Cyanophyta     | Chlorophyta | Diatoms                       | Dinophyta | Euglenophyta             |
|----------------------------------|------------|----------|----------------|-------------|-------------------------------|-----------|--------------------------|
| Data located                     | Date       | Location | cells/mL       | cells/mL    | (Bacillariophyta)<br>cells/mL | cells/mL  | (Euglenoids)<br>cells/mL |
| 2011/2012 AEMR                   | 30-11-2011 | Lake     | 240            |             |                               |           |                          |
| 2011/2012 AEMR                   | 22-12-2012 | Lake     | 800            |             |                               |           |                          |
| 2011/2012 AEMR                   | 02-02-2012 | Lake     | <100           |             |                               |           |                          |
| 2011/2012 AEMR                   | 28-02-2012 | Lake     | 14375          |             |                               |           |                          |
| 2011/2012 AEMR                   | 27-03-2012 | Lake     | 1200           |             |                               |           |                          |
| 2011/2012 AEMR                   | 30-05-2012 | Lake     | <100           |             |                               |           |                          |
| 2011/2012 AEMR                   | 27-06-2012 | Lake     | 130            | 0.01        |                               |           |                          |
| 2011/2012 AEMR                   | 26-07-2012 | Lake     | 16360          | 2520        |                               | -         |                          |
| 2011/2012 AEMR<br>2011/2012 AEMR | 27-08-2012 | Lake     | 24640<br>68000 | 3720        |                               |           |                          |
| 2011/2012 AEMR                   | 29-10-2012 | Lake     | <100           | 7900        |                               |           |                          |
| 2012/2013 AEMR                   | 28-11-2012 | Lake     | <100           | 80670       |                               |           |                          |
| 2012/2013 AEMR                   | 24-12-2012 | Lake     | <100           |             |                               |           |                          |
| 2012/2013 AEMR                   | 17-01-2013 | Lake     | <100           |             |                               |           |                          |
| 2012/2013 AEMR                   | 01-02-2013 | Lake     | <100           |             |                               |           |                          |
| 2012/2013 AEMR                   | 08-03-2013 | Lake     | <100           | 215         |                               |           |                          |
| 2012/2013 AEMR                   | 30-05-2013 | Lake     | <100           | 880         |                               |           |                          |
| 2012/2013 AEMR                   | 30-06-2013 | Lake     | <100           |             |                               |           |                          |
| 2012/2013 AEMR                   | 30-07-2013 | Lake     | <100           | 34000       |                               |           |                          |
| 2012/2013 AEMR                   | 28-08-2013 | Lake     | <100           | 205         |                               |           |                          |
| 2012/2013 AEMR                   | 30-09-2013 | Lake     | <100           | 47400       |                               |           |                          |
| 2012/2013 AEMR                   | 25-10-2013 | Lake     | <100           | 17430       |                               | 490       |                          |
| 2013/2014 AEMR                   | 12-12-2013 | Lake     | 1150           | 39500       |                               | 400       |                          |
| 2013/2014 AEMR                   | 19-12-2013 | Lake     | 1100           | 22000       |                               |           |                          |
| 2013/2014 AEMR                   | 09-01-2014 | Lake     |                | 123000      |                               |           |                          |
| 2013/2014 AEMR                   | 29-01-2014 | Lake     |                | 34000       |                               |           |                          |
| 2013/2014 AEMR                   | 31-03-2014 | Lake     |                |             | 295                           |           |                          |
| 2013/2014 AEMR                   | 28-04-2014 | Lake     | ND             | 7700        | 45                            |           |                          |
| 2013/2014 AEMR<br>2013/2014 AEMR | 29-05-2014 | Lake     | ND             | 52000       |                               |           |                          |
| 2013/2014 AEMR                   | 31-07-2014 | Lake     | ND             | 28000       |                               |           |                          |
| 2013/2014 AEMR                   | 28-10-2014 | Lake     | ND             | 168000      |                               |           |                          |
| Appendix of 2015 AEMR            | 28-11-2014 | Lake     | ND             | 123000      | 260                           | 60        |                          |
| Appendix of 2015 AEMR            | 16-12-2014 | Lake     | ND             | 106500      | 220                           | 35        |                          |
| Appendix of 2015 AEMR            | 22-01-2015 | Lake     | ND             | 37000       |                               |           |                          |
| Appendix of 2015 AEMR            | 26-02-2015 | Lake     | ND<br>ND       | 8750        |                               |           |                          |
| Appendix of 2015 AEMR            | 24-04-2015 | Lake     | ND             | 8000        |                               |           |                          |
| Appendix of 2015 AEMR            | 29-05-2015 | Lake     | ND             | 76000       | 4200                          |           |                          |
| Appendix of 2015 AEMR            | 29-06-2015 | Lake     | ND             | 211000      | 6300                          |           |                          |
| Appendix of 2015 AEMR            | 21-10-2015 | Lake     | ND             | 18330       | 65                            | 35        | 155                      |
| Appendix of 2015 AEMR            | 26-11-2015 | Lake     | ND             | 4850        | 20                            | 5         |                          |
|                                  | 25-01-2016 | Lake     | ND<br>ND       | 34000       | 30                            | 10        |                          |
| 2016 AEMR                        | 08-02-2016 | Lake     | ND             | 0           |                               |           |                          |
| 2016 AEMR                        | 24-02-2016 | Lake     | ND             | 3700        |                               |           |                          |
| 2016 AEMR                        | 10-03-2016 | Lake     | ND             | 1575        |                               |           |                          |
| 2016 AEMR                        | 24-03-2016 | Lake     | ND             | 7600        |                               |           |                          |
| 2016 AEMR                        | 07-04-2016 | Lake     |                | 9700        |                               |           |                          |
| 2016 AEMR<br>2016 AEMR           | 29-04-2016 | Lake     | ND             | 5700        |                               |           |                          |
| 2016 AEMR                        | 30-06-2016 | Lake     | ND             | 28930       |                               | 1         |                          |
| 2016 AEMR                        | 31-08-2016 | Lake     | 840            | 61500       |                               |           |                          |
| 2016 AEMR                        | 30-09-2016 | Lake     | ND             | 920         |                               |           |                          |
| 2016 AEMR                        | 04-10-2016 | Lake     | ND             | 920         |                               |           |                          |
| 2016 AEMR                        | 28-10-2016 | Lake     | ND             | 29000       |                               |           |                          |
| 2017 Q1 Env Mon report           | 30-01-2017 | Lake     | ND             | 1480        |                               |           |                          |
| 2017 Q1 Env Mon report           | 27-02-2017 | Lake     | ND             | 640         |                               |           |                          |
| 2017 Env Monitoring              | 22-03-2017 | Lake     | ND             | 175         |                               |           |                          |
| 2017 Env Monitoring              | 19-04-2017 | Lake     | ND             | 600         |                               |           |                          |
| 2017 Env Monitoring              | 17-05-2017 | Lake     | ND             | 2820        |                               |           |                          |
| 2017 Env Monitoring              | 12-07-2017 | Lake     |                | 5260        |                               | <u> </u>  |                          |
| 2017 Env Monitoring              | 09-08-2017 | Lake     | ND             | 41500       |                               |           |                          |
| 2017 Env Monitorina              | 06-09-2017 | Lake     | ND             | 99800       |                               |           |                          |
| 2017 Env Monitoring              | 04-10-2017 | Lake     | ND             | 128000      |                               | <u> </u>  |                          |
| 2017 Env Monitoring              | 01-11-2017 | Lake     | ND             | 38600       |                               |           |                          |
| 2017 Env Monitoring              | 29-11-2017 | Lake     | ND             | 8150        |                               | ļ         |                          |
| 2017 Env Monitoring              | 28-12-2017 | Lake     | ND             | 1890        | -                             | -         |                          |
|                                  | Number of  | Minimum  | 11             | 57          | 8                             | 6         | 1                        |
|                                  |            | Maximum  |                | 211000      | 6300                          | 5<br>480  | 155                      |
|                                  |            | Average  |                | 31694.6     | 1426.9                        | 104.2     | 155.0                    |

| Data located                     | Date       | Location   | pН    | EC     | DO<br>(membrane<br>electrode) | *Redox<br>Potential | Alkalinity as<br>CaCO3 | Bicarbonate<br>as CaCO3 | Chloride | Total<br>Phosphorus-<br>P | Total-N | Ammonia | Calcium | Magnesium | Sodium | Potassium | Sulfur as<br>Sulfate | Aluminium<br>(Total) | Arsenic<br>(Total) | Iron (Total) | Manganese<br>(Total) |
|----------------------------------|------------|------------|-------|--------|-------------------------------|---------------------|------------------------|-------------------------|----------|---------------------------|---------|---------|---------|-----------|--------|-----------|----------------------|----------------------|--------------------|--------------|----------------------|
|                                  |            |            | рН    | µScm-1 | mg/L                          | mV                  | mg/L                   | mg/L                    | mg/L     | mg/L                      | mg/L    | mg/L    | mg/L    | mg/L      | mg/L   | mg/L      | mg/L                 | mg/L                 | mg/L               | mg/L         | mg/L                 |
| 2011/2012 AEMR                   | Dec-11     | DPL1       |       |        |                               |                     |                        |                         | 13       |                           |         |         | 0.2     | 0.4       | 4      | <5        | 3.5                  |                      | <0.005             | 1.34         | < 0.01               |
| 2011/2012 AEMR                   | Mar-12     | DPL1       |       |        |                               | 10.5                |                        |                         | 17       |                           |         |         | 0.2     | 0.4       | 5.4    | <5        | 4.8                  |                      | <0.005             | 1.32         | <0.01                |
| 2011/2012 AEMR                   | 30-05-2012 | DPL1       | 4.2   | 98     | 3.3                           | 435                 | -1                     | -1                      | 20       |                           |         |         | 0.6     | 0.6       | 44     | -5        | 5.2                  |                      | <0.00F             | 2.40         | <0.01                |
| 2011/2012 AEMR                   | JUN-12     | DPL1       | 4.2   | 105    | 3.8                           | 405                 | \$1                    | <1                      | 20       |                           |         |         | 0.6     | 0.6       | 11     | <5        | 5.3                  |                      | <0.005             | 2.49         | <0.01                |
| 2011/2012 AEMR<br>2011/2012 AEMR | 27-08-2012 | DPL1       | 4.3   | 98     | 21                            | 365                 |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| 2011/2012 AEMR                   | 27-09-2012 | DPL1       | 4.2   | 94     | 2.6                           | 305                 | <1                     | <1                      | 15       |                           |         |         | 0.5     | 0.3       | 8.4    | <5        | 6.7                  |                      | < 0.005            | 3.25         | < 0.01               |
| 2011/2012 AEMR                   | 29-10-2012 | DPL1       | 4.6   | 96     | 5.8                           | 208                 |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| 2012/2013 AEMR                   | Dec-12     | DPL1       |       |        |                               |                     |                        |                         | 36       |                           |         |         | 1       | 0.7       | 6.3    | <5        | 4.9                  |                      | <0.005             | 4.32         | < 0.01               |
| 2012/2013 AEMR                   | Mar-13     | DPL1       |       |        |                               |                     |                        |                         | 12       |                           |         |         | 0.2     | 0.1       | 9.2    | <5        | 7.3                  |                      | <0.005             | 1.68         | < 0.01               |
| 2012/2013 AEMR                   | Jun-13     | DPL1       |       |        |                               |                     |                        |                         | 19       |                           |         |         | 0.1     | <0.1      | 0.1    | <5        | 5.9                  |                      | < 0.005            | 1.5          | < 0.01               |
| 2012/2013 AEMR                   | Sep-13     | DPL1       | 4.9   | 96     | 2.5                           | 01                  | 2                      | 2                       | 16       |                           |         |         | 0.4     | 0.2       | 7.5    | <5        | 6.0                  |                      | <0.005             | 5.82         | <0.01                |
| 2013/2014 AEMR<br>2013/2014 AEMR | 29-01-2014 | DPL1       | 4.0   | 279    | 5.5                           | 264                 | 3                      | 2                       | 20       |                           |         |         | 0.4     | 0.2       | 0.2    | <b>ND</b> | 0.2                  |                      | <0.005             | 3.63         | 0.02                 |
| 2013/2014 AEMR                   | 24-02-2014 | DPL1       | 4.6   | 76     | 3.8                           | 242                 |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| 2013/2014 AEMR                   | 31-03-2014 | DPL1       | 4.9   | 72     | 6.3                           | 136                 | 3                      | 2                       | 15       |                           |         |         | 0.6     | 0.1       | 0.1    | <5        | 3.5                  |                      | < 0.005            | 2.44         | < 0.01               |
| 2013/2014 AEMR                   | 24-04-2014 | DPL1       | 4     | 75     |                               | 204                 |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| 2013/2014 AEMR                   | 28-05-2014 | DPL1       | 4.2   | 95     |                               | 307                 |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| 2013/2014 AEMR                   | 25-06-2014 | DPL1       | 4.1   | 98     | 2                             | 350                 | <1                     | <1                      | 16       |                           |         |         | 0.5     | 0.3       | 9.7    | <5        | 6.4                  |                      | <0.005             | 0.76         | < 0.01               |
| 2013/2014 AEMR                   | 30-07-2014 | DPL1       | 4.1   | 112    | 3.9                           | 174                 | <1                     | <1                      | 19       |                           |         |         | 0.4     | 0.2       | 11     | <5        | 7.7                  | 0.77                 | < 0.005            | 0.62         | < 0.01               |
| 2013/2014 AEMR                   | 29-08-2014 | DPL1       | 4.4   | 97     | 4.3                           | 185                 | NP                     | NP                      | 20       |                           |         |         | 0.2     | <0.1      | 9.6    | <5        | 4.3                  |                      | <0.005             | 3.93         | <0.01                |
| Appendix of 2015 AEMR            | 29-09-2014 | DPL1       | 4     | 81     | 3.5                           | 110                 |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| Appendix of 2015 AEMR            | 15-12-2014 | DPL1       | 4.6   | 94     | 1.5                           | 160                 | NP                     | <1                      | 15       |                           |         |         | 1.6     | 0.4       | 10     | <5        | 6.1                  | 0.32                 | <0.005             | 2.55         | 0.02                 |
| Appendix of 2015 AEMR            | 22-01-2015 | DPL1       | 4.8   | 80     | 3.8                           | 110                 |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| Appendix of 2015 AEMR            | 25-02-2015 | DPL1       | 4.2   | 110    | 1.1                           | 160                 |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| Appendix of 2015 AEMR            | 26-03-2015 | DPL1       | 4     | 109    | 4                             | 245                 | NP                     | NP                      |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| Appendix of 2015 AEMR            | 24-04-2015 | DPL1       | 4.1   | 131    | 2.7                           | 253                 |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| Appendix of 2015 AEMR            | 28-05-2015 | DPL1       | 3.8   | 164    | 2                             | 256                 | ND                     |                         | 10       |                           |         | <0.02   | 0.7     | 0.0       | 10     | -6        | 10                   | 0.64                 | -0.001             | 0.05         | 0.017                |
| Appendix of 2015 AEMR            | 17-09-2015 | DPL1       | 4.1   | 135    | 3.9                           | 195                 | NP                     |                         | 18       |                           |         | <0.02   | 0.7     | 0.8       | 12     | <5        | 10                   | 0.64                 | <0.001             | 0.95         | 0.017                |
| Appendix of 2015 AEMR            | 25-11-2015 | DPL1       | 4.3   | 102    | 6.1                           | 170                 |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| Appendix of 2015 AEMR            | 11-12-2015 | DPL1       | 4.6   | 86     | 2.4                           | 232                 | 1                      | 1                       | 14       |                           |         |         | 0.3     | 0.2       | 11     | <5        | 10                   | 0.32                 | < 0.001            | 3.21         | 0.009                |
| Appendix of 2016 AEMR            | 25-01-2016 | DPL1       | 4.7   | 95     | 1.6                           | 165                 |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| Appendix of 2016 AEMR            | 24-02-2016 | DPL1       | 4.8   | 98     | 5.7                           | 138                 |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| Appendix of 2016 AEMR            | 24-03-2016 | DPL1       | 4.6   | 104    | 3.8                           | 268                 | 2                      | 2                       | 17       |                           |         |         | 0.37    | 0.23      | 10.21  | <5        | 9.403                | 0.727                | 0.001              | 4.224        | 0.007                |
| Appendix of 2016 AEMR            | 29-04-2016 | DPL1       | 4.3   | 96     | 6.4                           | 388                 |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| Appendix of 2016 AEMR            | 24-05-2016 | DPL1       | 4.2   | 106    | 2.7                           | 255                 |                        |                         |          |                           |         |         | 2 502   | 0.252     | 10 561 | -5        | 0.626                | 0.471                | 0.001              | 2 500        | 0.14                 |
| Appendix of 2016 AEMR            | 21-07-2016 | DPL1       | 3.9   | 142.2  | 6.8                           | 384                 |                        |                         |          |                           |         |         | 3.303   | 0.555     | 10.301 | ~5        | 9.030                | 0.471                | 0.001              | 2.500        | 0.14                 |
| Appendix of 2016 AEMR            | 31-08-2016 | DPL1       | 4     | 140    | 6.5                           | 321                 |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| Appendix of 2016 AEMR            | 29-09-2016 | DPL1       | 3.9   | 151    | 2.5                           | 366                 |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| Appendix of 2016 AEMR            | 27-10-2016 | DPL1       | 4     | 151    | 2.5                           | 366                 |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| Appendix of 2016 AEMR            | 29-11-2016 | DPL1       | 4.7   | 116    | 1.9                           | 108                 |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| Appendix of 2016 AEMR            | 20-12-2016 | DPL1       | 4.7   | 131    | 5.2                           | 307.1               |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| Q1 2017 Env mon report           | 30-01-2017 | DPL1       | 4.2   | 121    |                               |                     |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| 2017 Env Monitoring              | 22-03-2017 | DPL1       | 4.0   | 105    |                               |                     | <5                     |                         | 18       | 0.09                      | 11      | 0.056   |         | <0.5      | 12     | 1         | 12                   | 0.48                 | <0.001             | 4.8          | 0.018                |
| 2017 Env Monitoring              | 19-04-2017 | DPL1       | 4.4   | 180    |                               |                     | ~5                     |                         | 10       | 0.05                      | 1.1     | 0.050   |         | ~0.5      | 12     | 1         | 12                   | 0.40                 | ~0.001             | 4.0          | 0.010                |
| 2017 Env Monitoring              | 17-05-2017 | DPL1       | 4.4   | 135    |                               |                     |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| 2017 Env Monitoring              | 14-06-2017 | DPL1       | 4.3   | 197    |                               |                     | <5                     |                         | 22       | < 0.05                    | 0.5     | 0.039   |         | 1         | 14     | 1         | 39                   | 1.6                  | <0.001             | 13           | 0.039                |
| 2017 Env Monitoring              | 12-07-2017 | DPL1       | 4.1   | 137    |                               |                     |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| 2017 Env Monitoring              | 09-08-2017 | DPL1       | 4.3   | 123    |                               |                     |                        |                         |          |                           |         |         |         |           |        |           |                      |                      |                    |              |                      |
| 2017 Env Monitoring              | 06-09-2017 | DPL1       | 4     | 124    |                               |                     | <5                     |                         | 18       | < 0.05                    | 1.2     | 0.031   |         | <0.5      | 11     | 1         | 10                   | 0.73                 | <0.001             | 3.4          | 0.017                |
| 2017 Env Monitoring              | 04-10-2017 | DPL1       | 4.3   | 123    |                               |                     |                        | +                       |          | l                         |         |         |         | 1         |        | 1         |                      | 1                    |                    |              |                      |
| 2017 Env Monitoring              | 29-11-2017 | DPL1       | 4.4   | 121    | 1                             | 1                   | 1                      |                         |          |                           |         | 1       |         |           |        | 1         |                      | 1                    |                    | 1            |                      |
| 2017 Env Monitoring              | 28-12-2017 | DPL1       | 4.5   | 130    | 1                             |                     | <5                     |                         | 21       | < 0.05                    | 0.4     | 0.071   |         | 0.6       | 12     | 2.1       | 44                   | 0.53                 | < 0.001            | 5            | 0.02                 |
|                                  | No         | of Samples | 52    | 52     | 37                            | 39                  |                        |                         | 21       |                           | 4       |         | 18      |           | 22     | 4         | 21                   | 10                   |                    | 22           | 10                   |
|                                  |            | Minimum    | 3.8   | 72     | 1.1                           | 91                  |                        |                         | 12       |                           | 0.4     |         | 0.1     |           | 0.1    | 1         | 3.5                  | 0.32                 |                    | 0.62         | 0.007                |
|                                  |            | Maximum    | 1 4.9 | 279    | 6.8                           | 435                 |                        |                         | 36       |                           | 1.2     |         | 3.503   |           | 14     | 2.1       | 44                   | 1.6                  |                    | 13           | 0.14                 |
|                                  |            | Average    | 4.33  | 116.43 | 3.75                          | 248.18              |                        |                         | 18.14    |                           | 0.80    |         | 0.65    |           | 8.42   | 1.28      | 10.32                | 0.66                 |                    | 3.32         | 0.03                 |

| 2011/2012 AEMR         | Dec-11     | DPL3         |      |           |       |        |        |       | 2300     |        |     |       | 72    | 119    | 842     | 72    | 136     |        | < 0.005 | 0.74  | 0.53  |
|------------------------|------------|--------------|------|-----------|-------|--------|--------|-------|----------|--------|-----|-------|-------|--------|---------|-------|---------|--------|---------|-------|-------|
| 2011/2012 AEMR         | Mar-12     | DPL3         |      |           |       |        |        |       | 2400     |        |     |       | 66    | 109    | 1081    | <5    | 126     |        | < 0.005 | 1.25  | 0.51  |
| 2011/2012 AEMR         | 30-05-2012 | DPL3         | 6.6  | 7074      | 2.3   | 317    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| 2011/2012 AEMR         | Jun-12     | DPL3         | 6.7  | 7057      | 6.6   | 315    | 150    | 94    | 2220     |        |     |       | 70    | 112    | 1119    | 48    | 143     |        | < 0.005 | 1.94  | 0.53  |
| 2011/2012 AEMR         | 26-07-2012 | DPL3         | 6.6  | 7093      | 3.6   | 284    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| 2011/2012 AEMR         | 27-08-2012 | DPL3         | 6.7  | 7343      | 1.8   | 193    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| 2011/2012 AEMR         | 27-09-2012 | DPL3         | 6.4  | 7130      | 2.4   | 249    | 120    | 75    | 2280     |        |     |       | 63    | 100    | 1060    | 50    | 147     |        | < 0.005 | 2.11  | 0.51  |
| 2011/2012 AEMR         | 29-10-2012 | DPL3         | 6.3  | 7177      | 4.8   | 146    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| 2012/2013 AEMR         | Dec-12     | DPL3         |      |           |       |        |        |       | 2270     |        |     |       | 68    | 103    | 946     | 61    | 132     |        | < 0.005 | 2.46  | 0.52  |
| 2012/2013 AEMR         | Mar-13     | DPL3         |      |           |       |        |        |       | 2280     |        |     |       | 74    | 115    | 1296    | 48    | 149     |        | < 0.005 | 1.78  | 0.58  |
| 2012/2013 AEMR         | Jun-13     | DPL3         |      |           |       |        |        |       | 2310     |        |     |       | 66    | 105    | 66      | 44    | 169     |        | < 0.005 | 1.63  | 0.52  |
| 2012/2013 AEMR         | Sep-13     | DPL3         |      |           |       |        |        |       | 2280     |        |     |       | 60    | 93     | 1003    | 38    |         |        | < 0.005 | 3.05  | 0.52  |
| 2013/2014 AEMR         | 12-12-2013 | DPL3         | 6.2  | 7140      | 2.4   | 116    | 120    | 73    | 2340     |        |     |       | 66    | 104    | 104     | 43    | 168     |        | < 0.005 | 3.16  | 0.57  |
| 2013/2014 AEMR         | 29-01-2014 | DPL3         | 6.3  | 6964      | 4.4   | 201    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| 2013/2014 AEMR         | 24-02-2014 | DPL3         | 6.3  | 6677      | 3.6   | 245    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| 2013/2014 AEMR         | 31-03-2014 | DPL3         | 6.4  | 7234      | 4.2   | 118    | 120    | 74    | 120      |        |     |       | 63    | 109    | 109     | 43    | 175     |        | < 0.005 | 2.86  | 0.56  |
| 2013/2014 AEMR         | 24-04-2014 | DPL3         | 6.5  | 7448      |       | 136    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| 2013/2014 AFMR         | 28-05-2014 | DPI 3        | 6.6  | 7484      |       | 318    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| 2013/2014 AEMR         | 25-06-2014 | DPL3         | 6.6  | 7370      | 5.9   | 260    | 110    | 70    | 2290     |        |     |       | 82    | 125    | 1320    | 44    | 180     |        | < 0.005 | 6.47  | 0.93  |
| 2013/2014 AEMR         | 30-07-2014 | DPL3         | 6.6  | 7431      | 4.9   | 122    | 110    | 66    | 2420     |        |     |       | 74    | 114    | 1200    | 46    | 177     | 0.03   | < 0.005 | 3.97  | 0.58  |
| 2013/2014 AEMR         | 29-08-2014 | DPL3         | 6.5  | 7643      | 3.9   | 184    | 110    | 68    | 2370     |        |     |       | 71    | 110    | 1140    | 43    | 168     |        | < 0.005 | 4.22  | 0.56  |
| 2013/2014 AEMR         | 29-09-2014 | DPL3         | 6.1  | 7558      | 3     | 188    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| Appendix of 2015 AEMR  | 28-11-2014 | DPL3         | 6.1  | 7491      | 4.2   | 100    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| Appendix of 2015 AEMR  | 15-12-2014 | DPL3         | 6.2  | 7280      | 2.6   | 130    | 130    | 77    | 2370     |        |     |       | 82    | 118    | 1240    | 48    | 146     | 0.04   | < 0.005 | 3.53  | 0.59  |
| Appendix of 2015 AEMR  | 22-01-2015 | DPL3         | 6.1  | 7473      | 2.2   | 136    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| Appendix of 2015 AEMR  | 25-02-2015 | DPL3         | 6.4  | 7478      | 3.2   | 150    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| Appendix of 2015 AEMR  | 26-03-2015 | DPL3         | 6.1  | 7542      | 2.9   | 195    | 130    | 128   |          |        |     |       |       |        |         |       |         |        |         |       |       |
| Appendix of 2015 AEMR  | 24-04-2015 | DPL3         | 6.6  | 7540      | 4.8   | 246    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| Appendix of 2015 AEMR  | 28-05-2015 | DPL3         | 6.5  | 7483      | 5.2   | 182    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| Appendix of 2015 AEMR  | 17-09-2015 | DPL3         | 6.4  | 7422      | 3.7   | 150    | 120    |       | 2380     |        |     | 0.04  | 68    | 102    | 1220    | 41    | 152     | 0.22   | < 0.001 | 3.09  | 0.641 |
| Appendix of 2015 AEMR  | 21-10-2015 | DPL3         | 6.2  | 7310      | 2.4   | 157    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| Appendix of 2015 AEMR  | 25-11-2015 | DPL3         | 6.2  | 7562      | 6.9   | 205    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| Appendix of 2015 AEMR  | 11-12-2015 | DPL3         | 6.3  | 7321      | 2.6   | 182    | 120    | 120   | 2370     |        |     |       | 68    | 108    | 1220    | 40    | 181     | 0.13   | 0.001   | 2.99  | 6.23  |
| Appendix of 2016 AEMR  | 25-01-2016 | DPL3         | 6.1  | 7395      | 2.8   | 147    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| Appendix of 2016 AEMR  | 24-02-2016 | DPL3         | 6.2  | 7372      | 5.7   | 58     |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| Appendix of 2016 AEMR  | 24-03-2016 | DPL3         | 6.4  | 7406      | 3.5   | 155    | 123    | 123   | 2650     |        |     |       | 78.03 | 117.11 | 1284.98 | 44.19 | 176.114 | 0.07   | 0.001   | 2,183 | 0.625 |
| Appendix of 2016 AEMR  | 29-04-2016 | DPL3         | 6.4  | 7417      | 6.4   | 196    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| Appendix of 2016 AEMR  | 24-05-2016 | DPL3         | 6.5  | 7394      | 5.4   | 180    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| Appendix of 2016 AEMR  | 30-06-2016 | DPL3         | 6.6  | 7250.2    | 6.4   | 180    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| Appendix of 2016 AEMR  | 21-07-2016 | DPL3         | 6.5  | 6868.2    | 6.6   | 262    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| Appendix of 2016 AEMR  | 31-08-2016 | DPL3         | 6.5  | 7281      | 5.8   | 170    | 121    |       | 2650     |        |     |       | 78    | 121    | 1350    | 46    | 170     |        | 0.001   | 3.33  | 0.541 |
| Appendix of 2016 AEMR  | 29-09-2016 | DPL3         | 6.1  | 7313      | 2.5   | 221    |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| Appendix of 2016 AEMR  | 27-10-2016 | DPL3         | 6.1  | 7313      | 399   | 1738   |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| Appendix of 2016 AEMR  | 29-11-2016 | DPL3         | 6.1  | 7376      | 1.8   | 67     |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| Appendix of 2016 AEMR  | 20-12-2016 | DPL3         | 6    | 7673      | 4     | 315.9  | 121    |       | 2700     |        |     |       | 75    | 114    | 1.28    | 43    | 182     |        | 0.001   | 2.4   | 0.541 |
| Q1 2017 Env mon report | 30-01-2017 | DPL3         | 6.1  | 7119      |       |        |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| Q1 2017 Env mon report | 27-02-2017 | DPL3         | 6.1  | 7013      |       |        |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| 2017 Env Monitoring    | 22-03-2017 | DPL3         | 5.9  | 7570      |       |        | 130    |       | 2300     | 0.1    | 4.1 | 2.9   |       | 130    | 1500    | 54    | 230     | 0.04   | < 0.001 | 15    | 0.67  |
| 2017 Env Monitoring    | 19-04-2017 | DPL3         | 5.9  | 7660      |       |        |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| 2017 Env Monitoring    | 17-05-2017 | DPL3         | 5.9  | 7410      |       |        |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| 2017 Env Monitoring    | 14-06-2017 | DPL3         |      |           |       |        |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| 2017 Env Monitoring    | 12-07-2017 | DPL3         | 6.2  | 7060      |       |        |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| 2017 Env Monitoring    | 09-08-2017 | DPL3         | 6.2  | 7490      |       |        |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| 2017 Env Monitoring    | 06-09-2017 | DPL3         | 6.1  | 7490      |       |        | 140    |       | 2000     | < 0.05 | 3   | 2     |       | 120    | 1600    | 55    | 140     | 0.04   | < 0.001 | 2.8   | 0.6   |
| 2017 Env Monitoring    | 04-10-2017 | DPL3         | 6    | 7530      |       |        |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| 2017 Env Monitoring    | 01-11-2017 | DPL3         | 5.9  | 7970      |       |        |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| 2017 Env Monitoring    | 29-11-2017 | DPL3         | 5.9  | 7680      |       |        |        |       |          |        |     |       |       |        |         |       |         |        |         |       |       |
| 2017 Env Monitoring    | 28-12-2017 | DPL3         | 6    | 7570      |       |        | 130    |       | 2400     | 0.05   | 3.8 | 2.8   |       | 130    | 1700    | 53    | 190     | 0.09   | < 0.001 | 13    | 0.62  |
|                        | No of S    | amples       | 51   | 51        | 37    | 39     | 17     | 11    | 22       |        | 3   | 4     | 19    | 22     | 22      |       | 21      | 8      |         | 22    | 22    |
|                        | м          | inimum       | 5.9  | 6677      | 1.8   | 58     | 110    | 66    | 120      | i      | 3   | 0.04  | 60    | 93     | 1.28    |       | 126     | 0.03   |         | 0.74  | 0.51  |
|                        | M          | vimum        | 6.7  | 7970      | 399   | 1738   | 150    | 128   | 2700     |        | 41  | 2.04  | 82    | 130    | 1700    |       | 230     | 0.03   | 1       | 15    | 6.23  |
|                        | IVIa<br>/  | Voraco       | 6.20 | 7259 74   | 14 71 | 229 50 | 122 92 | 99.00 | 2250.00  |        | 7.1 | 1.9   | 70.74 | 112.64 | 1019.29 |       | 162.67  | 0.22   |         | 2 02  | 0.23  |
|                        |            | a v tit ould | n /0 | (.) 77 (1 | 14/1  | //0.01 | 1/3 0/ |       | // 21 11 |        |     | 1 744 | /11/4 | 11/ 04 | 1010 /0 |       | 10.0 0/ | 11 110 |         |       | 11 04 |

| 2011/2012 AEMR         | Dec-11 DF     | PL5   |      |        |      |        |    |    |        |        |      |       |      |       |       |            |        |       |         |       | 1       |
|------------------------|---------------|-------|------|--------|------|--------|----|----|--------|--------|------|-------|------|-------|-------|------------|--------|-------|---------|-------|---------|
| 2011/2012 AEMR         | Mar-12 DF     | PL5   |      |        |      |        |    |    | 14     |        |      |       | 0.5  | 1     | 9.1   | <5         | 5.9    |       | < 0.005 | 2.51  | < 0.01  |
| 2011/2012 AEMR         | 30-05-2012 DF | PL5   | 4.7  | 92     | 4.6  | 386    |    |    |        |        |      |       |      |       |       |            |        |       |         |       | 1       |
| 2011/2012 AFMR         | Jun-12 DF     | PI 5  | 4.8  | 81     | 6.6  | 347    | 2  | 1  | 17     |        |      |       | 0.6  | 1.3   | 9.2   | <5         | 4.3    |       | <0.005  | 1.01  | < 0.01  |
| 2011/2012 AFMR         | 26-07-2012 DF | PI 5  | 4.7  | 92     | 3.7  | 313    | _  |    |        |        |      |       |      |       |       | -          |        |       |         |       |         |
| 2011/2012 AEMR         | 27-08-2012 DF | PL5   | 4.6  | 103    | 34   | 292    |    |    |        |        |      |       |      |       |       |            |        |       |         |       | (       |
| 2011/2012 AEMP         | 27-09-2012 DE | PI 5  | 4.5  | 102    | 2.6  | 266    | <1 | <1 | 19     |        |      |       | 0.7  | 14    | 10    | <5         | 8.5    |       | <0.005  | 0.89  | <0.01   |
| 2011/2012 AEMP         | 20 10 2012 DF | DIS   | 4.4  | 102    | 2.0  | 288    |    |    | 10     |        |      |       | 0.1  |       | 10    |            | 0.0    |       | -0.000  | 0.00  | -0.01   |
| 2012/2012 AEMP         | Doc 12 DF     | DIS   | 1.1  | 100    | L.L  | 200    |    |    | 18     |        |      |       | 0.6  | 12    | 5.9   | <5         | 3.5    |       | <0.005  | 2.16  | <0.01   |
| 2012/2013 AEMR         | Mer 12 Dr     | PL5   |      |        |      |        |    |    | 10     |        |      |       | 0.0  | 1.2   | 0.0   | -5         | 0.0    |       | <0.005  | 2.10  | <0.01   |
| 2012/2013 AEMR         | Ividi=13 Dr   | PL5   |      |        |      |        |    |    | 20     |        |      |       | 0.5  | 1.0   | 0.2   | ~5         | 4      |       | <0.005  | 0.09  | <0.01   |
| 2012/2013 AEMR         | Juli-13 DF    | PLS   |      |        |      |        |    |    | 30     |        |      |       | 0.7  | 1.9   | 0.7   | 5          | 0.2    |       | ×0.005  | 0.31  | NU.U1   |
| 2012/2013 AEMR         | Sep-13 DF     | PL5   |      |        |      | 100    |    |    | 640    |        |      |       | 13   | 40    | 243   | 9          |        |       | <0.005  | 15    | 0.14    |
| 2013/2014 AEMR         | 12-12-2013 DF | PL5   | 4.8  | 334    | 2.3  | 106    | 3  | 2  | 89     |        |      |       | 2.3  | 7.2   | 1.2   | <5         | 15     |       | <0.005  | 4.81  | 0.04    |
| 2013/2014 AEMR         | 29-01-2014 DF | PL5   | 4.9  | 314    | 4.2  | 161    |    |    |        |        |      |       |      |       |       |            |        |       |         |       | +       |
| 2013/2014 AEMR         | 24-02-2014 DF | PL5   | 4.1  | 337    | 4.1  | 255    |    |    |        |        |      |       |      |       |       | -          |        |       |         |       | I       |
| 2013/2014 AEMR         | 31-03-2014 DF | PL5   | 5    | 359    | 3.3  | 107    | 2  | 1  | 110    |        |      |       | 2.4  | 6.3   | 6.3   | <5         | 12     |       | <0.005  | 3.52  | <0.01   |
| 2013/2014 AEMR         | 24-04-2014 DF | PL5   | 4.7  | 110    |      | 84     |    |    |        |        |      |       |      |       |       |            |        |       |         |       | 1       |
| 2013/2014 AEMR         | 28-05-2014 DF | PL5   | 4    | 239    |      | 313    |    |    |        |        |      |       |      |       |       |            |        |       |         |       | 1       |
| 2013/2014 AEMR         | 25-06-2014 DF | PL5   | 3.6  | 566    | 2.1  | 375    | <1 | <1 | 140    |        |      |       | 4.2  | 9.9   | 64    | <5         | 9.8    |       | <0.005  | 1.73  | 0.05    |
| 2013/2014 AEMR         | 30-07-2014 DF | PL5   | 3.7  | 639    | 4.6  | 238    | <1 | <1 | 140    |        |      |       | 13   | 11    | 69    | <5         | 47     | 3.96  | < 0.005 | 2     | 0.11    |
| 2013/2014 AEMR         | 29-08-2014 DF | PL5   | 3.9  | 678    | 2.7  | 215    | NP | NP | 170    |        |      |       | 4.9  | 12    | 75    | <5         | 16     |       | < 0.005 | 11    | 0.03    |
| 2013/2014 AEMR         | 29-09-2014 DF | PL5   | 3.8  | 942    | 1.8  | 247    |    |    | 1      |        |      |       |      |       |       |            |        |       |         |       |         |
| Appendix of 2015 AEMR  | 28-11-2014 DF | PL5   | 4.9  | 706    | 2.7  | 105    |    |    |        |        |      |       |      |       |       |            |        |       |         |       | í l     |
| Appendix of 2015 AEMR  | 15-12-2014 DF | PL5   | 5.2  | 801    | 2    | 115    | 5  | 3  | 220    |        |      |       | 6.2  | 15    | 110   | <5         | 11     | 0.3   | < 0.005 | 14    | 0.08    |
| Appendix of 2015 AEMR  | 22-01-2015 DF | PL5   | 5    | 811    | 3.8  | 160    |    |    |        |        |      |       |      |       |       |            |        |       |         |       |         |
| Appendix of 2015 AEMR  | 25-02-2015 DF | PI 5  | 4    | 433    | 6.2  | 178    |    |    |        |        |      |       |      |       |       |            |        |       |         |       | 1       |
| Appendix of 2015 AFMR  | 26-03-2015 DF | PI 5  | 4.8  | 1066   | 3.9  | 144    | 2  | 2  |        |        |      |       |      |       |       |            |        |       |         |       |         |
| Appendix of 2015 AEMR  | 24-04-2015 DF | PI 5  | 3.7  | 963    | 4.8  | 257    | _  |    |        |        |      |       |      |       |       |            |        |       |         |       | [       |
| Appendix of 2015 AEMR  | 28-05-2015 DF | PL5   | 3.8  | 611    | 2.5  | 325    |    |    |        |        |      |       |      |       |       |            |        |       |         |       |         |
| Appendix of 2015 AEMR  | 17-09-2015 DF | PI 5  | 3.9  | 844    | 2.0  | 205    | NP |    | 220    |        |      | 0.18  | 5.5  | 9.6   | 113   | <5         | 23     | 0.67  | <0.001  | 14    | 0.055   |
| Appendix of 2015 AEMP  | 21 10 2015 DF | DIS   | 4.3  | 676    | 5.4  | 189    |    |    | LLO    |        |      | 0.10  | 0.0  | 0.0   | 110   |            | 20     | 0.01  | -0.001  |       | 0.000   |
| Appendix of 2015 AEMP  | 25 11 2015 DF | DIS   | 5.2  | 300    | 6    | 135    |    |    |        |        |      |       |      |       |       |            |        |       |         |       |         |
| Appendix of 2015 AEMR  | 11 12 2015 DF | PLS   | 5.4  | 310    | 23   | 151    | 7  | 7  | 80     |        |      |       | 22   | 3.0   | 41    | <5         | 12     | 0.13  | <0.001  | 7 21  | 0.027   |
| Appendix of 2016 AEMR  | 25.01.2016 DF | PLS   | 5.4  | 276    | 2.0  | 112    | '  | ,  | 00     |        |      |       | 2.2  | 0.0   | 1     | -0         | 12     | 0.10  | -0.001  | 1.21  | 0.021   |
| Appendix of 2016 AEMD  | 23-01-2010 DF | PL5   | 5.0  | 370    | 3.1  | 76     |    |    |        |        |      |       |      |       |       |            |        |       |         |       |         |
| Appendix of 2016 AEMR  | 24-02-2016 DF | PL3   | 5.0  | 335    | 2.9  | 100    | 6  | 6  | 110    |        |      |       | 2.00 | 2.00  | 42.05 | -5         | 10.070 | 0.149 | <0.001  | 4 507 | 0.000   |
| Appendix of 2016 AEMR  | 24-03-2016 DF | PLS   | 5.3  | 412    | 2.4  | 100    | 0  | 0  | 112    |        |      |       | 2.99 | 3.00  | 42.05 | <b>N</b> 3 | 13.372 | 0.140 | NU.001  | 4.597 | 0.022   |
| Appendix of 2016 AEMR  | 29-04-2016 DF | PL5   | 4.6  | 285    | 6.2  | 259    |    |    |        |        |      |       |      |       |       |            |        |       |         |       |         |
| Appendix of 2016 AEMR  | 24-05-2016 DF | PL5   | 4.5  | 300    | 4.7  | 195    |    |    |        |        |      |       |      |       |       |            |        |       |         |       |         |
| Appendix of 2016 AEMR  | 30-06-2016 DF | PL5   | 4.3  | 385.7  | 2.9  | 2/1    |    |    |        |        |      |       |      |       |       |            |        |       |         |       | +       |
| Appendix of 2016 AEMR  | 21-07-2016 DF | PL5   | 4.4  | 321.5  | 5.2  | 297    |    |    |        |        |      |       |      |       |       | -          |        |       |         |       |         |
| Appendix of 2016 AEMR  | 31-08-2016 DF | PL5   | 4.4  | 348    | 4.4  | 230    | <1 |    | 89     |        |      |       | 2.2  | 2.8   | 57    | <5         | 28     |       | 0.001   | 11.2  | 0.012   |
| Appendix of 2016 AEMR  | 29-09-2016 DF | PL5   | 4.4  | 399    | 2.5  | 285    |    |    |        |        |      |       |      |       |       |            |        |       |         |       | +       |
| Appendix of 2016 AEMR  | 27-10-2016 DF | PL5   | 4.4  | 399    | 2.5  | 285    |    |    |        |        |      |       |      |       |       |            |        |       |         |       | +       |
| Appendix of 2016 AEMR  | 29-11-2016 DF | PL5   | 5.4  | 5.4    | 1.6  | /4     | _  |    |        |        |      |       |      |       |       | _          |        |       |         |       | I       |
| Appendix of 2016 AEMR  | 20-12-2016 DF | PL5   | 5.2  | 298    | 3.3  | 244.5  | 5  | 1  | 50     |        |      |       | 2.3  | 2.8   | 47    | <5         | 21     |       | 0.001   | 4.55  | 0.012   |
| Q1 2017 Env mon report | 30-01-2017 DF | PL5   | 5.2  | 260    |      |        | l  | 1  | 1      |        |      |       |      |       |       |            |        | l     |         |       | +       |
| Q1 2017 Env mon report | 27-02-2017 DF | PL5   | 5.5  | 244    |      |        |    |    |        |        |      |       |      |       |       |            |        |       |         |       | ł       |
| 2017 Env Monitoring    | 22-03-2017 DF | PL5   | 5.1  | 300    |      |        | <5 | 1  | 63     | 0.1    | 1    | 0.1   |      | 2     | 55    | 1          | 22     | 0.2   | <0.001  | 1.5   | 0.009   |
| 2017 Env Monitoring    | 19-04-2017 DF | PL5   | 5.1  | 203    |      |        |    | 1  |        |        |      |       |      |       |       |            |        |       |         |       | ı       |
| 2017 Env Monitoring    | 17-05-2017 DF | PL5   | 5.1  | 226    |      |        |    |    |        |        |      |       |      |       |       |            |        |       |         |       | L       |
| 2017 Env Monitoring    | 14-06-2017 DF | PL5   |      |        |      |        |    |    | 1      |        |      |       |      |       |       |            |        |       |         |       |         |
| 2017 Env Monitoring    | 12-07-2017 DF | PL5   | 5.2  | 189    |      |        |    |    |        |        |      |       |      |       |       |            |        |       |         |       | í       |
| 2017 Env Monitoring    | 09-08-2017 DF | PL5   | 5.1  | 200    |      |        |    |    |        |        |      |       |      |       |       |            |        |       |         |       | í       |
| 2017 Env Monitoring    | 06-09-2017 DF | PL5   | 5.2  | 179    |      |        | 8  |    | 26     | < 0.05 | 1.3  | 0.055 |      | < 0.5 | 35    | 0.7        | 18     | 0.54  | < 0.001 | 0.23  | < 0.005 |
| 2017 Env Monitoring    | 04-10-2017 DF | PL5   | 5.3  | 188    |      |        |    |    |        |        |      |       |      |       |       |            |        |       |         |       | í .     |
| 2017 Env Monitoring    | 01-11-2017 DF | PL5   | 5.3  | 197    |      |        |    |    | 1      |        |      |       |      |       |       |            |        |       |         |       | í l     |
| 2017 Env Monitoring    | 29-11-2017 DF | PI 5  | 5    | 480    |      | İ      | İ  | İ  | 1      |        |      |       |      |       |       | İ          | İ      |       |         |       | 1       |
| 2017 Env Monitoring    | 28-12-2017 DF | PI 5  | 4.5  | 2200   |      | İ      | <5 | İ  | 640    | < 0.05 | 0.6  | 0.24  |      | 41    | 450   | 6.8        | 79     | 2.4   | < 0.001 | 7.2   | 0.11    |
| Lott Litt Montoling    | No of San     | mnles | E1   | E1     | 27   | 20     |    | 1  | 21     |        | 2    | 4     | 19   |       | 24    |            | 20     |       |         | 24    |         |
|                        | 110 01 341    |       | 01   | 01     | 31   | 39     |    |    | 21     |        | 3    | 4     | 10   |       | 21    |            | 20     | 0     |         | 41    |         |
|                        | Mini          | imum  | 3.6  | 5.4    | 1.6  | 74     |    |    | 12     |        | 0.6  | 0.055 | 0.5  |       | 0.7   |            | 3.5    | 0.13  |         | 0.09  | 1       |
|                        | Maxi          | imum  | 5.6  | 2200   | 6.6  | 386    |    |    | 640    |        | 1.3  | 0.24  | 13   |       | 450   |            | 79     | 3.96  |         | 15    |         |
|                        | Δνε           | orano | 4 74 | 420.25 | 2 56 | 217 24 |    |    | 129.05 |        | 0.97 | 0.14  | 2 60 |       | 69.44 |            | 19.09  | 1.04  |         | 4 62  | 1       |

| 2011/2012 AEMR         | Dec-11     | DPL6    |            |         |      |        |    |     | 14  |        |      |      | 2.7   | 3.6   | 4.9   | <5         | 37       |        | < 0.005       | 9.48   | 0.02 |
|------------------------|------------|---------|------------|---------|------|--------|----|-----|-----|--------|------|------|-------|-------|-------|------------|----------|--------|---------------|--------|------|
| 2011/2012 AEMR         | Mar-12     | DPL6    |            |         |      |        |    |     | 14  |        |      |      | 3.3   | 4.5   | 8.4   | <5         | 42       |        | < 0.005       | 17     | 0.02 |
| 2011/2012 AEMR         | 30-05-2012 | DPL6    | 3.8        | 302     | 1    | 464    |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| 2011/2012 AEMR         | Jun-12     | DPL6    | 4          | 324     | 2.8  | 345    | <1 | <1  | 14  |        |      |      | 7.3   | 12    | 10    | <5         | 104      |        | < 0.005       | 17     | 0.11 |
| 2011/2012 AEMR         | 26-07-2012 | DPL6    | 4.6        | 331     | 3.3  | 14     |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| 2011/2012 AEMR         | 27-08-2012 | DPL6    | 4.4        | 419     | 2    | 84     |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| 2011/2012 AEMR         | 27-09-2012 | DPI 6   | 4.3        | 363     | 2.2  | 279    | <1 | <1  | 15  |        |      |      | 11    | 14    | 12    | <5         | 130      |        | <0.005        | 24     | 0.16 |
| 2011/2012 AEMR         | 29-10-2012 | DPI 6   | 4.4        | 425     | 4.9  | 127    |    |     |     |        |      |      |       |       |       | -          |          |        |               |        |      |
| 2012/2013 AEMR         | Dec-12     | DPL6    |            |         |      |        |    |     | 15  |        |      |      | 47    | 47    | 13    | <5         | 63       |        | <0.005        | 15     | 0.07 |
| 2012/2013 AEMR         | Mar-13     | DPL6    |            |         |      |        |    |     | 14  |        |      |      | 3.6   | 2.5   | 11    | <5         | 34       |        | <0.005        | 20     | 0.07 |
| 2012/2013 AEMR         | lun-13     | DPL6    |            |         |      |        |    |     | 14  |        |      |      | 3.1   | 2.0   | 3.1   | <5         | 40       |        | <0.005        | 15     | 0.04 |
| 2012/2013 AEMR         | Sen-13     | DPL6    |            |         |      |        |    |     | 16  |        |      |      | 2.4   | 1.6   | 11    | <5         | 40       |        | <0.005        | 10     | 0.04 |
| 2012/2014 AEMP         | 12 12 2012 | DPL6    | 5.2        | 162     | 4.4  | 42     | 10 | 6   | 20  |        |      |      | 4.5   | 1.0   | 1.5   | <5         | 20       |        | <0.005        | 10     | 0.04 |
| 2013/2014 AEMR         | 20.01.2014 | DPL6    | J.2<br>4.2 | 210     | 5.2  | 92     | 10 | 0   | 20  |        |      |      | 4.5   | 1.5   | 1.5   | ~5         | 30       |        | ~0.005        | 10     | 0.00 |
| 2013/2014 AEMR         | 24.02.2014 | DPL6    | 4.2        | 210     | 3.5  | 205    |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| 2013/2014 AEMR         | 24-02-2014 | DPL6    | 4.2        | 165     | 4.5  | 120    | 2  | 2   | 22  |        |      |      | 5.6   | 1.0   | 1.0   | <5         | 24       |        | <0.005        | 10.5   | 0.06 |
| 2013/2014 AEMR         | 31=03=2014 | DPLC    | 4.0        | 105     | 2.5  | 160    | J  | 2   | 22  |        |      |      | 5.0   | 1.0   | 1.0   | ~5         | 34       |        | ~0.005        | 10.5   | 0.00 |
| 2013/2014 AEMIK        | 24-04-2014 | DFLO    | 20         | 100     |      | 102    |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| 2013/2014 AEMR         | 28-05-2014 | DPL6    | 3.0        | 196     | 6.1  | 343    | -1 | -1  | 17  |        |      |      | 7     | 4.5   | 10    | -5         | 110      |        | <0.005        | 10     | 0.0  |
| 2013/2014 AEMR         | 25-06-2014 | DPL6    | 3.2        | 497     | 0.1  | 440    | ND | ND  | 17  |        |      |      | 1     | 4.5   | 10    | < <u>5</u> | 119      |        | <0.005        | 13     | 0.2  |
| 2013/2014 AEMR         | 29-08-2014 | DPL6    | 4.1        | 1/64    | 4.9  | 191    | NP | NP  | 40  |        |      |      | 45    | 23    | 10    | 9          | 958      |        | <u>∼0.005</u> | 368    | 2.01 |
| 2013/2014 AEMR         | 29-09-2014 | DPL6    | 3.5        | 1099    | <1   | 302    |    | l   |     |        |      |      |       | l     |       |            |          |        |               |        |      |
| Appendix of 2015 AEMR  | 28-11-2014 | DPL6    | 4.5        | 1622    | 2.6  | 90     | ND |     | -0  |        |      |      | 101   | 00    |       | 10         | 700      | 10     | -0.005        | 000    | 4.04 |
| Appendix of 2015 AEMR  | 15-12-2014 | DPL6    | 3.5        | 1/00    | <0.1 | 290    | NP | <1  | <3  |        |      |      | 134   | 26    | 24    | 10         | /68      | 10     | <0.005        | 322    | 1.91 |
| Appendix of 2015 AEMR  | 22-01-2015 | DPL6    | 4.1        | 1216    | 3.4  | 230    |    |     |     | 1      |      |      |       |       |       |            |          |        |               |        |      |
| Appendix of 2015 AEMR  | 25-02-2015 | DPL6    | 3.7        | 951     | 1.6  | 213    |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| Appendix of 2015 AEMR  | 26-03-2015 | DPL6    | 4.2        | 1600    | 5.1  | 177    | NP | NP  |     |        |      |      |       |       |       |            |          |        |               |        |      |
| Appendix of 2015 AEMR  | 24-04-2015 | DPL6    | 4.0        | 1558    | 2.5  | 226    |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| Appendix of 2015 AEMR  | 28-05-2015 | DPL6    | 3.9        | 2153    | 5.3  | 279    |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| Appendix of 2015 AEMR  | 17-09-2015 | DPL6    | 3.8        | 2219    | 2    | 220    | NP |     | 100 |        |      | 1.13 | 22    | 24    | 16    | 9          | 1490     | 147    | < 0.001       | 580    | 3.65 |
| Appendix of 2015 AEMR  | 21-10-2015 | DPL6    | 3.6        | 2189    | 2    | 284    |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| Appendix of 2015 AEMR  | 25-11-2015 | DPL6    | 3.3        | 2264    | 1.7  | 226    |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| Appendix of 2015 AEMR  | 11-12-2015 | DPL6    | 3.4        | 2164    | 0.9  | 342    | <1 | <1  | 40  |        |      |      | 50    | 23    | 18    | 10         | 1520     | 104    | 0.011         | 291    | 3    |
| Appendix of 2016 AEMR  | 25-01-2016 | DPL6    | 4.5        | 2056    | 1.1  | 52     |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| Appendix of 2016 AEMR  | 24-02-2016 | DPL6    | 4.4        | 2056    | 2.3  | 78     |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| Appendix of 2016 AEMR  | 24-03-2016 | DPL6    | 4.1        | 2031    | 1.5  | 183    | <1 | <1  | 23  |        |      |      | 55.48 | 23.88 | 17.76 | 10.27      | 1382.076 | 94.142 | 0.026         | 428    | 3.75 |
| Appendix of 2016 AEMR  | 29-04-2016 | DPL6    | 3.9        | 1997    | 1.9  | 183    |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| Appendix of 2016 AEMR  | 24-05-2016 | DPL6    | 3.8        | 1974    | 2.8  | 199    |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| Appendix of 2016 AEMR  | 30-06-2016 | DPL6    | 4.2        | 1810.2  | 3.3  | 275    |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| Appendix of 2016 AEMR  | 21-07-2016 | DPL6    | 3.5        | 1731.9  | 1.3  | 338    |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| Appendix of 2016 AEMR  | 31-08-2016 | DPL6    | 3.7        | 1783    | 3.8  | 262    | <1 |     | 790 |        |      |      | 24    | 22    | 14    | <5         | 1100     |        | 0.001         | 241    | 1.96 |
| Appendix of 2016 AEMR  | 29-09-2016 | DPL6    | 3.8        | 1738    | 1.9  | 189    |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| Appendix of 2016 AEMR  | 27-10-2016 | DPL6    | 3.8        | 1738    | 1.9  | 189    |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| Appendix of 2016 AEMR  | 29-11-2016 | DPL6    | 3.8        | 3.8     | 2.3  | 182    |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| Appendix of 2016 AEMR  | 20-12-2016 | DPL6    | 3.7        | 1752    | 2.1  | 274.7  | <1 |     | <1  |        |      |      | 21    | 33    | 16    | 9          | 1080     |        | 0.001         | 259    | 1.96 |
| Q1 2017 Env mon report | 30-01-2017 | DPL6    | 3.6        | 1745    |      |        |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| Q1 2017 Env mon report | 27-02-2017 | DPL6    | 3.8        | 1653    |      |        |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| 2017 Env Monitoring    | 22-03-2017 | DPL6    | 3.8        | 1710    |      |        | <5 |     | 17  | 0.3    | 2.5  | 0.54 |       | 21    | 14    | 10         | 1200     | 59     | 0.004         | 370    | 1.9  |
| 2017 Env Monitoring    | 19-04-2017 | DPL6    | 3.9        | 1540    |      |        |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| 2017 Env Monitoring    | 17-05-2017 | DPL6    | 3.8        | 1580    |      |        |    |     |     |        |      |      |       |       |       |            |          |        |               |        |      |
| 2017 Env Monitoring    | 14-06-2017 | DPL6    | 3.7        | 1380    |      |        | <5 |     | 17  | 0.2    | 1.6  | 0.59 |       | 17    | 14    | 11         | 990      | 43     | 0.003         | 300    | 1.4  |
| 2017 Env Monitoring    | 12-07-2017 | DPL6    | 3.9        | 1100    | i    | 1      |    |     | 1   | 1      | 1    |      | i     |       | l     | 1          |          |        |               |        |      |
| 2017 Env Monitoring    | 09-08-2017 | DPL6    | 3.9        | 1050    |      |        |    | i i | i   | 1      |      |      |       |       | İ     | İ          |          |        |               |        |      |
| 2017 Env Monitoring    | 06-09-2017 | DPI 6   | 3.7        | 977     | 1    |        | <5 |     | 16  | < 0.05 | 1.6  | 0.51 |       | 11    | 12    | 8          | 370      | 17     | 0.002         | 180    | 0.93 |
| 2017 Env Monitoring    | 04-10-2017 | DPI 6   | 3.9        | 1030    |      |        | -  |     |     |        |      |      |       |       |       |            |          | -      |               |        |      |
| 2017 Env Monitoring    | 01-11-2017 | DPI 6   | 3.9        | 1000    |      |        |    |     |     | 1      |      |      |       |       |       |            |          |        |               |        |      |
| 2017 Env Monitoring    | 29-11-2017 | DPI 6   | 3.9        | 919     | 1    |        |    |     | 1   | 1      |      |      |       |       |       | 1          |          |        |               |        |      |
| 2017 Env Monitoring    | 28-12-2017 | DPI 6   | 3.9        | 822     | 1    |        | <5 |     | 18  | 0.1    | 1.6  | 0.41 |       | 8.8   | 11    | 8          | 540      | 12     | 0.001         | 150    | 0.67 |
| Lott Litt Montoling    | No of      | Samples | E1         | E1      | 24   | 20     | -  |     | 1   |        | 4    | 5    | 19    | 22    | 22    |            | 21       | •      |               | 22     | 22   |
|                        | 110 01     | Minimu  | 51         | 51      | 34   | 30     |    |     |     |        | 4    | 5    | 10    | 22    | 22    |            | 21       | 0      |               | 22     | 22   |
|                        |            | winimum | 3.2        | 3.8     | 0.9  | 14     |    |     |     |        | 1.6  | 0.41 | 2.4   | 1.5   | 1.5   |            | 30       | 10     |               | 9.48   | 0.02 |
|                        |            | Maximum | 5.2        | 2264    | 6.1  | 464    |    |     |     |        | 2.5  | 1.13 | 134   | 33    | 24    |            | 1520     | 147    |               | 580    | 3.75 |
|                        |            | Average | 3.97       | 1256.00 | 2.86 | 222.15 |    |     |     |        | 1.83 | 0.64 | 22.59 | 12.98 | 12.07 |            | 572.91   | 60.77  |               | 166.82 | 1.09 |

| 2011/2012 AEMR Dec-11             | DPL7    |      |            |      |        |        |        | 680    |      |      |      | 16    | 39    | 451    | 36    | 207     |       | < 0.005 | 0.34  | 0.04   |
|-----------------------------------|---------|------|------------|------|--------|--------|--------|--------|------|------|------|-------|-------|--------|-------|---------|-------|---------|-------|--------|
| 2011/2012 AEMR Mar-12             | DPL7    |      |            |      |        |        |        | 710    |      |      |      | 17    | 37    | 649    | 28    | 210     |       | < 0.005 | 0.28  | 0.03   |
| 2011/2012 AEMR 30-05-2012         | DPL7    | 7.4  | 3451       | 3.6  | 241    |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| 2011/2012 AEMR Jun-12             | DPL7    | 7.5  | 3446       | 5    | 249    | 550    | 336    | 700    |      |      |      | 17    | 36    | 561    | 30    | 214     |       | < 0.005 | 0.32  | 0.05   |
| 2011/2012 AEMR 26-07-2012         | DPL7    | 7.4  | 3434       | 3.4  | -15    |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| 2011/2012 AEMR 27-08-2012         | DPL7    | 7.6  | 3492       | 2.5  | 24     |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| 2011/2012 AEMR 27-09-2012         | DPI 7   | 7.4  | 3385       | 2.1  | 154    | 430    | 256    | 730    |      |      |      | 15    | 32    | 530    | 28    | 226     |       | < 0.005 | 1.11  | 0.02   |
| 2011/2012 AEMR 29-10-2012         | DPI 7   | 7.2  | 3416       | 1.7  | 52     |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| 2012/2013 AEMR Dec-12             | DPI 7   |      |            |      |        |        |        | 730    |      |      |      | 16    | 34    | 673    | 29    | 203     |       | < 0.005 | 0.56  | 0.02   |
| 2012/2013 AEMR Mar-13             | DPI 7   |      |            |      |        |        |        | 750    |      |      |      | 18    | 38    | 610    | 27    | 223     |       | <0.005  | 0.72  | 0.05   |
| 2012/2013 AEMR .Jun-13            | DPI 7   |      |            |      |        |        |        | 740    |      |      |      | 16    | 36    | 16     | 25    | 274     |       | <0.005  | 1.56  | 0.03   |
| 2012/2013 AEMR Sep-13             | DPI 7   |      |            |      |        |        |        | 750    |      |      |      | 16    | 34    | 543    | 23    |         |       | <0.005  | 1.2   | 0.05   |
| 2013/2014 AEMR 12-12-2013         | DPI 7   | 7.2  | 3341       | 4.1  | 52     | 390    | 238    | 750    |      |      |      | 18    | 38    | 38     | 26    | 249     |       | <0.005  | 1.33  | 0.08   |
| 2013/2014 AEMR 29-01-2014         | DPI 7   | 7.3  | 3243       | 3.9  | 154    |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| 2013/2014 AEMR 24-02-2014         | DPI 7   | 7.2  | 3151       | 2.4  | 231    |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| 2013/2014 AEMR 31-03-2014         | DPI 7   | 7.2  | 3358       | 2.8  | -2     | 410    | 250    | 720    |      |      |      | 19    | 39    | 39     | 26    | 253     |       | <0.005  | 1.52  | 0.04   |
| 2013/2014 AEMR 24-04-2014         | DPL7    | 7.5  | 3452       |      | 116    |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| 2013/2014 AEMR 28-05-2014         | DPI 7   | 7.3  | 3468       |      | 297    |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| 2013/2014 AEMR 25-06-2014         | DPI 7   | 4.6  | 69         | 2.3  | 320    | 1      | <1     | 15     |      |      |      | 0.3   | 0.2   | 9.9    | <5    | 4.2     |       | < 0.005 | 0.85  | < 0.01 |
| 2013/2014 AEMR 30-07-2014         | DPI 7   | 7.5  | 3414       | 3.5  | 126    | 390    | 240    | 760    |      |      |      | 19    | 41    | 656    | 27    | 261     | 0.41  | < 0.005 | 1.42  | 0.02   |
| 2013/2014 AEMR 29-08-2014         | DPI 7   | 7.5  | 3477       | 2.8  | 128    | 400    | 245    | 740    |      |      |      | 17    | 37    | 611    | 25    | 236     |       | <0.005  | 1.88  | 0.01   |
| 2013/2014 AEMR 29-09-2014         | DPL7    | 7.2  | 3436       | 4.9  | 173    |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| Appendix of 2015 AFMR 28-11-2014  | DPI 7   | 7.1  | 3416       | 4.9  | 75     |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| Appendix of 2015 AEMR 15-12-2014  | DPL7    | 7.2  | 3340       | 2.3  | 100    | 400    | 243    | 780    |      |      |      | 22    | 43    | 685    | 29    | 211     | 0.34  | < 0.005 | 1.62  | 0.06   |
| Appendix of 2015 AEMR 22-01-2015  | DPL7    | 7.1  | 3404       | 2.6  | 77     |        | 1 - 10 |        | i    | 1    | i    |       |       |        |       |         |       |         |       |        |
| Appendix of 2015 AEMR 25-02-2015  | DPI 7   | 7.4  | 3396       | 4.5  | 30     |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| Appendix of 2015 AEMR 26-03-2015  | DPI 7   | 7.1  | 3446       | 3.1  | 78     | 420    | 423    | 780    |      |      |      | 18    | 38    | 651    | 26    | 250     | 0.51  | < 0.001 | 2.62  | 0.077  |
| Appendix of 2015 AFMR 24-04-2015  | DPL7    | 7.5  | 3438       | 5.5  | 53     |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| Appendix of 2015 AEMR 28-05-2015  | DPL7    | 7.5  | 3417       | 6    | 161    |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| Appendix of 2015 AFMR 17-09-2015  | DPL7    | 7.3  | 3323       | 2.8  | 110    | 380    |        | 760    |      |      | 0.06 | 18    | 39    | 644    | 25    | 250     | 0.62  | < 0.001 | 2.53  | 0.025  |
| Appendix of 2015 AFMR 21-10-2015  | DPL7    | 7.2  | 3330       | 3.5  | 144    |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| Appendix of 2015 AEMR 25-11-2015  | DPI 7   | 7.2  | 3500       | 5.8  | 100    |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| Appendix of 2015 AEMR 11-12-2015  | DPI 7   | 7.2  | 3371       | 2.7  | 214    | 380    | 380    | 770    |      |      |      | 17    | 37    | 644    | 24    | 272     | 0.04  | 0.0002  | 2.44  | 0.084  |
| Appendix of 2016 AEMR 25-01-2016  | DPI 7   | 7.1  | 3344       | 1.8  | -36.00 |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| Appendix of 2016 AFMR 24-02-2016  | DPI 7   | 7.2  | 3444       | 5.5  | -60.00 |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| Appendix of 2016 AFMR 24-03-2016  | DPI 7   | 7.2  | 3399       | 4.1  | -9.00  | 363    | 363    | 738    |      |      |      | 18.21 | 38.01 | 637.38 | 26.08 | 260.218 | 0.356 | < 0.001 | 1.772 | 0.084  |
| Appendix of 2016 AFMR 29-04-2016  | DPI 7   | 7.4  | 3374       | 6.4  | 26.00  |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| Appendix of 2016 AEMR 24-05-2016  | DPI 7   | 7.4  | 3382       | 5.5  | -57.00 |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| Appendix of 2016 AEMR 30-06-2016  | DPI 7   | 7.4  | 3404.7     | 5.7  | 98.00  |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| Appendix of 2016 AEMR 21-07-2016  | DPL7    | 7.5  | 3159       | 6.5  | -31.00 |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| Appendix of 2016 AEMR 31-08-2016  | DPI 7   | 7.3  | 3364       | 3.7  | -22.00 | 369    |        | 760    |      |      |      | 24    | 35    | 604    | 24    | 217     |       | 0.001   | 2.07  | 0.082  |
| Appendix of 2016 AFMR 29-09-2016  | DPI 7   | 7.2  | 3558       | 2.4  | 44.00  |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| Appendix of 2016 AEMR 27-10-2016  | DPL7    | 7.2  | 3558       | 2.4  | 44.00  | İ      | 1      | i      | i    | 1    | i    | i     | i     | i      | i     | 1       |       |         | i     | i      |
| Appendix of 2016 AEMR 29-11-2016  | DPL7    | 7.1  | 7.1        | 2.4  | 20.00  | İ      | 1      | i      | i    | 1    | i    | i     | i     | i      | i     | 1       |       |         | i     | i      |
| Appendix of 2016 AEMR 20-12-2016  | DPL7    | 6.9  | 3527       | 4.5  | 229.3  | 372    |        | 372    |      |      |      | 18    | 38    | 648    | 25    | 263     |       | 0.001   | 1.85  | 0.082  |
| Q1 2017 Env mon report 30-01-2017 | DPL7    | 6.9  | 3471       |      |        |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| Q1 2017 Env mon report 27-02-2017 | DPL7    | 7.1  | 3174       |      |        |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| 2017 Env Monitoring 22-03-2017    | DPL7    | 7    | 3430       |      |        | 350    |        | 360    | 0.1  | 2.1  | 0.19 |       | 36    | 830    | 29    | 710     | 0.33  | < 0.001 | 1.8   | 0.076  |
| 2017 Env Monitoring 19-04-2017    | DPL7    |      |            |      |        |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| 2017 Env Monitoring 17-05-2017    | DPL7    | 6.9  | 3440       |      |        |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| 2017 Env Monitoring 14-06-2017    | DPL7    |      |            |      |        |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| 2017 Env Monitoring 12-07-2017    | DPL7    | 7    | 3360       |      |        |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| 2017 Env Monitoring 09-08-2017    | DPL7    | 7    | 3480       |      |        |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| 2017 Env Monitoring 06-09-2017    | DPL7    | 7    | 3380       |      |        | 390    |        | 640    | 0.1  | 2.9  | 0.67 |       | 38    | 940    | 31    | 350     | 0.33  | < 0.001 | 1.3   | 0.065  |
| 2017 Env Monitoring 04-10-2017    | DPL7    | 7    | 3450       |      |        |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| 2017 Env Monitoring 01-11-2017    | DPL7    | 6.9  | 3440       |      |        |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| 2017 Env Monitoring 29-11-2017    | DPL7    | 6.8  | 344        |      |        |        |        |        |      |      |      |       |       |        |       |         |       |         |       |        |
| 2017 Env Monitoring 28-12-2017    | DPL7    | 6.9  | 3410       |      |        | 380    |        | 720    | 0.1  | 3.6  | 2.4  |       | 38    | 930    | 30    | 250     | 0.33  | < 0.001 | 1.4   | 0.063  |
| No of S                           | Samples | 50   | 50         | 37   | 39     | 17     |        | 23     | 3    | 3    | 4    | 20    | 23    | 23     |       | 22      | 9     |         | 23    |        |
| M                                 | linimum | 4.6  | 71         | 17   | -60    | 1      |        | 15     | 0.1  | 21   | 0.06 | 0.3   | 0.2   | 9.9    | 1     | 4.2     | 0.04  |         | 0.28  | i      |
|                                   | avimum  | 7.6  | 3558       | 6.5  | 320    | 550    |        | 780    | 0.1  | 3.6  | 2.4  | 24    | 43    | 940    |       | 710     | 0.04  | 1       | 2.62  |        |
|                                   | Average | 7.16 | 2206.29    | 2.77 | 94.57  | 275.00 |        | 671.06 | 0.10 | 2.0  | 0.92 | 16.09 | 25 70 | 540    |       | 254.25  | 0.02  |         | 1.41  |        |
|                                   |         | / 10 | 1 J/UD / 0 | 3//  | MA D/  | 3/5 10 |        | D(1 10 |      | / 0/ |      | 10 10 |       | D4/04  |       | /04/0   |       |         |       |        |

| Date       | DPL1 | DPL3 | DPL5 | DPL6 | DPL7 |
|------------|------|------|------|------|------|
| Nov-13     | 0.61 | 0.57 | 0.67 | 0.59 | 0.61 |
| Apr-14     | 0.61 | 0.58 | 0.68 | 0.61 | 0.62 |
| Nov-14     | 1.30 | 1.90 | 1.20 | 1.40 | 1.90 |
| Dec-14     | 1.20 | 1.80 | 1.20 | 1.40 | 1.80 |
| Jan-15     | 1.10 | 1.40 | 0.90 | 1.20 | 1.40 |
| Feb-15     | 0.30 | 1.00 | 0.20 | 0.80 | 1.50 |
| Mar-15     | 0.70 | 1.00 | 0.40 | 1.00 | 1.20 |
| Apr-15     | 0.90 | 1.00 | 0.80 | 1.20 | 1.40 |
| May-15     | 1.10 | 1.70 | 0.80 | 1.40 | 1.20 |
| Jun-15     | 1.40 | 1.40 | 0.80 | 1.20 | 1.30 |
| Jul-15     | 1.00 | 1.50 | 1.10 | 1.10 | 1.00 |
| Aug-15     | 1.30 | 1.50 | 0.90 | 1.10 | 1.60 |
| Sep-15     | 1.30 | 1.80 | 1.30 | 1.20 | 1.70 |
| Oct-15     | 1.40 | 1.70 | 1.10 | 1.20 | 1.80 |
| Nov-15     | 1.20 | 1.40 | 1.20 | 1.30 | 1.70 |
| Dec-15     | 1.10 | 1.20 | 0.90 | 1.20 | 1.60 |
| 22-03-2017 | 1.58 | 1.28 | 1.38 | 1.95 | 1.20 |
| 19-04-2017 | 1.53 | 1.46 | 1.51 | 1.26 |      |
| 17-05-2017 | 1.64 | 1.44 | 1.54 | 1.51 | 1.51 |
| 14-06-2017 | 0.89 |      |      | 1.08 |      |
| 12-07-2017 | 1.69 | 1.52 | 1.60 | 1.54 | 1.47 |
| 09-08-2017 | 1.83 | 1.60 | 1.68 | 1.77 | 1.69 |
| 06-09-2017 | 1.90 | 1.61 | 1.67 | 1.85 | 1.80 |
| 04-10-2017 | 1.91 | 1.54 | 1.61 | 1.81 | 1.69 |
| 01-11-2017 | 1.92 | 1.64 | 1.72 | 1.81 | 1.72 |
| 29-11-2017 | 1.93 | 1.65 | 1.74 | 1.81 | 1.77 |
| 28-12-2017 | 1.94 | 1.66 | 1.74 | 1.97 | 1.78 |
| Minimum    | 0.3  | 0.57 | 0.2  | 0.59 | 0.61 |
| Maximum    | 1.94 | 1.9  | 1.74 | 1.97 | 1.9  |
| Average    | 1.31 | 1.42 | 1.17 | 1.34 | 1.48 |

Longterm Groundwater Depth Monitoring at Dunloe Sands Quarry

## **APPENDIX 3**

# DUNLOE SAND QUARRY REHABILITATION AND ECOLOGICAL MONITORING 2017

ZONE 1 DEC '17 (1A+6)



| FORM A: ROUTINE G                                                                                                                                                                                                                                                                                                                          | UARTERLY REHABILITATION M                                                                                                                                                                                                                                                                                                                                     | ONITORING SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Management                                                                                                                                                                                                                                                                                                                         | Weeds                                                                                                                                                                                                                                                                                                                                                         | Vegetation regeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Has there been a fire within the last quarter? NO $\cdot$<br>Do the bushfire trails or adjacent pasture areas require slashing or maintenance to reduce fire risk? <u>YES</u> .                                                                                                                                                            | Have any areas of weeds re-<br>established within the<br>rehabilitation zones during the<br>last quarter? $\sqrt{ES}$ .                                                                                                                                                                                                                                       | Natural regeneration is occurring in<br>(record height range estimate):<br>- Tree species <u>7m</u><br>- Shrub species <u>2m</u><br>- ground covers <u>&lt; 1m</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Is there evidence of rubbish dumping<br>within the rehabilitation<br>zones? NO .<br>Is there evidence of plant theft within<br>the rehabilitation zone? NO .<br>Does it appear that the rehabilitation<br>zone has been utilized for stockpiling,<br>vehicle parking, building waste<br>dumping, cattle grazing or person<br>traffic? NO . | What species? <u>1</u> LANTANA<br>BUSH + 2 CAMPHORS<br>ON TRAIL EQCIE.<br>What management was<br>undertaken to eradicate these<br>weeds? <u>LANTANA +</u><br><u>CAMPHORS TO BE</u><br><u>BOSIONED IN 2018</u><br>If management was undertaken<br>acknowledge that such was<br>performed in accordance with<br>the approved rehabilitation<br>management plan. | What are the dominant species within<br>each layer?<br>- Tree <u>MELALUCA</u> +<br><u>CASUARINA</u><br>- Shrub<br>- ground covers <u>GRASS</u> +<br><u>LEAF</u> <u>LITTER</u> .<br>Have you noticed any new native<br>plant species since the last monthly<br>inspection?<br>If yes name the species or take a<br>photograph                                                                                                                                                                                                                                                                                                   |
| If yes, acknowledge below what works<br>were undertaken to rectify/restore and<br>the date TRAILS TO BE<br>SLASHEO JAN 2018                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                               | Acknowledge that the required routine photographs have been taken within the rehabilitation zones $Y \in S$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Biodiversity Have you spotted native fauna within the rehabilitation zone during inspection? If yes, what types? Koala                                                                                                                                                                                                                     | Modifications         Have there been any structural additions (eg. new tracks, buildings) to the rehabilitation zones since the last visit?         NO         What actions were undertaken to remove any illegal modifications?         Condition of fences         - Good         - Need minor repair.         - Poor (need replacement)                   | Are any of the following performance<br>criteria exceeded (refer Section 4.5<br>below)?<br>Declared Weeds?<br>Extent of other Weeds?<br>Survival Rate of Plants?<br>Condition of Plants?<br>Canopy Coverage?<br>Tree, Small Tree & Shrub<br>Diversity?<br>Groundcover Coverage?<br>Groundcover Coverage?<br>General Coverage/Success?<br>If yes, what corrective action was<br>performed (i.e. plant showed drought<br>stress and so watering was<br>undertaken, plant was dead so a<br>replacement plant was pocket<br>planted, canopy plant coverage was<br>not achieved so relevant pioneer<br>plants were pocket planted). |

January 2009



| FORM A: ROUTINE                                                                                                                                                                                                                     | QUARTERLY REHABILITATION M                                                                                                                   | IONITORING SHEET                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Management                                                                                                                                                                                                                  | Weeds                                                                                                                                        | Vegetation regeneration                                                                                                                                                                                                                                                                                            |
| Has there been a fire within the last<br>quarter? <u>NO</u> .<br>Do the bushfire trails or adjacent<br>pasture areas require slashing or<br>maintenance to reduce fire risk? <u>NO</u> .<br>TRAIL IS INJUNDATER                     | Have any areas of weeds re-<br>established within the<br>rehabilitation zones during the<br>last quarter? <u>NO</u> .                        | Natural regeneration is occurring in<br>(record height range estimate):<br>- Tree species <u>7 7m</u><br>- Shrub species <u>7 2m</u><br>- ground covers <u>2 1m</u>                                                                                                                                                |
| N       NATER DUE 10 TTOES         Is there evidence of rubbish dumping within the rehabilitation zones?       NO         Is there evidence of plant theft within the rehabilitation zone?       NO                                 | What species?<br>What management was<br>undertaken to eradicate these<br>weeds?                                                              | What are the dominant species within each layer?         - Tree <u>CASUARINA</u> - Shrub <u>MANGROUE</u> - ground covers                                                                                                                                                                                           |
| Does it appear that the rehabilitation<br>zone has been utilized for stockpiling,<br>vehicle parking, building waste<br>dumping, cattle grazing or person<br>traffic? <u>NO</u> .                                                   | If management was undertaken<br>acknowledge that such was<br>performed in accordance with<br>the approved rehabilitation<br>management plan. | Have you noticed any new native<br>plant species since the last monthly<br>inspection?                                                                                                                                                                                                                             |
| If yes, acknowledge below what works<br>were undertaken to rectify/restore and<br>the date                                                                                                                                          |                                                                                                                                              | Acknowledge that the required routine photographs have been taken within the rehabilitation zones $-\gamma ES$ .                                                                                                                                                                                                   |
| Biodiversity<br>Have you spotted native fauna within                                                                                                                                                                                | Modifications<br>Have there been any structural<br>additions (eq. new tracks.                                                                | Are any of the following performance criteria exceeded (refer Section 4.5 below)?                                                                                                                                                                                                                                  |
| the rehabilitation zone during inspection?                                                                                                                                                                                          | buildings) to the rehabilitation zones since the last visit?                                                                                 | Declared Weeds?<br>Extent of other Weeds?                                                                                                                                                                                                                                                                          |
| Koala<br>Kangaroo/wallaby<br>Possums/gliders<br>Small mammal (i.e. bandicoot, echidna)                                                                                                                                              | What actions were undertaken to remove any illegal modifications?                                                                            | Survival Rate of Plants?<br>Condition of Plants?<br>Canopy Coverage?<br>Tree, Small Tree & Shrub<br>Diversity?<br>Groundcover Coverage?                                                                                                                                                                            |
| Reptiles (i.e.snakes/lizards)<br>Birds of prey<br>Large nectar feeding birds (i.e.<br>lorikeets, parrots, cockatoos)<br>Small tree and ground birds (i.e.<br>finches, fairy wrens, treecreepers)<br>Glossy Black Cockatoos<br>Other | Condition of fences<br>- Good)<br>- Need minor repair<br>- Poor (need replacement)                                                           | General Coverage/Success?<br>If yes, what corrective action was<br>performed (i.e. plant showed drought<br>stress and so watering was<br>undertaken, plant was dead so a<br>replacement plant was pocket<br>planted, canopy plant coverage was<br>not achieved so relevant pioneer<br>plants were pocket planted). |

January 2009



|                                                                                                                                                                                                                                                                                                                       | IUNITURING SPECI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weeds                                                                                                                                                                                                                                                                                                                 | Vegetation regeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Have any areas of weeds re-<br>established within the<br>rehabilitation zones during the<br>last quarter? NO.                                                                                                                                                                                                         | Natural regeneration is occurring in<br>(record height range estimate):<br>- Tree species <u>&gt; 8 m</u><br>- Shrub species <u>&gt; 2 m</u><br>- ground covers <u>&lt; 1 m</u><br>What are the dominant species within                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| What management was<br>undertaken to eradicate these<br>weeds?                                                                                                                                                                                                                                                        | each layer?  - Tree Shrub ground covers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| If management was undertaken<br>acknowledge that such was<br>performed in accordance with<br>the approved rehabilitation<br>management plan.                                                                                                                                                                          | Have you noticed any new native<br>plant species since the last monthly<br>inspection?<br>If yes name the species or take a<br>photograph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                       | Acknowledge that the required routine photographs have been taken within the rehabilitation zones $\sqrt{ES}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Modifications<br>Have there been any structural<br>additions (eg. new tracks,<br>buildings) to the rehabilitation<br>zones since the last visit?<br>NO .<br>What actions were undertaken to<br>remove any illegal modifications?<br>Condition of fences<br>- Good<br>- Need minor repair<br>- Poor (need replacement) | Are any of the following performance<br>criteria exceeded (refer Section 4.5<br>below)?<br>Declared Weeds?<br>Extent of other Weeds?<br>Survival Rate of Plants?<br>Canopy Coverage?<br>Tree, Small Tree & Shrub<br>Diversity?<br>Groundcover Coverage?<br>General Coverage/Success?<br>If yes, what corrective action was<br>performed (i.e. plant showed drought<br>stress and so watering was<br>undertaken, plant was dead so a<br>replacement plant was pocket<br>planted, canopy plant coverage was<br>not achieved so relevant pioneer                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                       | Weeds         Have any areas of weeds re-<br>established within the<br>rehabilitation zones during the<br>last quarter?         Ist quarter?         What species?         What management was<br>undertaken to eradicate these<br>weeds?         If management was undertaken<br>acknowledge that such was<br>performed in accordance with<br>the approved rehabilitation<br>management plan.         Modifications         Have there been any structural<br>additions (eg. new tracks,<br>puildings) to the rehabilitation<br>zones since the last visit?         NO         Mhat actions were undertaken to<br>remove any illegal modifications?         Condition of fences         Good         Need minor repair         Poor (need replacement) |

January 2009



| FORM A: ROUTINE O                                                                                                                                                                                                                                                                                         | QUARTERLY REHABILITATION M                                                                                                                   | IONITORING SHEET                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Management                                                                                                                                                                                                                                                                                        | Weeds                                                                                                                                        | Vegetation regeneration                                                                                                                                                                                                                                                                                      |
| Has there been a fire within the last<br>quarter? <u>NO</u> .<br>Do the bushfire trails or adjacent<br>pasture arcas require slashing or<br>maintenance to reduce fire risk? <u>NO</u> .                                                                                                                  | Have any areas of weeds re-<br>established within the<br>rehabilitation zones during the<br>last quarter? <u>NO</u>                          | Natural regeneration is occurring in<br>(record height range estimate):<br>- Tree species <u>&gt; 8 m</u><br>- Shrub species <u>&gt; 3 m</u><br>- ground covers <u>&lt; 1m</u>                                                                                                                               |
| Is there evidence of rubbish dumping<br>within the rehabilitation<br>zones? <u>NO</u> .                                                                                                                                                                                                                   | What species?<br>What management was<br>undertaken to eradicate these<br>weeds?                                                              | What are the dominant species within<br>each layer?<br>- Tree <u>MELALUC</u><br><u>QUINOUENERVIA</u> .<br>- Shrub <u>BANICSIA</u>                                                                                                                                                                            |
| the rehabilitation zone? <u>NO</u><br>Does it appear that the rehabilitation<br>zone has been utilized for stockpiling,<br>vehicle parking, building waste<br>dumping, cattle grazing or person<br>traffic? <u>NO</u> .                                                                                   | If management was undertaken<br>acknowledge that such was<br>performed in accordance with<br>the approved rehabilitation<br>management plan. | - ground covers <u>LEAF</u><br><u>LITTER</u> .<br>Have you noticed any new native<br>plant species since the last monthly<br>inspection? <u>NO</u> .<br>If yes name the species or take a<br>photograph <u>NO</u> .                                                                                          |
| If yes, acknowledge below what works<br>were undertaken to rectify/restore and<br>the date                                                                                                                                                                                                                |                                                                                                                                              | Acknowledge that the required routine photographs have been taken within the rehabilitation zones $\underline{VES}$ .                                                                                                                                                                                        |
| Biodiversity<br>Have you spotted native fauna within<br>the rehabilitation zone during<br>inspection?<br>If yes, what types?<br>Koala<br>Kangaroo/wallaby<br>Possums/gliders<br>Small mammal (i.e. bandicoot, echidna)                                                                                    | Modifications         Have there been any structural additions (eg. new tracks, buildings) to the rehabilitation zones since the last visit? | Are any of the following performance<br>criteria exceeded (refer Section 4.5<br>below)?<br>Declared Weeds?<br>Extent of other Weeds?<br>Survival Rate of Plants?<br>Condition of Plants?<br>Canopy Coverage?<br>Tree, Small Tree & Shrub<br>Diversity?<br>Groundcover Coverage?<br>General Coverage/Success? |
| Reptiles (i.e.snakes/lizards)<br>Birds of prey<br>Large nectar feeding birds (i.e.<br>lorikeets, parrots, cockatoos) <u>VES</u><br>Small tree and ground birds (i.e.<br>finches, fairy wrens, treecreepers) <u>VES</u><br>Glossy Black Cockatoos<br>Other <u>NILLIE NAGTAIL</u><br>EASTERN <u>ROSELLA</u> | Condition of fences<br>Good)<br>- Need minor repair<br>- Poor (need replacement)                                                             | If yes, what corrective action was<br>performed (i.e. plant showed drought<br>stress and so watering was<br>undertaken, plant was dead so a<br>replacement plant was pocket<br>planted, canopy plant coverage was<br>not achieved so relevant pioneer<br>plants were pocket planted).                        |

January 2009

Page 68

\_



| FORM A: ROUTINE O                                                                                                                                                                                                                                                                                                                                                                                             | QUARTERLY REHABILITATION M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IONITORING SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Management                                                                                                                                                                                                                                                                                                                                                                                            | Weeds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vegetation regeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Has there been a fire within the last<br>quarter? <u>NO</u> .<br>Do the bushfire trails or adjacent<br>pasture areas require slashing or<br>maintenance to reduce fire risk? <u>NO</u> .                                                                                                                                                                                                                      | Have any areas of weeds re-<br>established within the<br>rehabilitation zones during the<br>last quarter? <u>KX2</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Natural regeneration is occurring in<br>(record height range estimate):<br>- Tree species <u>&gt; &amp; M</u><br>- Shrub species <u>&gt; 2 M</u><br>- ground covers <u>&lt; 1 m</u>                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Is there evidence of rubbish dumping<br>within the rehabilitation<br>zones?_NO                                                                                                                                                                                                                                                                                                                                | What species?<br>What management was<br>undertaken to eradicate these<br>weeds?<br>If management was undertaken<br>acknowledge that such was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | What are the dominant species within<br>each layer?<br>- Tree <u>BAMICS IA</u><br>- Shrub <u>CROUND</u> FERN<br>- ground covers <u>CII2ASS</u> -<br>LEAF LITTER<br>Have you noticed any new native<br>plant species since the last monthly                                                                                                                                                                                                                                                                                                                                                                                |
| zone has been utilized for stockpiling,<br>vehicle parking, building waste<br>dumping, cattle grazing or person<br>traffic?                                                                                                                                                                                                                                                                                   | acknowledge that such was<br>performed in accordance with<br>the approved rehabilitation<br>management plan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | If yes name the species or take a photograph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Biodiversity Have you spotted native fauna within the rehabilitation zone during inspection? If yes, what types? Koala Kangaroo/wallaby Possums/gliders Small mammal (i.e. bandicoot, echidna) Reptiles (i.e.snakes/lizards) Birds of prey Large nectar feeding birds (i.e. lorikeets, parrots, cockatoos) Small tree and ground birds (i.e. finches, fairy wrens, treecreepers) Glossy Black Cockatoos Other | Modifications<br>Have there been any structural<br>additions (eg. new tracks,<br>buildings) to the rehabilitation<br>zones since the last visit?<br>Modeling<br>Modeling<br>Note: Structural<br>Modeling<br>Note: Structural<br>Modeling<br>Note: Structural<br>Modeling<br>Note: Structural<br>Modeling<br>Note: Structural<br>Modeling<br>Note: Structural<br>Modeling<br>Modeling<br>Note: Structural<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Modeling<br>Mo | Are any of the following performance<br>criteria exceeded (refer Section 4.5<br>below)?<br>Declared Weeds?<br>Extent of other Weeds?<br>Survival Rate of Plants?<br>Condition of Plants?<br>Canopy Coverage?<br>Canopy Coverage?<br>Tree, Small Tree & Shrub<br>Diversity?<br>Groundcover Coverage?<br>General Coverage/Success?<br>If yes, what corrective action was<br>performed (i.e. plant showed drought<br>stress and so watering was<br>undertaken, plant was dead so a<br>replacement plant was pocket<br>planted, canopy plant coverage was<br>not achieved so relevant pioneer<br>plants were pocket planted). |

January 2009



## PROFORMA FOR MONITORING FOREST STRUCTURE

| Project name: DUNILOF PARK | SAND | Project ID: 66_0030 |
|----------------------------|------|---------------------|
| Site name: ZONE 1          |      | Site ID:            |
| Assessed by: S. PETERSON 7 |      | Date: 18/12/2017    |

K. KEARNEY LOCATION OF MONITORING PLOTS

|                                                                                              | Diet            |
|----------------------------------------------------------------------------------------------|-----------------|
| Provide details and also mark on the map of the site                                         | Plot            |
| Location at 0 m point of plot (grid / GPS coordinates):                                      | LAT: -28 415761 |
| Datum:                                                                                       | LON: 153.555592 |
| Compass bearing / direction of transect (from 0 m point)                                     |                 |
| Landform (e.g. plateau, crest, upper slope, mid-slope, lower slope, stream bank, floodplain) |                 |
| Slope (; e.g. flat/steep)                                                                    |                 |
| Aspect (compass bearing / direction of fall of slope)                                        |                 |

### MAP OF MONITORING PLOTS

In the box, insert a map of the site showing the location of monitoring plots (mark 0 m point) in relation to notable features of the site (e.g. property boundaries, roads, waterways). Also show notable features of the monitoring plots (e.g. non-standard layout, presence of remnant trees) and location of any landscape photopoints. Include a scale bar (e.g. 0-100 m) and black North arrow.



Page 77

pl/pl Grie

January 2009



Date:

Site name:

#### GROUND COVER, CANOPY COVER and CANOPY HEIGHT

For each survey plot, lay out a 50 m transect. Then survey quadrats centred on the 5 m, 25 m and 45 m points



 Ground cover = proportion of ground covered by (a) vegetation within 1 m of ground (categorised by life form), (b) leaf litter and fine woody debris, (c) coarse woody debris, d) rock, (e) soil, or (f) other. At the 5 m, 25 m and 45 m points, define a 1 m x 1 m quadrat, using four 1 m sticks. Looking down at the quadrat from 1 m, estimate the % of ground covered by each type (as would be seen on a photo: total must add to 100%).

 Ground Cover
 Plot

| Ground Cover         |     |      | ۲  |
|----------------------|-----|------|----|
| Location of quadrat: | 5 m | 25 m | 45 |

a) Ve get atio n wit hin 1 m of the gro

| of  |  |
|-----|--|
| the |  |
| gro |  |
| un  |  |
| d   |  |

| Grass (and sedges)                                   | 10 % | 5 %  | 20 %  |
|------------------------------------------------------|------|------|-------|
| Herbs (soft-stemmed plants)                          | 0 %  | 0%   | 0 %   |
| Ferns                                                | 15 % | 50%  | ,45 % |
| Vines and scramblers                                 | 10 % | 3 %  | 0 %   |
| Tree seedlings and shrubs                            | 11 % | 10 % | 10 %  |
| Moss (and liverworts and lichens)                    | 2 %  | 3%   | 3 %   |
| b) Leaf litter and fine woody debris <10 cm diameter | 30%  | 20%  | 12 %  |
| c) Coarse woody debris >10 cm diameter               | 15 % | 0%   | 8 %   |
| d) Bare rock                                         | 0 %  | 0%   | 0 %   |
| e) Bare soll                                         | 5 %  | 0%   | 1 %   |
| f) Other (including tree trunks, roots, etc.)        | 2%   | 9%   | 1 %   |
| TOTAL (must add up to 100%)                          | 100% | 100% | 100%  |

**Canopy (follage) cover** = projective cover of ecologically dominant layer above ground level (shade cast by foliage and stems, if the sun was overhead, assessed (approximately) above the entire 10 m x 10 m quadrat around each point. It can be estimated by eye (although this can be very subjective) or from a photo. 1. Estimate foliage cover visually, e.g. by comparison with reference photos. 2. Take a wide-angled digital photo looking up from the

Page 78

m



centre of each 10 x 10 m quadrat, and use to calculate foliage cover). Record the number of each photo for later reference.

| Canopy (foliage) cover                       | Plot |      |      |  |
|----------------------------------------------|------|------|------|--|
| Location of guadrat:                         | 5 m  | 25 m | 45 m |  |
| Visual estimate of canopy (follage) cover    | 60   | 50   | 40   |  |
| Canopy (foliage) cover calculated from photo | 65   | 55   | 50   |  |
| Record number of canopy photo for reference  | 1    | 2    | 3    |  |



## CANOPY COVER PHOTOGRAPHS PER WALKER AND HOPKINS (1990)

**Canopy height** The height of the tallest tree in the canopy of each 10 m x 10 m quadrat (the canopy is the layer of foliage forming the 'roof' of the forest: it may be broken by gaps or incomplete). In some sites, it may be necessary to distinguish canopy trees from emergents: i.e. trees projecting well above the canopy with crowns exposed on all sides Note: Estimating height is difficult. Use a clinometer & tape measure, or range finder, or other measure. Alternatively, place a 2.5 m pole against a tree, & standing at a distance, estimate height in multiples of 2.5 m.

January 2009



| Canopy height                           | Plot   |      |       |
|-----------------------------------------|--------|------|-------|
| Location of quadrat:                    | 5 m    | 25 m | 45 m  |
| Canopy height (tallest trees in canopy) | > 10 m | 8M   | > 101 |
| Height of emergent trees (if present)   | \$ 2M  | 42M  | 42m   |

|           |  | 1.1     |
|-----------|--|---------|
|           |  | 1 Deter |
|           |  | L Date: |
| She name: |  | Batol   |
|           |  |         |

**SPECIAL LIFE FORMS:** Record **presence** of life forms in each 10 m x 10 m quadrat centred on the 5 m, 25 m and 45 m points. If life forms are present on site, but not in quadrats, record in last column. Do not count no. of individuals.

| Special Life Forms                                                                                   |                                  | Plot         | Plot         |              | On site? |
|------------------------------------------------------------------------------------------------------|----------------------------------|--------------|--------------|--------------|----------|
| Location of quadrat:                                                                                 |                                  | 5 m          | 25 m         | 45 m         | •        |
| Strangler figs Figs with network of roots arou<br>in ground                                          | nd stem of host tree, rooted     | •            |              |              |          |
| Hemi-epiphytes Climbing plants adhering to e.g. Pothos, climbing pandanus                            | tree trunks, rooted in ground,   |              |              |              |          |
| Vines Climbing woody-stemmed plants                                                                  | Slender (stem <5 cm diam.)       | ~            | /            | $\checkmark$ |          |
| in the ground                                                                                        | Robust (stem >5 cm diam.)        |              |              |              |          |
| Vine towers Dense columns of vines growing<br>crowns and stems                                       | over and smothering tree         |              |              |              |          |
| Vine tangles Dense masses of Interwoven vin<br>midstorey                                             | e stems in understorey or        |              |              |              |          |
| Thorny scramblers Thicket-forming vines or shrubs, often spiny, e.g. <i>Calamus</i> ,                | Individual plants present        |              |              |              |          |
| lantana, cockspur, raspberry, other vines<br>(e.g. <i>Eleagnus, Maesa</i> )                          | Thickets present                 |              |              |              |          |
| Palm trees Palms with stems >2 m high                                                                |                                  |              |              |              |          |
| Understorey palms with stems <2 m high, e.g. walking stick palms (also includes juvenile palm trees) |                                  |              |              |              |          |
| Tree ferns Ferns with stems usually >0.5 m h                                                         | igh                              |              |              |              |          |
| Ground ferns Ferns or fern-like plants without stems, growing on the<br>ground                       |                                  | $\checkmark$ | $\checkmark$ | $\checkmark$ |          |
| Clumping epiphytic ferns e.g. staghorns, bas                                                         | sket ferns                       |              |              |              |          |
| Other epiphytes Growing on trees, e.g. trailing ferns, orchids, not rooted on ground                 |                                  |              |              |              |          |
| Cordylines 'Palm-lilies': shrubs to 5 m high,<br>long leaves                                         | occasionally branched, with      |              |              |              |          |
| Herbs with long wide leaves e.g. gingers, cu                                                         | njevoi, bananas                  |              |              |              |          |
| Herbs with long strap-like leaves e.g. lilies, mat-rush                                              |                                  |              |              |              |          |
| Cycads Plants with leathery palm-like                                                                | Stout stems, e.g.<br>Lepidozamia |              |              |              |          |
| foliage borne on stout stems or growing on ground (subterranean stems)                               | Ground cycads, e.g. Bowenia      |              |              |              |          |
| Pandanus Shrub / small tree with serrated strap-like leaves                                          |                                  |              |              |              |          |
| Other life forms: describe                                                                           |                                  |              |              |              |          |

January 2009



### PROFORMA FOR MONITORING FOREST STRUCTURE

| Project name: OUNLOE | PARK | SAND | Project ID: 06_0030 |
|----------------------|------|------|---------------------|
| Site name: 20NE2     |      |      | Site ID:            |
| Assessed by:         |      |      | Date: 18/12/2017    |

#### LOCATION OF MONITORING PLOTS

| Provide details and also mark on the map of the site                                         | Plot             |
|----------------------------------------------------------------------------------------------|------------------|
| Location at 0 m point of plot (grid / GPS coordinates):                                      | LAT: -28.421486  |
| Datum:                                                                                       | LON: 153 558 109 |
| Compass bearing / direction of transect (from 0 m point)                                     |                  |
| Landform (e.g. plateau, crest, upper slope, mid-slope, lower slope, stream bank, floodplain) |                  |
| Slope (: e.g. flat/steep)                                                                    |                  |
| Aspect (compass bearing / direction of fall of slope)                                        |                  |

### MAP OF MONITORING PLOTS

In the box, insert a map of the site showing the location of monitoring plots (mark 0 m point) in relation to notable features of the site (e.g. property boundaries, roads, waterways). Also show notable features of the monitoring plots (e.g. non-standard layout, presence of remnant trees) and location of any landscape photopoints. Include a scale bar (e.g. 0-100 m) and block North arrow.



January 2009



Date:

25 m

5 m

Site name:

**GROUND COVER, CANOPY COVER and CANOPY HEIGHT** For each survey plot, lay out a 50 m transect. Then survey quadrats centred on the 5 m, 25 m and 45 m points

**Ground cover** = proportion of ground covered by (a) vegetation within 1 m of ground (categorised by life form), (b) leaf litter and fine woody debris, (c) coarse woody debris, d) rock, (e) soil, or (f) other. At the 5 m, 25 m and 45 m points, define a 1 m x 1 m quadrat, using four 1 m sticks. Looking down at the quadrat from 1 m, estimate the % of ground covered by each type (as would be seen on a photo: total must add to 100%). **Ground Cover** 

| Location | of quadrat: |
|----------|-------------|

a) Ve get atio n wit hin 1 m of the gro

un

| d                                                    | 75 M         | > ~ 0/     | 2.5%                | 0/0      |
|------------------------------------------------------|--------------|------------|---------------------|----------|
| Grass (and sedges)                                   | ~ ~ ~ %      | 2 ()70     | <u></u>             | /0       |
| Herbs (soft-stemmed plants)                          | 0%           | <u> </u>   | <u></u>             | %        |
| Ferns                                                | 4 %          | 20%        | 20                  | %        |
| Vines and scramblers                                 | 0%           | <u></u> %  | $\sim$              | %        |
| Tree seedlings and shrubs                            | 20%          | 10%        | 25                  | %        |
| Need (and liverworts and lichens)                    | / %          | / %        | ~                   | %        |
| Moss (and inversions and increas)                    | 10%          | 20%        | 10                  | %        |
| b) Leaf litter and fine woody debris <10 cm diameter | 10 10        |            | 1()                 |          |
| c) Coarse woody debris >10 cm diameter               | <u> </u>     | <u> </u>   | $\langle \rangle$   | <u>%</u> |
| d) Bare rock                                         | $\bigcirc$ % | <u>○ %</u> | 0                   | %        |
| o) Bare soll                                         | ○ %          | <b>%</b>   | $\odot$             | %        |
|                                                      | <u> </u>     | %          | f <sup>aren</sup> y | %        |
| f) Other (including tree trunks, roots, etc.)        |              | 4000/      | 4                   | 00%      |
| TOTAL (must add up to 100%)                          | 100%         | 100%       |                     | 00 /0    |

**Canopy (foliage) cover** = projective cover of ecologically dominant layer above ground level (shade cast by foliage and stems, if the sun was overhead, assessed (approximately) above the entire  $10 \text{ m} \times 10 \text{ m}$  quadrat around each point. It can be estimated by eye (although this can be very subjective) or from a photo. 1. Estimate foliage cover visually, e.g. by comparison with reference photos. 2. Take a wide-angled digital photo looking up from the

January 2009

Page 78

45 m



centre of each 10 x 10 m quadrat, and use to calculate foliage cover). Record the number of each photo for later reference.

| Canony (foliage) cover                       | Plot |      |      |  |  |
|----------------------------------------------|------|------|------|--|--|
| Location of guadrat:                         | 5 m  | 25 m | 45 m |  |  |
| Visual estimate of canopy (foliage) cover    | 40   | 50   | 40   |  |  |
| Canopy (foliage) cover calculated from photo | 45   | 45   | 50   |  |  |
| Record number of canopy photo for reference  | 1    | 2    | 3    |  |  |



## CANOPY COVER PHOTOGRAPHS PER WALKER AND HOPKINS (1990)

**Canopy height** The height of the tallest tree in the canopy of each 10 m x 10 m quadrat (the canopy is the layer of foliage forming the 'roof' of the forest: it may be broken by gaps or incomplete). In some sites, it may be necessary to distinguish canopy trees from emergents: i.e. trees projecting well above the canopy with crowns exposed on all sides *Note: Estimating height is difficult. Use a clinometer & tape measure, or range finder, or other measure. Alternatively, place a 2.5 m pole against a tree, & standing at a distance, estimate height in multiples of 2.5 m.* 

January 2009



| Canopy height                           |      | Plot |      |
|-----------------------------------------|------|------|------|
| Location of quadrat:                    | 5 m  | 25 m | 45 m |
| Canopy height (tallest trees in canopy) | 210M | 2)Or | 210M |
| Height of emergent trees (if present)   | 72M  | >20  | 72M  |

| Site name: | <br>Date: |
|------------|-----------|

**SPECIAL LIFE FORMS:** Record **presence** of life forms in each 10 m x 10 m quadrat centred on the 5 m, 25 m and 45 m points. If life forms are present on site, but not in quadrats, record in last column. Do not count no. of individuals.

| Special Life Forms                                                                   |                                  | Plot |      |         | On site? |
|--------------------------------------------------------------------------------------|----------------------------------|------|------|---------|----------|
| Location of quadrat:                                                                 |                                  |      | 25 m | 45 m    |          |
| Strangler figs Figs with network of roots around stem of host tree, rooted in ground |                                  |      |      |         |          |
| Hemi-epiphytes Climbing plants adhering to e.g. Pothos, climbing pandanus            | tree trunks, rooted in ground,   |      |      |         |          |
| Vines Climbing woody-stemmed plants                                                  | Slender (stem <5 cm diam.)       |      |      |         |          |
| in the ground                                                                        | Robust (stem >5 cm diam.)        |      |      |         |          |
| Vine towers Dense columns of vines growing<br>crowns and stems                       | over and smothering tree         |      |      |         |          |
| Vine tangles Dense masses of interwoven vin<br>midstorey                             | e stems in understorey or        |      |      |         |          |
| Thorny scramblers Thicket-forming vines<br>or shrubs, often spiny, e.g. Calamus,     | Individual plants present        |      |      |         |          |
| lantana, cockspur, raspberry, other vines<br>(e.g. Eleagnus, Maesa)                  | Thickets present                 |      |      |         |          |
| Palm trees Palms with stems >2 m high                                                |                                  |      |      |         |          |
| Understorey palms with stems <2 m high, e.<br>includes juvenile palm trees)          | g. walking stick palms (also     |      |      |         |          |
| Tree ferns Ferns with stems usually >0.5 m h                                         | ligh                             |      |      |         |          |
| Ground ferns Ferns or fern-like plants without ground                                | ut stems, growing on the         |      | burn | · ····· |          |
| Clumping epiphytic ferns e.g. staghorns, bas                                         | sket ferns                       |      |      |         |          |
| Other epiphytes Growing on trees, e.g. trail<br>on ground                            | ing ferns, orchids, not rooted   |      |      |         |          |
| Cordylines 'Palm-tilies': shrubs to 5 m high,<br>long leaves                         | occasionally branched, with      |      |      |         |          |
| Herbs with long wide leaves e.g. gingers, cu                                         | injevoi, bananas                 |      |      |         |          |
| Herbs with long strap-like leaves e.g. lilies,                                       | mat-rush                         |      |      |         |          |
| Cycads Plants with leathery palm-like                                                | Stout stems, e.g.<br>Lepidozamia |      |      |         |          |
| ground (subterranean stems)                                                          | Ground cycads, e.g. Bowenia      |      |      |         |          |
| Pandanus Shrub / small tree with serrated st                                         | trap-like leaves                 |      |      |         |          |
| Other life forms: describe                                                           |                                  |      |      |         |          |

January 2009



| Woody debris = fallen logs and branches lying on or within 1 m of the ground.  |                            |                               |                             |                          |                          |                         |           |                       |                     |
|--------------------------------------------------------------------------------|----------------------------|-------------------------------|-----------------------------|--------------------------|--------------------------|-------------------------|-----------|-----------------------|---------------------|
| Tally the number of times log<br>a log is intercepted by the t<br>intersection | s are interc<br>ransect mo | cepted by the<br>bre than onc | 50 m tran<br>e, it is talli | sect, by d<br>ed each ti | iameter cl<br>ime, by di | ass at the<br>iameter a | t each of | Intersec<br>f the poi | tion. If<br>ints of |
| Tally intercepts with Fine woody debris Coarse woody del                       |                            |                               |                             | dy debris                | (CWD) > 10 cm diameter   |                         |           |                       |                     |
| class on each transect                                                         | 2.5-5 cm                   | 5-10 cm                       | 10-20                       | 20-30                    | 30-40                    | 40-50                   | 50-75     | 75-<br>100            | >10<br>0            |
| 50 m transect                                                                  |                            |                               |                             |                          |                          |                         |           |                       |                     |

## FORM D: PROFORMA FOR MONITORING FLORISTIC COMPOSITION

| Project name: | Project ID: |
|---------------|-------------|
| Site name:    | Site ID:    |
| Assessed by:  | Date:       |

LOCATION OF MONITORING PLOTS

| Provide details and also mark on the map of the site                                         | Plot |
|----------------------------------------------------------------------------------------------|------|
| Location at 0 m point of plot (grid / GPS coordinates):                                      |      |
| Datum:                                                                                       |      |
| Compass bearing / direction of transect (from 0 m point)                                     |      |
| Landform (e.g. plateau, crest, upper slope, mid-slope, lower slope, stream bank, floodplain) |      |
| Slope (: e.g. flat/steep)                                                                    |      |
| Aspect (compass bearing / direction of fall of slope)                                        |      |

### MAP OF MONITORING PLOTS

In the box, insert a map of the site showing the location of monitoring plots (mark 0 m point) in relation to notable features of the site (e.g. property boundaries, roads, waterways). Also show notable features of the monitoring plots (e.g. non-standard layout, presence of remnant trees) and location of any landscape photopoints. Include a scale bar (e.g. 0-100 m) and block arrow. North arrow.

| 1 |  |
|---|--|
| 1 |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
| 1 |  |
|   |  |
|   |  |
|   |  |
|   |  |
| 1 |  |
|   |  |
|   |  |
| 1 |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

January 2009

| name:              |                 |                                          | Date:                  |
|--------------------|-----------------|------------------------------------------|------------------------|
| GENERAL COM        | IENTS on th     | e composition of vegetation at the       | site (e.g. dominant or |
| notable species, v | ariation across | s the site): record by strata as follows | •                      |
| Canopy/ Ecolog     | ically Domi     | nant Layer:                              |                        |
| BANKSI             | A +             | CASUARINA                                | DOMINIANT              |
|                    |                 |                                          |                        |

Midstorey:

### Understorey/ Ground cover:

FERNS, GRASSES LEATE CITALE INCREASING AS TREES FURTHER ESTABLISH

**RECRUITMENT:** What species are common recruits to the site? Any other comments about recruitment?

Does this site have any WEED or MAINTENANCE ISSUES that need attention?

NIL.

Any other comments on the site? Mark an 'X' here \_\_\_\_\_ and add extra page(s) as required

January 2009



# **APPENDIX 4**

# DUNLOE SAND QUARRY TRUCK MOVEMENT SUMMARY 2017

| Date        | Truck Numbers |
|-------------|---------------|
| 9-Jan-2017  | 18            |
| 10-lan-2017 | 19            |
| 11-lan-2017 | 17            |
| 12-Jan-2017 | 17            |
| 13-Jan-2017 | 34            |
| 14-lan-2017 | 0             |
| 15-lan-2017 | 0             |
| 16-Jan-2017 | 18            |
| 17-Jan-2017 | 15            |
| 18-Jan-2017 | 14            |
| 19-Jan-2017 | 22            |
| 20-Jan-2017 | 26            |
| 21-lan-2017 | 0             |
| 22-Jan-2017 | 0             |
| 22 Jun 2017 | 11            |
| 23 Jan 2017 | 19            |
| 25-lan-2017 | 17            |
| 26-Jan-2017 | 0             |
| 20-Jan-2017 | 12            |
| 27-Jan-2017 | 0             |
| 20-Jan-2017 | 0             |
| 30-Jan-2017 | 23            |
| 31-Jan-2017 | 12            |
|             | 294           |
| 1-Eeb-2017  | 234           |
| 2-Feb-2017  | 19            |
| 3-Feb-2017  | 20            |
| 4-Feb-2017  | 0             |
| 5-Feb-2017  | 0             |
| 6-Feb-2017  | 0             |
| 7-Feb-2017  | 17            |
| 8-Feb-2017  | 17            |
| 9-Feb-2017  | 0             |
| 10-Feb-2017 | 15            |
| 11-Feb-2017 | 0             |
| 12-Feb-2017 | 0             |
| 13-Feb-2017 | 26            |
| 14-Feb-2017 | 25            |
| 15-Feb-2017 | 0             |
| 16-Feb-2017 | 21            |
| 17-Feb-2017 | 19            |
| 18-Feb-2017 | 0             |
| 19-Feb-2017 | 0             |
| 20-Feb-2017 | 21            |
| 21-Feb-2017 | 18            |
| 22-Feb-2017 | 18            |
| 23-Feb-2017 | 23            |
| 24-Feb-2017 | 16            |
| 25-Feb-2017 | 0             |
| 26-Feb-2017 | 0             |

| r           |     |
|-------------|-----|
| 27-Feb-2017 | 17  |
| 28-Feb-2017 | 14  |
| MONTH TOTAL | 330 |
| 1-Mar-2017  | 21  |
| 2-Mar-2017  | 19  |
| 3-Mar-2017  | 29  |
| 4-Mar-2017  | 5   |
| 5-Mar-2017  | 0   |
| 6-Mar-2017  | 19  |
| 7-Mar-2017  | 19  |
| 8-Mar-2017  | 20  |
| 9-Mar-2017  | 17  |
| 10-Mar-2017 | 16  |
| 11-Mar-2017 | 2   |
| 12-Mar-2017 | 0   |
| 13-Mar-2017 | 21  |
| 14-Mar-2017 | 7   |
| 15-Mar-2017 | 2   |
| 16-Mar-2017 | 17  |
| 17-Mar-2017 | 18  |
| 18-Mar-2017 | 0   |
| 19-Mar-2017 | 0   |
| 20-Mar-2017 | 13  |
| 21-Mar-2017 | 0   |
| 22-Mar-2017 | 12  |
| 23-Mar-2017 | 13  |
| 24-Mar-2017 | 25  |
| 25-Mar-2017 | 0   |
| 26-Mar-2017 | 0   |
| 27-Mar-2017 | 20  |
| 28-Mar-2017 | 18  |
| 29-Mar-2017 | 20  |
| 30-Mar-2017 | 0   |
| 31-Mar-2017 | 0   |
| MONTH TOTAL | 353 |
| 1-Apr-2017  | 0   |
| 2-Apr-2017  | 0   |
| 3-Apr-2017  | 0   |
| 4-Apr-2017  | 16  |
| 5-Apr-2017  | 18  |
| 6-Apr-2017  | 17  |
| 7-Apr-2017  | 31  |
| 8-Apr-2017  | 7   |
| 9-Apr-2017  | 0   |
| 10-Apr-2017 | 18  |
| 11-Apr-2017 | 23  |
| 12-Apr-2017 | 22  |
| 13-Apr-2017 | 15  |
| 14-Apr-2017 | 0   |
|             | •   |
| 15-Apr-2017 | 0   |

| r           |     |
|-------------|-----|
| 17-Apr-2017 | 0   |
| 18-Apr-2017 | 17  |
| 19-Apr-2017 | 15  |
| 20-Apr-2017 | 19  |
| 21-Apr-2017 | 25  |
| 22-Apr-2017 | 0   |
| 23-Apr-2017 | 0   |
| 24-Apr-2017 | 12  |
| 25-Apr-2017 | 0   |
| 26-Apr-2017 | 23  |
| 27-Apr-2017 | 15  |
| 28-Apr-2017 | 18  |
| 29-Apr-2017 | 0   |
| 30-Apr-2017 | 0   |
| MONTH TOTAL | 311 |
| 1-May-2017  | 8   |
| 2-May-2017  | 21  |
| 3-May-2017  | 17  |
| 4-May-2017  | 15  |
| 5-May-2017  | 21  |
| 6-May-2017  | 0   |
| 7-May-2017  | 0   |
| 8-May-2017  | 13  |
| 9-May-2017  | 15  |
| 10-May-2017 | 9   |
| 11-May-2017 | 14  |
| 12-May-2017 | 28  |
| 13-May-2017 | 0   |
| 14-May-2017 | 0   |
| 15-May-2017 | 15  |
| 16-May-2017 | 15  |
| 17-May-2017 | 17  |
| 18-May-2017 | 22  |
| 19-May-2017 | 0   |
| 20-May-2017 | 0   |
| 21-May-2017 | 0   |
| 22-May-2017 | 0   |
| 23-May-2017 | 10  |
| 24-May-2017 | 15  |
| 25-May-2017 | 13  |
| 26-May-2017 | 19  |
| 27-May-2017 | 0   |
| 28-May-2017 | 0   |
| 29-May-2017 | 22  |
| 30-May-2017 | 13  |
| 31-May-2017 | 17  |
| MONTH TOTAL | 339 |
| 1-lun-2017  | 38  |
| 2-lun-2017  | 26  |
| 3-lun-2017  | 0   |
| 4-lun-2017  | 0   |
|             | -   |

| 5-Jun-2017                                                                                                                                                                                                                                                                          | 24                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6-Jun-2017                                                                                                                                                                                                                                                                          | 25                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7-Jun-2017                                                                                                                                                                                                                                                                          | 17                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8-Jun-2017                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9-Jun-2017                                                                                                                                                                                                                                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10-Jun-2017                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11-Jun-2017                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12-Jun-2017                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13-Jun-2017                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 14-Jun-2017                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 15-Jun-2017                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 16-Jun-2017                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 17-Jun-2017                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 18-Jun-2017                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 19-Jun-2017                                                                                                                                                                                                                                                                         | 12                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20-Jun-2017                                                                                                                                                                                                                                                                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 21-Jun-2017                                                                                                                                                                                                                                                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22-Jun-2017                                                                                                                                                                                                                                                                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23-Jun-2017                                                                                                                                                                                                                                                                         | 19                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24-lun-2017                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 25-lun-2017                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 26-lun-2017                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 27-lun-2017                                                                                                                                                                                                                                                                         | 13                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 28-lun-2017                                                                                                                                                                                                                                                                         | 14                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 29-lun-2017                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 30-lun-2017                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MONTH TOTAL                                                                                                                                                                                                                                                                         | 281                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-Jul-2017                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2-Jul-2017                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3-Jul-2017                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                     | 1 15                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4-Jul-2017                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4-Jul-2017<br>5-Jul-2017                                                                                                                                                                                                                                                            | 15                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4-Jul-2017<br>5-Jul-2017<br>6-Jul-2017                                                                                                                                                                                                                                              | 15<br>15<br>19<br>12                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4-Jul-2017<br>5-Jul-2017<br>6-Jul-2017<br>7-Jul-2017                                                                                                                                                                                                                                | 15<br>15<br>19<br>12<br>0                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4-Jul-2017<br>5-Jul-2017<br>6-Jul-2017<br>7-Jul-2017<br>8-Jul-2017                                                                                                                                                                                                                  | 15<br>15<br>19<br>12<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                              |
| 4-Jul-2017<br>5-Jul-2017<br>6-Jul-2017<br>7-Jul-2017<br>8-Jul-2017<br>9-Jul-2017                                                                                                                                                                                                    | 15<br>15<br>19<br>12<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                         |
| 4-Jul-2017<br>5-Jul-2017<br>6-Jul-2017<br>7-Jul-2017<br>8-Jul-2017<br>9-Jul-2017<br>10-Jul-2017                                                                                                                                                                                     | 15<br>15<br>19<br>12<br>0<br>0<br>0<br>19                                                                                                                                                                                                                                                                                                                                                                                   |
| 4-Jul-2017<br>5-Jul-2017<br>6-Jul-2017<br>7-Jul-2017<br>8-Jul-2017<br>9-Jul-2017<br>10-Jul-2017<br>11-Jul-2017                                                                                                                                                                      | 15<br>15<br>19<br>12<br>0<br>0<br>0<br>19<br>19<br>17                                                                                                                                                                                                                                                                                                                                                                       |
| 4-Jul-2017<br>5-Jul-2017<br>6-Jul-2017<br>7-Jul-2017<br>8-Jul-2017<br>9-Jul-2017<br>10-Jul-2017<br>11-Jul-2017<br>12-Jul-2017                                                                                                                                                       | 15<br>15<br>19<br>12<br>0<br>0<br>0<br>19<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                       |
| 4-Jul-2017<br>5-Jul-2017<br>6-Jul-2017<br>7-Jul-2017<br>8-Jul-2017<br>9-Jul-2017<br>10-Jul-2017<br>11-Jul-2017<br>12-Jul-2017<br>13-Jul-2017                                                                                                                                        | 15<br>15<br>19<br>12<br>0<br>0<br>0<br>19<br>19<br>17<br>17<br>16                                                                                                                                                                                                                                                                                                                                                           |
| 4-Jul-2017<br>5-Jul-2017<br>6-Jul-2017<br>7-Jul-2017<br>8-Jul-2017<br>9-Jul-2017<br>10-Jul-2017<br>11-Jul-2017<br>12-Jul-2017<br>13-Jul-2017<br>14-Jul-2017                                                                                                                         | 15<br>15<br>19<br>12<br>0<br>0<br>0<br>19<br>17<br>17<br>16<br>16<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                               |
| 4-Jul-2017<br>5-Jul-2017<br>6-Jul-2017<br>7-Jul-2017<br>8-Jul-2017<br>9-Jul-2017<br>10-Jul-2017<br>11-Jul-2017<br>12-Jul-2017<br>13-Jul-2017<br>14-Jul-2017<br>15-Jul-2017                                                                                                          | 15<br>15<br>19<br>12<br>0<br>0<br>0<br>19<br>17<br>17<br>17<br>16<br>16<br>2                                                                                                                                                                                                                                                                                                                                                |
| 4-Jul-2017<br>5-Jul-2017<br>6-Jul-2017<br>7-Jul-2017<br>8-Jul-2017<br>9-Jul-2017<br>10-Jul-2017<br>11-Jul-2017<br>12-Jul-2017<br>13-Jul-2017<br>14-Jul-2017<br>15-Jul-2017<br>16-Jul-2017                                                                                           | 15<br>15<br>19<br>12<br>0<br>0<br>0<br>19<br>19<br>17<br>17<br>17<br>16<br>16<br>16<br>2<br>0                                                                                                                                                                                                                                                                                                                               |
| 4-Jul-2017<br>5-Jul-2017<br>6-Jul-2017<br>7-Jul-2017<br>8-Jul-2017<br>9-Jul-2017<br>10-Jul-2017<br>11-Jul-2017<br>12-Jul-2017<br>13-Jul-2017<br>14-Jul-2017<br>15-Jul-2017<br>16-Jul-2017<br>17-Jul-2017                                                                            | 15         15         19         12         0         0         19         17         17         16         16         2         0         14                                                                                                                                                                                                                                                                               |
| 4-Jul-2017<br>5-Jul-2017<br>6-Jul-2017<br>7-Jul-2017<br>8-Jul-2017<br>9-Jul-2017<br>10-Jul-2017<br>11-Jul-2017<br>12-Jul-2017<br>13-Jul-2017<br>14-Jul-2017<br>16-Jul-2017<br>17-Jul-2017<br>18-Jul-2017                                                                            | 15         15         19         12         0         0         19         17         17         16         16         2         0         14                                                                                                                                                                                                                                                                               |
| 4-Jul-2017<br>5-Jul-2017<br>6-Jul-2017<br>7-Jul-2017<br>8-Jul-2017<br>9-Jul-2017<br>10-Jul-2017<br>11-Jul-2017<br>12-Jul-2017<br>13-Jul-2017<br>14-Jul-2017<br>16-Jul-2017<br>17-Jul-2017<br>18-Jul-2017<br>19-Jul-2017                                                             | 13         15         19         12         0         0         17         17         16         16         16         14         15         17                                                                                                                                                                                                                                                                             |
| 4-Jul-2017<br>5-Jul-2017<br>6-Jul-2017<br>7-Jul-2017<br>8-Jul-2017<br>9-Jul-2017<br>10-Jul-2017<br>11-Jul-2017<br>12-Jul-2017<br>13-Jul-2017<br>14-Jul-2017<br>15-Jul-2017<br>16-Jul-2017<br>18-Jul-2017<br>19-Jul-2017<br>20-Jul-2017                                              | 15         15         19         12         0         0         17         17         16         16         16         14         15         17                                                                                                                                                                                                                                                                             |
| 4-Jul-2017<br>5-Jul-2017<br>6-Jul-2017<br>7-Jul-2017<br>8-Jul-2017<br>9-Jul-2017<br>10-Jul-2017<br>11-Jul-2017<br>12-Jul-2017<br>13-Jul-2017<br>14-Jul-2017<br>16-Jul-2017<br>18-Jul-2017<br>19-Jul-2017<br>20-Jul-2017<br>21-Jul-2017                                              | 13         15         19         12         0         0         12         0         12         0         12         0         12         0         19         17         16         2         0         14         15         17         16         2         0         14         15         17         16         21                                                                                                     |
| 4-Jul-2017<br>5-Jul-2017<br>6-Jul-2017<br>7-Jul-2017<br>8-Jul-2017<br>9-Jul-2017<br>10-Jul-2017<br>11-Jul-2017<br>12-Jul-2017<br>13-Jul-2017<br>14-Jul-2017<br>16-Jul-2017<br>18-Jul-2017<br>19-Jul-2017<br>20-Jul-2017<br>21-Jul-2017<br>22-Jul-2017                               | 15         15         19         12         0         0         17         17         16         16         15         17         16         16         16         17         16         2         0         14         15         17         16         2         0         14         15         17         16         21         0                                                                                       |
| 4-Jul-2017<br>5-Jul-2017<br>6-Jul-2017<br>7-Jul-2017<br>8-Jul-2017<br>9-Jul-2017<br>10-Jul-2017<br>11-Jul-2017<br>12-Jul-2017<br>13-Jul-2017<br>14-Jul-2017<br>16-Jul-2017<br>18-Jul-2017<br>19-Jul-2017<br>20-Jul-2017<br>21-Jul-2017<br>22-Jul-2017<br>23-Jul-2017                | 15         15         19         12         0         0         112         0         112         0         112         0         112         0         117         117         16         16         114         115         117         16         2         0         14         15         17         16         21         0         0         0         0         0         0         0         0         0         0 |
| 4-Jul-2017<br>5-Jul-2017<br>6-Jul-2017<br>7-Jul-2017<br>8-Jul-2017<br>9-Jul-2017<br>10-Jul-2017<br>11-Jul-2017<br>12-Jul-2017<br>13-Jul-2017<br>14-Jul-2017<br>16-Jul-2017<br>16-Jul-2017<br>19-Jul-2017<br>20-Jul-2017<br>21-Jul-2017<br>22-Jul-2017<br>23-Jul-2017<br>24-Jul-2017 | 13         15         19         0         0         0         12         0         0         17         17         16         2         0         14         15         17         16         2         0         14         15         17         16         21         0         0         177                                                                                                                           |

| 25-Jul-2017 | 14  |
|-------------|-----|
| 26-Jul-2017 | 9   |
| 27-Jul-2017 | 16  |
| 28-Jul-2017 | 18  |
| 29-Jul-2017 | 0   |
| 30-Jul-2017 | 0   |
| 31-Jul-2017 | 23  |
| MONTH TOTAL | 334 |
| 1-Aug-2017  | 16  |
| 2-Aug-2017  | 17  |
| 3-Aug-2017  | 13  |
| 4-Aug-2017  | 20  |
| 5-Aug-2017  | 0   |
| 6-Aug-2017  | 0   |
| 7-Aug-2017  | 16  |
| 8-Aug-2017  | 21  |
| 9-Aug-2017  | 27  |
| 10-Aug-2017 | 23  |
| 11-Aug-2017 | 14  |
| 12-Aug-2017 | 3   |
| 13-Aug-2017 | 0   |
| 14-Aug-2017 | 9   |
| 15-Aug-2017 | 18  |
| 16-Aug-2017 | 24  |
| 17-Aug-2017 | 0   |
| 18-Aug-2017 | 12  |
| 19-Aug-2017 | 0   |
| 20-Aug-2017 | 0   |
| 21-Aug-2017 | 20  |
| 22-Aug-2017 | 16  |
| 23-Aug-2017 | 13  |
| 24-Aug-2017 | 21  |
| 25-Aug-2017 | 18  |
| 26-Aug-2017 | 0   |
| 27-Aug-2017 | 0   |
| 28-Aug-2017 | 14  |
| 29-Aug-2017 | 14  |
| 30-Aug-2017 | 14  |
| 31-Aug-2017 | 19  |
| MONTH TOTAL | 382 |
| 1-Sep-2017  | 17  |
| 2-Sep-2017  | 0   |
| 3-Sep-2017  | 0   |
| 4-Sep-2017  | 29  |
| 5-Sep-2017  | 30  |
| 6-Sep-2017  | 22  |
| 7-Sep-2017  | 26  |
| 8-Sep-2017  | 16  |
| 9-Sep-2017  | 0   |
| 10-Sep-2017 | 0   |
| 11-Sep-2017 | 22  |

| 12-Sep-2017 | 26  |
|-------------|-----|
| 13-Sep-2017 | 23  |
| 14-Sep-2017 | 24  |
| 15-Sep-2017 | 16  |
| 16-Sep-2017 | 0   |
| 17-Sep-2017 | 0   |
| 18-Sep-2017 | 16  |
| 19-Sep-2017 | 19  |
| 20-Sep-2017 | 27  |
| 21-Sep-2017 | 23  |
| 22-Sep-2017 | 22  |
| 23-Sep-2017 | 0   |
| 24-Sep-2017 | 0   |
| 25-Sep-2017 | 22  |
| 26-Sep-2017 | 28  |
| 27-Sep-2017 | 16  |
| 28-Sep-2017 | 25  |
| 29-Sep-2017 | 17  |
| 30-Sep-2017 | 0   |
| MONTH TOTAL | 466 |
| 1-Oct-2017  | 0   |
| 2-Oct-2017  | 0   |
| 3-Oct-2017  | 22  |
| 4-Oct-2017  | 20  |
| 5-Oct-2017  | 17  |
| 6-Oct-2017  | 0   |
| 7-Oct-2017  | 4   |
| 8-Oct-2017  | 0   |
| 9-Oct-2017  | 29  |
| 10-Oct-2017 | 30  |
| 11-Oct-2017 | 30  |
| 12-Oct-2017 | 27  |
| 13-Oct-2017 | 17  |
| 14-Oct-2017 | 0   |
| 15-Oct-2017 | 0   |
| 16-Oct-2017 | 6   |
| 17-Oct-2017 | 8   |
| 18-Oct-2017 | 17  |
| 19-Oct-2017 | 24  |
| 20-Oct-2017 | 0   |
| 21-Oct-2017 | 1   |
| 22-Oct-2017 | 0   |
| 23-Oct-2017 | 19  |
| 24-Oct-2017 | 23  |
| 25-Oct-2017 | 26  |
| 26-Oct-2017 | 20  |
| 27-Oct-2017 | 19  |
| 27.0ct-2017 | 0   |
| 20 0ct-2017 | 0   |
| 30-Oct-2017 | 29  |
| 31-Oct-2017 | 23  |
| 51-000-2017 | L   |

| MONTH TOTAL | 411 |
|-------------|-----|
| 1-Nov-2017  | 20  |
| 2-Nov-2017  | 31  |
| 3-Nov-2017  | 24  |
| 4-Nov-2017  | 0   |
| 5-Nov-2017  | 0   |
| 6-Nov-2017  | 26  |
| 7-Nov-2017  | 24  |
| 8-Nov-2017  | 26  |
| 9-Nov-2017  | 17  |
| 10-Nov-2017 | 23  |
| 11-Nov-2017 | 4   |
| 12-Nov-2017 | 0   |
| 13-Nov-2017 | 21  |
| 14-Nov-2017 | 23  |
| 15-Nov-2017 | 23  |
| 16-Nov-2017 | 30  |
| 17-Nov-2017 | 28  |
| 18-Nov-2017 | 5   |
| 19-Nov-2017 | 0   |
| 20-Nov-2017 | 25  |
| 21-Nov-2017 | 22  |
| 22-Nov-2017 | 16  |
| 23-Nov-2017 | 25  |
| 24-Nov-2017 | 27  |
| 25-Nov-2017 | 4   |
| 26-Nov-2017 | 0   |
| 27-Nov-2017 | 37  |
| 28-Nov-2017 | 29  |
| 29-Nov-2017 | 20  |
| 30-Nov-2017 | 15  |
| MONTH TOTAL | 545 |
| 1-Dec-2017  | 18  |
| 2-Dec-2017  | 6   |
| 3-Dec-2017  | 0   |
| 4-Dec-2017  | 15  |
| 5-Dec-2017  | 21  |
| 6-Dec-2017  | 24  |
| 7-Dec-2017  | 21  |
| 8-Dec-2017  | 21  |
| 9-Dec-2017  | 0   |
| 10-Dec-2017 | 0   |
| 11-Dec-2017 | 31  |
| 12-Dec-2017 | 24  |
| 13-Dec-2017 | 25  |
| 14-Dec-2017 | 27  |
| 15-Dec-2017 | 22  |
| 16-Dec-2017 | 0   |
| 17-Dec-2017 | 0   |
| 18-Dec-2017 | 22  |
| 10 Dec 2017 | 28  |

| 20-Dec-2017       | 16   |
|-------------------|------|
| 21-Dec-2017       | 14   |
| 22-Dec-2017       | 0    |
| 23-Dec-2017       | 0    |
| 24-Dec-2017       | 0    |
| 25-Dec-2017       | 0    |
| 26-Dec-2017       | 0    |
| 27-Dec-2017       | 0    |
| 28-Dec-2017       | 0    |
| 29-Dec-2017       | 0    |
| 30-Dec-2017       | 0    |
| 31-Dec-2017       | 0    |
| MONTH TOTAL       | 335  |
| Total Trucks 2017 | 4381 |

## **APPENDIX 5**

# DUNLOE SAND QUARRY SUMMARY OF 2016 ACID SULPHATE SOIL MONITORING RESULTS



Holcim (Australia) Pty Ltd 799 Pacific Hwy Chatswood NSW 2067 Australia

ABN 87 099 732 297 Phone +61 2 9412 6600 www.holcim.com.au

## **Dunloe Sands Quarry**

## Summary of Acid Sulphate Soils Monitoring Results

| Sample | Identification |       |       |              | Net Acidity |
|--------|----------------|-------|-------|--------------|-------------|
| Number | Borehole/      | From  | То    | Date Sampled | (mol. H+/t) |
|        | Testpit        | (m)   |       |              |             |
| S1     | 1              | 0.00  | 0.50  | 12-Sep-16    | 10          |
| S2     | 1              | 0.50  | 1.00  | 12-Sep-16    | 3           |
| S3     | 1              | 1.00  | 1.50  | 12-Sep-16    | 58          |
| S4     | 1              | 1.50  | 2.00  | 12-Sep-16    | 146         |
| S5     | 1              | 2.00  | 2.50  | 12-Sep-16    | 96          |
| S6     | 1              | 2.50  | 3.00  | 12-Sep-16    | 79          |
| S7     | 1              | 3.00  | 3.50  | 12-Sep-16    | 73          |
| S8     | 1              | 3.50  | 4.00  | 12-Sep-16    | 35          |
| S9     | 1              | 4.00  | 4.50  | 12-Sep-16    | 39          |
| S10    | 1              | 4.50  | 5.00  | 12-Sep-16    | 38          |
| S11    | 1              | 5.00  | 5.50  | 12-Sep-16    | 22          |
| S12    | 1              | 5.50  | 6.00  | 12-Sep-16    | 127         |
| S13    | 1              | 6.00  | 6.50  | 12-Sep-16    | 38          |
| S14    | 1              | 6.50  | 7.00  | 12-Sep-16    | 50          |
| S15    | 1              | 7.00  | 7.50  | 12-Sep-16    | 34          |
| S16    | 1              | 7.50  | 8.00  | 12-Sep-16    | 42          |
| S17    | 1              | 8.00  | 8.50  | 12-Sep-16    | 0           |
| S18    | 1              | 8.50  | 9.00  | 12-Sep-16    | 0           |
| S19    | 1              | 9.00  | 9.50  | 12-Sep-16    | 0           |
| S20    | 1              | 9.50  | 10.00 | 12-Sep-16    | 0           |
| S21    | 1              | 10.00 | 10.50 | 12-Sep-16    | 0           |
| S22    | 1              | 10.50 | 11.00 | 12-Sep-16    | 0           |
| S23    | 1              | 11.00 | 11.50 | 12-Sep-16    | 0           |
| S24    | 1              | 11.50 | 12.00 | 12-Sep-16    | 0           |
| S25    | 1              | 12.00 | 12.50 | 12-Sep-16    | 0           |
| S26    | 1              | 12.50 | 13.00 | 12-Sep-16    | 0           |
| S27    | 1              | 13.00 | 13.50 | 12-Sep-16    | 0           |
| S28    | 1              | 13.50 | 14.00 | 12-Sep-16    | 0           |
| S29    | 1              | 14.00 | 14.50 | 12-Sep-16    | 0           |
| S30    | 1              | 14.50 | 15.00 | 12-Sep-16    | 0           |
| S31    | 1              | 15.00 | 15.50 | 12-Sep-16    | 0           |
| S32    | 1              | 15.50 | 16.00 | 12-Sep-16    | 163         |
| S33    | 1              | 16.00 | 16.50 | 12-Sep-16    | 139         |
| \$34   | 1              | 16.50 | 17.00 | 12-Sep-16    | 55          |
| S35    | 2              | 0.00  | 0.50  | 12-Sep-16    | 27          |
| \$36   | 2              | 0.50  | 1.00  | 12-Sep-16    | 2           |
| \$37   | 2              | 1.00  | 1.50  | 12-Sep-16    | 149         |
| \$38   | 2              | 1.50  | 2.00  | 12-Sep-16    | 168         |
| S39    | 2              | 2.00  | 2.50  | 12-Sep-16    | 110         |
| S40    | 2              | 2.50  | 3.00  | 12-Sep-16    | 175         |
| S41    | 2              | 3.00  | 3.50  | 12-Sep-16    | 49          |



Holcim (Australia) Pty Ltd 799 Pacific Hwy Chatswood NSW 2067 Australia ABN 87 099 732 297 Phone +61 2 9412 6600 www.holcim.com.au

| Sample | Identification |       |       |              | Net Acidity |
|--------|----------------|-------|-------|--------------|-------------|
| Number | Borehole/      | From  | То    | Date Sampled | (mol. H+/t) |
|        | Testpit        | (m    | )     |              | . ,         |
| S42    | 2              | 3.50  | 4.00  | 12-Sep-16    | 46          |
| S43    | 2              | 4.00  | 4.50  | 12-Sep-16    | 24          |
| S44    | 2              | 4.50  | 5.00  | 12-Sep-16    | 22          |
| S45    | 2              | 5.00  | 5.50  | 12-Sep-16    | 32          |
| S46    | 2              | 5.50  | 6.00  | 12-Sep-16    | 28          |
| S47    | 2              | 6.00  | 6.50  | 12-Sep-16    | 39          |
| S48    | 2              | 6.50  | 7.00  | 12-Sep-16    | 44          |
| S49    | 2              | 7.00  | 7.50  | 12-Sep-16    | 0           |
| S50    | 2              | 7.50  | 8.00  | 12-Sep-16    | 0           |
| S51    | 2              | 8.00  | 8.50  | 12-Sep-16    | 0           |
| S52    | 2              | 8.50  | 9.00  | 12-Sep-16    | 0           |
| S53    | 2              | 9.00  | 9.50  | 12-Sep-16    | 0           |
| S54    | 2              | 9.50  | 10.00 | 12-Sep-16    | 0           |
| S55    | 2              | 10.00 | 10.50 | 12-Sep-16    | 0           |
| S56    | 2              | 10.50 | 11.00 | 12-Sep-16    | 0           |
| S57    | 2              | 11.00 | 11.50 | 12-Sep-16    | 0           |
| S58    | 2              | 11.50 | 12.00 | 12-Sep-16    | 0           |
| S59    | 2              | 12.00 | 12.50 | 12-Sep-16    | 0           |
| S60    | 2              | 12.50 | 13.00 | 12-Sep-16    | 0           |
| S61    | 2              | 13.00 | 13.50 | 12-Sep-16    | 0           |
| S62    | 2              | 13.50 | 14.00 | 12-Sep-16    | 13          |
|        | 2              | 14.00 | 14.50 | 12-Sep-16    | 365         |
|        | 2              | 14.50 | 15.00 | 12-Sep-16    | 509         |
| S65    | 3              | 0.00  | 0.50  | 13-Sep-16    | 78          |
|        | 3              | 0.50  | 1.00  | 13-Sep-16    | 3           |
|        | 3              | 1.00  | 1.50  | 13-Sep-16    | 47          |
| S68    | 3              | 1.50  | 2.00  | 13-Sep-16    | 61          |
| S69    | 3              | 2.00  | 2.50  | 13-Sep-16    | 16          |
| S70    | 3              | 2.50  | 3.00  | 13-Sep-16    | 88          |
| S71    | 3              | 3.00  | 3.50  | 13-Sep-16    | 55          |
| S72    | 3              | 3.50  | 4 00  | 13-Sep-16    | 47          |
| S73    | 3              | 4 00  | 4 50  | 13-Sep-16    | 31          |
|        | 3              | 4 50  | 5.00  | 13-Sep-16    | 31          |
| S75    | 3              | 5.00  | 5.50  | 13-Sep-16    | 22          |
| S76    | 3              | 5.50  | 6.00  | 13-Sep-16    | 37          |
|        | 3              | 6.00  | 6.50  | 13-Sep-16    | 42          |
| S78    | 3              | 6.50  | 7 00  | 13-Sep-16    | 40          |
| S79    | 3              | 7 00  | 7.50  | 13-Sep-16    | 0           |
|        | 3              | 7.50  | 8.00  | 13-Sep-16    | 0           |
|        | 3              | 8.00  | 8.50  | 13-Sep-16    | 0           |
|        | 3              | 8.50  | 9.00  | 13-Sep-16    | 0           |
|        | 3              | 9,00  | 9.50  | 13-Sep-16    | 0           |
|        | 3              | 9.50  | 10.00 | 13-Sep-16    | 0           |
|        | 3              | 10.00 | 10.50 | 13-Sep-16    | 0           |
|        | 3              | 10.50 | 11 00 | 13-Sep-16    | 0           |
|        | 3              | 11 00 | 11.50 | 13-Sep-16    | 0           |
|        | 3              | 11.50 | 12,00 | 13-Sep-16    | 0           |
|        | 3              | 12.00 | 12.50 | 13-Sep-16    | 0           |
|        | -              |       |       |              | -           |


Holcim (Australia) Pty Ltd 799 Pacific Hwy Chatswood NSW 2067 Australia ABN 87 099 732 297 Phone +61 2 9412 6600 www.holcim.com.au

| Sample |           | Net Acidity |       |              |             |
|--------|-----------|-------------|-------|--------------|-------------|
| Number | Borehole/ | From        | То    | Date Sampled | (mol. H+/t) |
|        | Testpit   | (m          | )     |              |             |
| S90    | 3         | 12.50       | 13.00 | 13-Sep-16    | 0           |
| S91    | 3         | 13.00       | 13.50 | 13-Sep-16    | 0           |
| S92    | 3         | 13.50       | 14.00 | 13-Sep-16    | 0           |
| S93    | 3         | 14.00       | 14.50 | 13-Sep-16    | 0           |
| S94    | 3         | 14.50       | 15.00 | 13-Sep-16    | 623         |
| S95    | 3         | 15.00       | 15.50 | 13-Sep-16    | 1013        |
| S96    | 3         | 16.00       | 16.50 | 13-Sep-16    | 875         |
| S97    | 4         | 0.00        | 0.50  | 13-Sep-16    | 68          |
| S98    | 4         | 0.50        | 1.00  | 13-Sep-16    | 8           |
| S99    | 4         | 1.00        | 1.50  | 13-Sep-16    | 82          |
| S100   | 4         | 1.50        | 2.00  | 13-Sep-16    | 96          |
| S101   | 4         | 2.00        | 2.50  | 13-Sep-16    | 77          |
| S102   | 4         | 2.50        | 3.00  | 13-Sep-16    | 80          |
| S103   | 4         | 3.00        | 3.50  | 13-Sep-16    | 25          |
| S104   | 4         | 3.50        | 4.00  | 13-Sep-16    | 24          |
| S105   | 4         | 4.00        | 4.50  | 13-Sep-16    | 45          |
| S106   | 4         | 4.50        | 5.00  | 13-Sep-16    | 25          |
| S107   | 4         | 5.00        | 5.50  | 13-Sep-16    | 47          |
| S108   | 4         | 5.50        | 6.00  | 13-Sep-16    | 42          |
| S109   | 4         | 6.00        | 6.50  | 13-Sep-16    | 35          |
| S110   | 4         | 6.50        | 7.00  | 13-Sep-16    | 36          |
| S111   | 4         | 7.00        | 7.50  | 13-Sep-16    | 31          |
| S112   | 4         | 7.50        | 8.00  | 13-Sep-16    | 28          |
| S113   | 4         | 8.00        | 8.50  | 13-Sep-16    | 0           |
| S114   | 4         | 8.50        | 9.00  | 13-Sep-16    | 0           |
| S115   | 4         | 9.00        | 9.50  | 13-Sep-16    | 0           |
| S116   | 4         | 9.50        | 10.00 | 13-Sep-16    | 0           |
| S117   | 4         | 10.00       | 10.50 | 13-Sep-16    | 0           |
| S118   | 4         | 10.50       | 11.00 | 13-Sep-16    | 0           |
| S119   | 4         | 11.00       | 11.50 | 13-Sep-16    | 0           |
| S120   | 4         | 11.50       | 12.00 | 13-Sep-16    | 0           |
| S121   | 4         | 12.00       | 12.50 | 13-Sep-16    | 0           |
| S122   | 4         | 12.50       | 13.00 | 13-Sep-16    | 0           |
| S123   | 4         | 13.00       | 13.50 | 13-Sep-16    | 50          |
| S124   | 4         | 13.50       | 14.00 | 13-Sep-16    | 41          |
| S125   | 5         | 0.00        | 0.50  | 13-Sep-16    | 45          |
| S126   | 5         | 0.50        | 1.00  | 13-Sep-16    | 6           |
| S127   | 5         | 1.00        | 1.50  | 13-Sep-16    | 86          |
| S128   | 5         | 1.50        | 2.00  | 13-Sep-16    | 83          |
| S129   | 5         | 2.00        | 2.50  | 13-Sep-16    | 70          |
| S130   | 5         | 2.50        | 3.00  | 13-Sep-16    | 71          |
| S131   | 5         | 3.00        | 3.50  | 13-Sep-16    | 42          |
| \$132  | 5         | 3.50        | 4.00  | 13-Sep-16    | 49          |
| \$133  | 5         | 4.00        | 4.50  | 13-Sep-16    | 28          |
| S134   | 5         | 4.50        | 5.00  | 13-Sep-16    | 42          |
| \$135  | 5         | 5.00        | 5.50  | 13-Sep-16    | 27          |
| \$136  | 5         | 5.50        | 6.00  | 13-Sep-16    | 39          |
| \$137  | 5         | 6.00        | 6.50  | 13-Sep-16    | 35          |
| 2.57   |           |             | 0.00  |              | ~~          |



Holcim (Australia) Pty Ltd 799 Pacific Hwy Chatswood NSW 2067 Australia ABN 87 099 732 297 Phone +61 2 9412 6600 www.holcim.com.au

| Bumber Borehole/<br>Testpit From<br>(m) To<br>(m) Date Sampled<br>(mol. H+t) (mol. H+t)   \$138 5 6.50 7.00 13-Sep-16 42   \$139 5 7.00 7.50 13-Sep-16 0   \$140 5 8.00 8.50 13-Sep-16 0   \$141 5 8.00 8.50 13-Sep-16 0   \$143 5 9.00 13-Sep-16 0 0   \$143 5 9.00 13-Sep-16 0 0   \$144 5 9.50 13-Sep-16 0 0   \$144 5 10.50 11.00 13-Sep-16 0   \$144 5 11.00 11.50 12.50 13-Sep-16 0   \$147 5 11.00 13-Sep-16 0 0 13-Sep-16 10   \$148 5 14.50 13.50 13-Sep-16 14 0 13-Sep-16 14   \$155 6 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample | Identification |       |       |              | Net Acidity |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|-------|-------|--------------|-------------|
| Testpit(m)S1385 $6.50$ $7.00$ $13.Sep-16$ $0$ S1395 $7.00$ $7.50$ $13.Sep-16$ $0$ S1405 $7.50$ $8.00$ $13.Sep-16$ $0$ S1415 $8.00$ $8.50$ $13.Sep-16$ $0$ S1425 $8.50$ $9.00$ $13.Sep-16$ $0$ S1435 $9.00$ $9.50$ $13.Sep-16$ $0$ S1445 $9.50$ $10.00$ $13.Sep-16$ $0$ S1455 $10.00$ $10.50$ $13.Sep-16$ $0$ S1475 $11.00$ $11.50$ $13.Sep-16$ $0$ S1475 $11.00$ $11.50$ $13.Sep-16$ $0$ S1485 $11.50$ $12.00$ $13.Sep-16$ $0$ S1495 $12.00$ $12.50$ $13.Sep-16$ $14$ S1505 $12.50$ $13.00$ $13.Sep-16$ $14$ S1525 $13.50$ $14.00$ $13.Sep-16$ $143$ S1545 $14.50$ $15.00$ $13.Sep-16$ $143$ S1556 $0.00$ $0.50$ $13.Sep-16$ $143$ S1566 $0.50$ $1.00$ $13.Sep-16$ $39$ S1576 $1.00$ $1.50$ $13.Sep-16$ $39$ S1586 $1.50$ $2.00$ $13.Sep-16$ $39$ S1596 $2.00$ $2.50$ $13.Sep-16$ $39$ S1596 $2.00$ $13.Sep-16$ $20$ S16                                                                                                                                                                                                                                                                                                                                                                                         | Number | Borehole/      | From  | То    | Date Sampled | (mol. H+/t) |
| S13856.507.0013-Sep-1642S13957.007.5013-Sep-160S14057.508.0013-Sep-160S14158.008.5013-Sep-160S14258.509.0013-Sep-160S14359.009.5013-Sep-160S145510.0010.5013-Sep-160S145510.0011.5013-Sep-160S146511.5011.0013-Sep-160S147511.0011.5013-Sep-160S148511.5012.0013-Sep-160S150512.5013.0013-Sep-160S151513.0013.5013-Sep-1614S152514.0014.5013-Sep-1614S15560.000.5013-Sep-16143S154514.5015.0013-Sep-1614S15560.000.5013-Sep-1637S16062.503.0013-Sep-1637S16062.503.0013-Sep-1637S16163.003.5013-Sep-1637S16263.5013-Sep-1637S16364.004.5013-Sep-1620S16464.505.0013-Sep-1628S16565.00<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | Testpit        | (m)   |       | •            | -           |
| S13957.007.50 $13$ -Sep-160S14057.508.00 $13$ -Sep-160S14158.00 $8.50$ $13$ -Sep-160S1425 $8.50$ $9.00$ $13$ -Sep-160S1435 $9.00$ $9.50$ $13$ -Sep-160S1445 $9.50$ $10.00$ $13$ -Sep-160S1455 $10.00$ $10.50$ $13$ -Sep-160S1465 $10.00$ $11.50$ $13$ -Sep-160S1475 $11.00$ $11.50$ $13$ -Sep-160S1485 $12.00$ $12.50$ $13.80$ 13-Sep-160S1505 $12.50$ $13.00$ $13$ -Sep-1614S1525 $13.50$ $14.00$ $13$ -Sep-1614S1535 $14.00$ $14.50$ $13$ -Sep-16140S1545 $14.50$ $15.00$ $13$ -Sep-16140S1556 $0.00$ $0.50$ $13$ -Sep-16140S1566 $0.50$ $1.00$ $13$ -Sep-1639S1586 $1.50$ $2.00$ $13$ -Sep-1639S1596 $2.00$ $2.50$ $13$ -Sep-1639S1606 $2.50$ $3.00$ $13$ -Sep-1620S1626 $3.50$ $4.00$ $13$ -Sep-1620S1646 $4.50$ $5.00$ $13$ -Sep-1624S1666 $5.50$ $13$ -Sep-162                                                                                                                                                                                                                                                                                                                                                                                                                                             | S138   | 5              | 6.50  | 7.00  | 13-Sep-16    | 42          |
| \$14057.508.00 $13$ -Sep-160 $$141$ 58.008.50 $13$ -Sep-160 $$142$ 58.509.00 $13$ -Sep-160 $$143$ 59.00 $9.50$ $13$ -Sep-160 $$144$ 59.50 $10.00$ $13$ -Sep-160 $$144$ 59.50 $11.00$ $13$ -Sep-160 $$145$ 5 $10.00$ $11.50$ $13$ -Sep-160 $$146$ 5 $11.50$ $12.00$ $13$ -Sep-160 $$148$ 5 $11.50$ $12.00$ $13$ -Sep-160 $$148$ 5 $12.00$ $12.50$ $13$ -Sep-160 $$150$ 5 $12.00$ $12.50$ $13$ -Sep-1614 $$152$ 5 $13.50$ $14.00$ $13$ -Sep-1614 $$152$ 5 $14.00$ $14.50$ $13$ -Sep-16140 $$155$ 6 $0.00$ $0.50$ $13$ -Sep-16140 $$155$ 6 $0.00$ $1.50$ $13$ -Sep-1618 $$157$ 6 $1.00$ $1.50$ $13$ -Sep-1638 $$158$ 6 $2.50$ $3.00$ $13$ -Sep-1637 $$160$ 6 $2.50$ $3.00$ $13$ -Sep-1639 $$161$ 6 $3.00$ $3.50$ $13$ -Sep-1639 $$162$ 6 $3.50$ $4.00$ $13$ -Sep-1638 $$163$ 6 $5.50$ $5.00$ $13$ -Sep-1624 $$166$ 6 $5.50$ $13$                                                                                                                                                                                                                                                                                                                                                                                    | S139   | 5              | 7.00  | 7.50  | 13-Sep-16    | 0           |
| S14158.008.5013-Sep-160 $S142$ 58.509.0013-Sep-160 $S143$ 59.5010.0013-Sep-160 $S144$ 59.5010.0013-Sep-160 $S145$ 510.0010.5013-Sep-160 $S146$ 510.5011.0013-Sep-160 $S146$ 511.5012.5013-Sep-160 $S148$ 511.5012.5013-Sep-160 $S149$ 512.5013.0013-Sep-1614 $S150$ 512.5013.0013-Sep-1614 $S152$ 513.5014.0013-Sep-1614 $S153$ 514.0014.5013-Sep-16140 $S154$ 514.5015.513-Sep-16140 $S155$ 60.000.5013-Sep-16140 $S155$ 60.001.5013-Sep-1638 $S156$ 60.501.0013-Sep-1639 $S160$ 62.503.0013-Sep-1639 $S160$ 62.503.0013-Sep-1639 $S161$ 63.003.5013-Sep-1624 $S164$ 64.505.0013-Sep-1624 $S164$ 64.505.0013-Sep-1624 $S164$ 65.506.0013-Sep-1624 $S164$ 65.5013-Sep-162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S140   | 5              | 7.50  | 8.00  | 13-Sep-16    | 0           |
| \$142 5 8.50 9.00 13-Sep-16 0 $$143$ 5 9.00 9.50 13-Sep-16 0 $$144$ 5 9.50 10.00 13-Sep-16 0 $$145$ 5 10.00 10.50 13-Sep-16 0 $$145$ 5 10.50 11.00 13-Sep-16 0 $$148$ 5 11.50 12.00 13-Sep-16 0 $$148$ 5 12.50 13-Sep-16 0 0 $$149$ 5 12.50 13-Sep-16 1 0 $$150$ 5 12.50 13-Sep-16 14 3 $$151$ 5 13.00 13-Sep-16 143 3 $$154$ 5 14.50 13-Sep-16 143 $$155$ 6 0.00 0.50 13-Sep-16 13 $$154$ 5 14.50 13-Sep-16 38 $$156$ 6 2.00 13-Sep-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S141   | 5              | 8.00  | 8.50  | 13-Sep-16    | 0           |
| \$14359.009.5013-Sep-160 $$144$ 59.5010.0013-Sep-160 $$145$ 510.0011.0013-Sep-160 $$146$ 510.5011.0013-Sep-160 $$144$ 511.5012.0013-Sep-160 $$148$ 511.5013.0013-Sep-160 $$149$ 512.0012.5013-Sep-160 $$150$ 513.0013-Sep-1614 $$152$ 513.5014.0013-Sep-1614 $$152$ 513.5014.0013-Sep-16140 $$153$ 514.0014.5013-Sep-16140 $$154$ 514.5013-Sep-16140 $$155$ 60.000.5013-Sep-16140 $$155$ 60.001.5013-Sep-1638 $$156$ 60.501.0013-Sep-1639 $$158$ 61.502.0013-Sep-1639 $$159$ 62.002.5013-Sep-1639 $$161$ 63.003.5013-Sep-1639 $$161$ 63.003.5013-Sep-1620 $$162$ 65.5013-Sep-1620 $$163$ 64.004.5013-Sep-1624 $$164$ 64.505.0013-Sep-1626 $$165$ 65.005.5013-Sep-1624 $$166$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S142   | 5              | 8.50  | 9.00  | 13-Sep-16    | 0           |
| \$14459.5010.0013-Sep-160 $$145$ 510.0010.5013-Sep-160 $$146$ 511.0011.5013-Sep-160 $$147$ 511.0011.5013-Sep-160 $$148$ 511.5012.0013-Sep-160 $$149$ 512.0013-Sep-160 $$149$ 512.0013-Sep-161 $$150$ 512.5013.0013-Sep-1614 $$152$ 513.5013.5013-Sep-1614 $$152$ 513.5013-Sep-16140 $$153$ 514.0014.5013-Sep-16140 $$155$ 60.000.5013-Sep-1645 $$156$ 60.501.0013-Sep-1638 $$158$ 61.5013-Sep-1639 $$159$ 62.002.5013-Sep-1639 $$159$ 62.002.5013-Sep-1639 $$161$ 63.003.5013-Sep-1620 $$162$ 63.504.0013-Sep-1620 $$163$ 64.004.5013-Sep-1620 $$164$ 64.505.5013-Sep-1624 $$164$ 65.5013-Sep-1624 $$164$ 65.5013-Sep-1624 $$164$ 66.507.0013-Sep-1624 $$165$ 65.0013-Sep-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S143   | 5              | 9.00  | 9.50  | 13-Sep-16    | 0           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S144   | 5              | 9.50  | 10.00 | 13-Sep-16    | 0           |
| \$146510.5011.0013-Sep-160 $$148$ 511.5012.0013-Sep-160 $$148$ 511.5012.0013-Sep-160 $$149$ 512.0012.5013-Sep-160 $$150$ 512.5013.0013-Sep-1614 $$152$ 513.0013.5013-Sep-1614 $$152$ 514.0014.5013-Sep-16143 $$154$ 514.5015.0013-Sep-16140 $$155$ 60.000.5013-Sep-1618 $$155$ 60.001.0013-Sep-1618 $$156$ 60.501.0013-Sep-1638 $$158$ 61.502.0013-Sep-1639 $$158$ 61.502.0013-Sep-1639 $$161$ 63.003.5013-Sep-1639 $$162$ 63.5013-Sep-1639 $$161$ 63.003.5013-Sep-1620 $$162$ 65.5013-Sep-1620 $$164$ 64.505.0013-Sep-1624 $$165$ 65.005.5013-Sep-1624 $$166$ 65.506.0013-Sep-1624 $$168$ 66.507.0013-Sep-1624 $$168$ 66.507.0013-Sep-160 $$171$ 68.008.5013-Sep-160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S145   | 5              | 10.00 | 10.50 | 13-Sep-16    | 0           |
| \$1475 $11.00$ $11.50$ $13.Sep-16$ 0 $$148$ 5 $11.50$ $12.00$ $13.Sep-16$ 0 $$149$ 5 $12.00$ $13.50$ $13.Sep-16$ 0 $$150$ 5 $12.50$ $13.00$ $13.Sep-16$ 14 $$152$ 5 $13.00$ $13.50$ $13.Sep-16$ 14 $$152$ 5 $13.50$ $14.00$ $13.Sep-16$ 143 $$153$ 5 $14.00$ $14.50$ $13.Sep-16$ 143 $$154$ 5 $14.50$ $15.00$ $13.Sep-16$ 140 $$155$ 6 $0.00$ $0.50$ $13.Sep-16$ 144 $$157$ 6 $1.00$ $1.50$ $13.Sep-16$ 38 $$158$ 6 $1.50$ $2.00$ $13.Sep-16$ 39 $$159$ 6 $2.00$ $2.50$ $13.Sep-16$ 39 $$160$ 6 $2.50$ $3.00$ $13.Sep-16$ 39 $$161$ 6 $3.50$ $4.00$ $13.Sep-16$ 28 $$162$ 6 $3.50$ $4.00$ $13.Sep-16$ 28 $$164$ 6 $4.50$ $5.00$ $13.Sep-16$ 28 $$164$ 6 $5.50$ $6.00$ $13.Sep-16$ 24 $$166$ 6 $5.50$ $13.Sep-16$ 24 $$166$ 6 $6.50$ $7.00$ $13.Sep-16$ 24 $$168$ 6 $6.50$ $7.00$ $13.Sep-16$ 0 $$177$ 6 $8.00$ $8.50$ $13.Sep-16$                                                                                                                                                                                                                                                                                                                                                                                | S146   | 5              | 10.50 | 11.00 | 13-Sep-16    | 0           |
| S148511.5012.0013-Sep-160S150512.5013.0013-Sep-160S151513.0013.S013-Sep-1614S152513.5014.0013-Sep-16143S154514.0014.5013-Sep-16144S15560.000.5013-Sep-16144S15560.000.5013-Sep-1618S15660.501.0013-Sep-1638S15761.001.5013-Sep-1639S15862.002.5013-Sep-1639S16062.503.0013-Sep-1639S16163.003.5013-Sep-1620S16263.504.0013-Sep-1620S16464.505.0013-Sep-1620S16565.003.5013-Sep-1626S16565.005.5013-Sep-1624S16665.506.0013-Sep-1624S16665.507.0013-Sep-1624S16766.006.5013-Sep-1624S16665.5013-Sep-1624S16565.005.5013-Sep-1624S16665.507.0013-Sep-160S17168.008.5013-Sep-160S17268.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S147   | 5              | 11.00 | 11.50 | 13-Sep-16    | 0           |
| \$149512.0012.5013.Sep-160 $$150$ 512.5013.0013.Sep-1614 $$151$ 513.0013.5013.Sep-16144 $$152$ 513.5014.0013.Sep-16143 $$154$ 514.5015.0013.Sep-16143 $$154$ 514.5013.Sep-16144 $$155$ 60.000.5013.Sep-1645 $$156$ 60.501.0013.Sep-1638 $$157$ 61.001.5013.Sep-1639 $$158$ 62.503.0013.Sep-1639 $$159$ 62.002.5013.Sep-1639 $$160$ 62.503.0013.Sep-1620 $$161$ 63.003.5013.Sep-1620 $$162$ 63.504.0013.Sep-1628 $$163$ 64.004.5013.Sep-1628 $$164$ 64.505.0013.Sep-1624 $$166$ 65.506.0013.Sep-1624 $$166$ 66.507.0013.Sep-160 $$170$ 67.508.0013.Sep-160 $$171$ 68.008.5013.Sep-160 $$171$ 69.009.5013.Sep-160 $$174$ 69.009.5013.Sep-160 $$174$ 69.009.5013.Sep-160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S148   | 5              | 11.50 | 12.00 | 13-Sep-16    | 0           |
| \$150512.5013.0013-Sep-160 $$151$ 513.0013.5013-Sep-1614 $$152$ 513.5014.0013-Sep-16143 $$153$ 514.0014.5013-Sep-16143 $$154$ 514.5015.0013-Sep-16140 $$155$ 60.000.5013-Sep-1618 $$155$ 60.001.5013-Sep-1618 $$156$ 60.501.0013-Sep-1638 $$157$ 61.001.5013-Sep-1639 $$158$ 62.002.5013-Sep-1639 $$159$ 62.002.5013-Sep-1639 $$160$ 62.503.0013-Sep-1620 $$161$ 63.003.5013-Sep-1620 $$162$ 63.504.0013-Sep-1628 $$163$ 64.004.5013-Sep-1628 $$164$ 64.505.0013-Sep-1624 $$166$ 65.506.0013-Sep-1624 $$167$ 66.006.5013-Sep-1628 $$168$ 66.507.0013-Sep-160 $$170$ 67.508.0013-Sep-160 $$171$ 68.008.5013-Sep-160 $$174$ 69.009.5013-Sep-160 $$174$ 69.0013-Sep-160<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S149   | 5              | 12.00 | 12.50 | 13-Sep-16    | 0           |
| S151513.0013.5013.Sep-1614S152513.5014.0013.Sep-16176S153514.0014.5013.Sep-16143S154514.5015.0013.Sep-16140S15560.000.5013.Sep-1645S15660.501.0013.Sep-1638S15761.001.5013.Sep-1639S15862.002.5013.Sep-1639S15962.002.5013.Sep-1639S16062.503.0013.Sep-1636S16163.003.5013.Sep-1620S16263.504.0013.Sep-1636S16364.004.5013.Sep-1628S16465.506.0013.Sep-1624S16565.005.5013.Sep-1624S16666.507.0013.Sep-1638S16766.006.5013.Sep-1636S16866.507.0013.Sep-160S17067.508.0013.Sep-160S17168.008.5013.Sep-160S17369.009.5013.Sep-160S17469.5010.0013.Sep-160S175610.0011.5013.Sep-160S1746<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S150   | 5              | 12.50 | 13.00 | 13-Sep-16    | 0           |
| S152513.5014.0013-Sep-16176S153514.0014.5013-Sep-16143S154514.0015.0013-Sep-16140S15560.000.5013-Sep-1645S15660.501.0013-Sep-1638S15761.001.5013-Sep-1639S15861.502.0013-Sep-1639S15962.002.5013-Sep-1639S16062.503.0013-Sep-1639S16163.003.5013-Sep-1620S16263.504.0013-Sep-1626S16364.004.5013-Sep-1626S16464.505.0013-Sep-1626S16565.005.5013-Sep-1624S16665.506.0013-Sep-1624S16866.507.0013-Sep-1624S16866.507.0013-Sep-1631S17067.508.0013-Sep-160S17168.008.5013-Sep-160S17268.509.0013-Sep-160S17469.009.5013-Sep-160S176610.5011.0013-Sep-160S176610.0013-Sep-160S176610.00 <t< td=""><td>S151</td><td>5</td><td>13.00</td><td>13.50</td><td>13-Sep-16</td><td>14</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S151   | 5              | 13.00 | 13.50 | 13-Sep-16    | 14          |
| \$153514.0014.5013-Sep-16143 $$154$ 514.5015.0013-Sep-16140 $$155$ 60.000.5013-Sep-16140 $$155$ 60.501.0013-Sep-1618 $$157$ 61.001.5013-Sep-1638 $$158$ 61.502.0013-Sep-1639 $$159$ 62.002.5013-Sep-1639 $$160$ 62.503.0013-Sep-1639 $$161$ 63.003.5013-Sep-1620 $$162$ 63.504.0013-Sep-1626 $$163$ 64.004.5013-Sep-1626 $$164$ 64.505.0013-Sep-1628 $$164$ 66.505.0013-Sep-1624 $$166$ 65.506.0013-Sep-1624 $$166$ 66.507.0013-Sep-1624 $$168$ 66.507.0013-Sep-1628 $$168$ 66.507.0013-Sep-160 $$170$ 67.508.0013-Sep-160 $$172$ 68.509.0013-Sep-160 $$173$ 69.009.5013-Sep-160 $$174$ 69.5010.0013-Sep-160 $$174$ 69.5013.0013-Sep-160 $$174$ 69.5013.0013-Sep-16 <t< td=""><td>S152</td><td>5</td><td>13.50</td><td>14.00</td><td>13-Sep-16</td><td>176</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                             | S152   | 5              | 13.50 | 14.00 | 13-Sep-16    | 176         |
| \$154514.5015.0013-Sep-16140 $$155$ 60.000.5013-Sep-1645 $$156$ 60.501.0013-Sep-1618 $$157$ 61.001.5013-Sep-1638 $$158$ 61.502.0013-Sep-1639 $$159$ 62.002.5013-Sep-1639 $$160$ 62.503.0013-Sep-1639 $$161$ 63.003.5013-Sep-1620 $$162$ 63.504.0013-Sep-1626 $$163$ 64.004.5013-Sep-1628 $$164$ 64.505.0013-Sep-1624 $$165$ 65.005.5013-Sep-1624 $$166$ 65.506.0013-Sep-1624 $$166$ 66.507.0013-Sep-1624 $$166$ 66.507.0013-Sep-1628 $$168$ 66.507.0013-Sep-160 $$170$ 67.508.0013-Sep-160 $$172$ 68.509.0013-Sep-160 $$174$ 69.5010.0013-Sep-160 $$174$ 69.5013-Sep-160 $$174$ 69.5013-Sep-160 $$174$ 69.5013-Sep-160 $$174$ 69.5013-Sep-160 $$176$ 610.50 <td< td=""><td>S153</td><td>5</td><td>14.00</td><td>14.50</td><td>13-Sep-16</td><td>143</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S153   | 5              | 14.00 | 14.50 | 13-Sep-16    | 143         |
| \$1556 $0.00$ $0.50$ $13$ -Sep-16 $45$ $$156$ 6 $0.50$ $1.00$ $13$ -Sep-16 $18$ $$157$ 6 $1.00$ $1.50$ $13$ -Sep-16 $38$ $$158$ 6 $1.50$ $2.00$ $13$ -Sep-16 $39$ $$159$ 6 $2.00$ $2.50$ $13$ -Sep-16 $39$ $$159$ 6 $2.00$ $2.50$ $13$ -Sep-16 $39$ $$160$ 6 $2.50$ $3.00$ $13$ -Sep-16 $39$ $$161$ 6 $3.00$ $3.50$ $13$ -Sep-16 $20$ $$162$ 6 $3.50$ $4.00$ $13$ -Sep-16 $28$ $$163$ 6 $4.00$ $4.50$ $13$ -Sep-16 $28$ $$164$ 6 $4.50$ $5.00$ $13$ -Sep-16 $24$ $$165$ 6 $5.00$ $5.50$ $13$ -Sep-16 $24$ $$166$ 6 $6.50$ $7.00$ $13$ -Sep-16 $24$ $$167$ 6 $6.00$ $6.50$ $13$ -Sep-16 $28$ $$168$ 6 $6.50$ $7.00$ $13$ -Sep-16 $24$ $$168$ 6 $6.50$ $7.00$ $13$ -Sep-16 $0$ $$170$ 6 $7.00$ $7.50$ $13$ -Sep-16 $0$ $$172$ 6 $8.50$ $9.00$ $13$ -Sep-16 $0$ $$173$ 6 $9.00$ $9.50$ $13$ -Sep-16 $0$ $$174$ 6 $9.50$ $10.00$ $13$ -Sep-16 $0$ $$174$ 6 $9.50$ $10.00$ $13$ -Sep-16 $0$ <trr< td=""><td>S154</td><td>5</td><td>14.50</td><td>15.00</td><td>13-Sep-16</td><td>140</td></trr<>                                                                                                                                                                                                                      | S154   | 5              | 14.50 | 15.00 | 13-Sep-16    | 140         |
| S1566 $0.50$ $1.00$ $13$ -Sep-16 $18$ S1576 $1.00$ $1.50$ $13$ -Sep-16 $38$ S1586 $1.50$ $2.00$ $13$ -Sep-16 $39$ S1596 $2.00$ $2.50$ $13$ -Sep-16 $39$ S1606 $2.50$ $3.00$ $13$ -Sep-16 $39$ S1616 $3.00$ $3.50$ $13$ -Sep-16 $39$ S1626 $3.50$ $4.00$ $13$ -Sep-16 $26$ S1636 $4.00$ $4.50$ $13$ -Sep-16 $28$ S1646 $4.50$ $5.00$ $13$ -Sep-16 $24$ S1656 $5.00$ $5.50$ $13$ -Sep-16 $24$ S1666 $5.50$ $6.00$ $13$ -Sep-16 $24$ S1666 $5.50$ $6.00$ $13$ -Sep-16 $24$ S1676 $6.00$ $6.50$ $13$ -Sep-16 $24$ S1686 $6.50$ $7.00$ $13$ -Sep-16 $31$ S169 $6$ $7.00$ $7.50$ $13$ -Sep-16 $0$ S170 $6$ $7.50$ $8.00$ $13$ -Sep-16 $0$ S172 $6$ $8.50$ $9.00$ $13$ -Sep-16 $0$ S173 $6$ $9.00$ $9.50$ $13$ -Sep-16 $0$ S174 $6$ $9.50$ $10.00$ $13$ -Sep-16 $0$ S175 $6$ $10.00$ $11.50$ $13$ -Sep-16 $0$ S176 $6$ $10.50$ $11.00$ $13$ -Sep-16 $0$ S176 $6$ <                                                                                                                                                                                                                                                                                                                                                      | S155   | 6              | 0.00  | 0.50  | 13-Sep-16    | 45          |
| S15761.001.5013-Sep-1638 $S158$ 61.502.0013-Sep-1639 $S159$ 62.002.5013-Sep-1637 $S160$ 62.503.0013-Sep-1639 $S161$ 63.003.5013-Sep-1620 $S162$ 63.504.0013-Sep-1626 $S163$ 64.004.5013-Sep-1628 $S164$ 64.505.0013-Sep-1626 $S165$ 65.005.5013-Sep-1624 $S166$ 65.506.0013-Sep-1624 $S166$ 66.507.0013-Sep-1628 $S168$ 66.507.0013-Sep-1628 $S169$ 67.007.5013-Sep-1621 $S170$ 67.508.0013-Sep-160 $S172$ 68.509.0013-Sep-160 $S173$ 69.009.5013-Sep-160 $S174$ 69.5010.0013-Sep-160 $S176$ 610.5011.0013-Sep-160 $S178$ 611.5012.0013-Sep-160 $S178$ 611.5012.0013-Sep-160 $S178$ 611.5013.0013-Sep-160 $S178$ 611.5013.0013-Sep-160 $S178$ 611.5013.0013-Sep-16 <t< td=""><td>S156</td><td>6</td><td>0.50</td><td>1.00</td><td>13-Sep-16</td><td>18</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S156   | 6              | 0.50  | 1.00  | 13-Sep-16    | 18          |
| $\$158$ 6 $1.50$ $2.00$ $13 \cdot \text{Sep-16}$ $39$ $\$159$ 6 $2.00$ $2.50$ $13 \cdot \text{Sep-16}$ $37$ $\$160$ 6 $2.50$ $3.00$ $13 \cdot \text{Sep-16}$ $39$ $\$161$ 6 $3.00$ $3.50$ $13 \cdot \text{Sep-16}$ $20$ $\$162$ 6 $3.50$ $4.00$ $13 \cdot \text{Sep-16}$ $20$ $\$162$ 6 $3.50$ $4.00$ $13 \cdot \text{Sep-16}$ $28$ $\$164$ 6 $4.50$ $5.00$ $13 \cdot \text{Sep-16}$ $24$ $\$165$ 6 $5.50$ $6.00$ $13 \cdot \text{Sep-16}$ $24$ $\$166$ 6 $5.50$ $6.00$ $13 \cdot \text{Sep-16}$ $24$ $\$166$ 6 $6.50$ $7.00$ $13 \cdot \text{Sep-16}$ $28$ $\$168$ 6 $6.50$ $7.00$ $13 \cdot \text{Sep-16}$ $28$ $\$168$ 6 $6.50$ $7.00$ $13 \cdot \text{Sep-16}$ $0$ $\$170$ 6 $7.50$ $8.00$ $13 \cdot \text{Sep-16}$ $0$ $\$171$ 6 $8.00$ $8.50$ $13 \cdot \text{Sep-16}$ $0$ $\$172$ 6 $8.50$ $9.00$ $13 \cdot \text{Sep-16}$ $0$ $\$174$ 6 $9.50$ $10.00$ $13 \cdot \text{Sep-16}$ $0$ $\$175$ 6 $10.00$ $10.50$ $13 \cdot \text{Sep-16}$ $0$ $\$178$ 6 $11.50$ $12.00$ $13 \cdot \text{Sep-16}$ $0$ $\$178$ 6 $11.50$ $12.00$ $13 \cdot \text{Sep-16}$ $0$ $\$178$ 6 $11.50$ $12.00$ $13 \cdot \text{Sep-16}$ $0$ </td <td>S157</td> <td>6</td> <td>1.00</td> <td>1.50</td> <td>13-Sep-16</td> <td>38</td> | S157   | 6              | 1.00  | 1.50  | 13-Sep-16    | 38          |
| $S159$ 6 $2.00$ $2.50$ $13\cdot\text{Sep-16}$ $37$ $S160$ 6 $2.50$ $3.00$ $13\cdot\text{Sep-16}$ $39$ $S161$ 6 $3.00$ $3.50$ $13\cdot\text{Sep-16}$ $20$ $S162$ 6 $3.50$ $4.00$ $13\cdot\text{Sep-16}$ $28$ $S163$ 6 $4.00$ $4.50$ $13\cdot\text{Sep-16}$ $28$ $S164$ 6 $4.50$ $5.00$ $13\cdot\text{Sep-16}$ $24$ $S165$ 6 $5.00$ $5.50$ $13\cdot\text{Sep-16}$ $24$ $S166$ 6 $5.50$ $6.00$ $13\cdot\text{Sep-16}$ $24$ $S167$ 6 $6.00$ $6.50$ $13\cdot\text{Sep-16}$ $28$ $S168$ 6 $6.50$ $7.00$ $13\cdot\text{Sep-16}$ $28$ $S168$ 6 $6.50$ $7.00$ $13\cdot\text{Sep-16}$ $28$ $S169$ 6 $7.00$ $7.50$ $13\cdot\text{Sep-16}$ $0$ $S171$ 6 $8.00$ $8.50$ $13\cdot\text{Sep-16}$ $0$ $S172$ 6 $8.50$ $9.00$ $13\cdot\text{Sep-16}$ $0$ $S173$ 6 $9.00$ $9.50$ $13\cdot\text{Sep-16}$ $0$ $S174$ 6 $9.50$ $10.00$ $13\cdot\text{Sep-16}$ $0$ $S177$ 6 $11.00$ $11.50$ $13\cdot\text{Sep-16}$ $0$ $S178$ 6 $11.50$ $12.00$ $13\cdot\text{Sep-16}$ $0$ $S178$ 6 $11.50$ $12.00$ $13\cdot\text{Sep-16}$ $0$ $S181$ 6 $13.50$ $13.00$ $13\cdot\text{Sep-16}$ $0$ $S181$ 6 $14.$                                                                                                                                       | S158   | 6              | 1.50  | 2.00  | 13-Sep-16    | 39          |
| S16062.50 $3.00$ $13$ -Sep-16 $39$ S1616 $3.00$ $3.50$ $13$ -Sep-16 $20$ S1626 $3.50$ $4.00$ $13$ -Sep-16 $28$ S1636 $4.00$ $4.50$ $13$ -Sep-16 $28$ S1646 $4.50$ $5.00$ $13$ -Sep-16 $26$ S1656 $5.00$ $5.50$ $13$ -Sep-16 $24$ S1666 $5.50$ $6.00$ $13$ -Sep-16 $24$ S1676 $6.00$ $6.50$ $13$ -Sep-16 $28$ S1686 $6.50$ $7.00$ $13$ -Sep-16 $28$ S1696 $7.00$ $7.50$ $13$ -Sep-16 $0$ S1706 $7.50$ $8.00$ $13$ -Sep-16 $0$ S1716 $8.00$ $8.50$ $13$ -Sep-16 $0$ S1726 $8.50$ $9.00$ $13$ -Sep-16 $0$ S1736 $9.00$ $9.50$ $13$ -Sep-16 $0$ S1746 $9.50$ $10.00$ $13$ -Sep-16 $0$ S1756 $10.00$ $10.50$ $13$ -Sep-16 $0$ S1776 $11.00$ $11.50$ $13$ -Sep-16 $0$ S1786 $11.50$ $12.00$ $13$ -Sep-16 $0$ S1806 $12.50$ $13.00$ $13$ -Sep-16 $0$ S1816 $13.00$ $13.50$ $13$ -Sep-16 $0$ S1846 $14.00$ $14.50$ $13$ -Sep-16 $0$ S1856 $15.00$                                                                                                                                                                                                                                                                                                                                                                        | S159   | 6              | 2.00  | 2.50  | 13-Sep-16    | 37          |
| S1616 $3.00$ $3.50$ $13$ -Sep-16 $20$ S1626 $3.50$ $4.00$ $13$ -Sep-16 $36$ S1636 $4.00$ $4.50$ $13$ -Sep-16 $28$ S1646 $4.50$ $5.00$ $13$ -Sep-16 $26$ S1656 $5.00$ $5.50$ $13$ -Sep-16 $24$ S1666 $5.50$ $6.00$ $13$ -Sep-16 $24$ S1676 $6.00$ $6.50$ $13$ -Sep-16 $28$ S1686 $6.50$ $7.00$ $13$ -Sep-16 $31$ S1696 $7.00$ $7.50$ $13$ -Sep-16 $0$ S1706 $7.50$ $8.00$ $13$ -Sep-16 $0$ S1716 $8.00$ $8.50$ $13$ -Sep-16 $0$ S1726 $8.50$ $9.00$ $13$ -Sep-16 $0$ S1736 $9.00$ $9.50$ $13$ -Sep-16 $0$ S1746 $9.50$ $10.00$ $13$ -Sep-16 $0$ S1756 $10.00$ $11.50$ $13$ -Sep-16 $0$ S1766 $11.00$ $11.50$ $13$ -Sep-16 $0$ S1786 $11.20$ $12.50$ $13$ -Sep-16 $0$ S1806 $12.50$ $13.00$ $13$ -Sep-16 $0$ S1816 $13.50$ $13.50$ $13$ -Sep-16 $0$ S1836 $14.00$ $14.50$ $13$ -Sep-16 $0$ S1846 $14.50$ $15.50$ $13$ -Sep-16 $0$                                                                                                                                                                                                                                                                                                                                                                                  | S160   | 6              | 2.50  | 3.00  | 13-Sep-16    | 39          |
| S1626 $3.50$ $4.00$ $13$ -Sep-16 $36$ S1636 $4.00$ $4.50$ $13$ -Sep-16 $28$ S1646 $4.50$ $5.00$ $13$ -Sep-16 $26$ S1656 $5.00$ $5.50$ $13$ -Sep-16 $24$ S1666 $5.50$ $6.00$ $13$ -Sep-16 $24$ S1666 $5.50$ $6.00$ $13$ -Sep-16 $24$ S1676 $6.00$ $6.50$ $13$ -Sep-16 $28$ S1686 $6.50$ $7.00$ $13$ -Sep-16 $31$ S1696 $7.00$ $7.50$ $13$ -Sep-16 $0$ S1706 $7.50$ $8.00$ $13$ -Sep-16 $0$ S1716 $8.00$ $8.50$ $13$ -Sep-16 $0$ S1726 $8.50$ $9.00$ $13$ -Sep-16 $0$ S1736 $9.00$ $9.50$ $13$ -Sep-16 $0$ S1746 $9.50$ $10.00$ $13$ -Sep-16 $0$ S1756 $10.00$ $10.50$ $13$ -Sep-16 $0$ S1766 $11.00$ $11.50$ $13$ -Sep-16 $0$ S1786 $11.50$ $12.00$ $13$ -Sep-16 $0$ S1806 $12.50$ $13.00$ $13$ -Sep-16 $0$ S1816 $13.00$ $13.50$ $13$ -Sep-16 $0$ S1836 $14.00$ $14.50$ $13$ -Sep-16 $0$ S1846 $14.50$ $15.00$ $13$ -Sep-16 $0$ S1856 $15.00$ </td <td>S161</td> <td>6</td> <td>3.00</td> <td>3.50</td> <td>13-Sep-16</td> <td>20</td>                                                                                                                                                                                                                                                                           | S161   | 6              | 3.00  | 3.50  | 13-Sep-16    | 20          |
| S1636 $4.00$ $4.50$ $13$ -Sep-16 $28$ $S164$ 6 $4.50$ $5.00$ $13$ -Sep-16 $26$ $S165$ 6 $5.00$ $5.50$ $13$ -Sep-16 $24$ $S166$ 6 $5.50$ $6.00$ $13$ -Sep-16 $41$ $S167$ 6 $6.00$ $6.50$ $13$ -Sep-16 $28$ $S168$ 6 $6.50$ $7.00$ $13$ -Sep-16 $28$ $S169$ 6 $7.00$ $7.50$ $13$ -Sep-16 $0$ $S170$ 6 $7.50$ $8.00$ $13$ -Sep-16 $0$ $S171$ 6 $8.00$ $8.50$ $13$ -Sep-16 $0$ $S172$ 6 $8.50$ $9.00$ $13$ -Sep-16 $0$ $S173$ 6 $9.00$ $9.50$ $13$ -Sep-16 $0$ $S174$ 6 $9.50$ $10.00$ $13$ -Sep-16 $0$ $S175$ 6 $10.00$ $10.50$ $13$ -Sep-16 $0$ $S176$ 6 $10.50$ $11.00$ $13$ -Sep-16 $0$ $S177$ 6 $11.00$ $11.50$ $13$ -Sep-16 $0$ $S178$ 6 $12.00$ $12.50$ $13$ -Sep-16 $0$ $S178$ 6 $12.50$ $13.00$ $13$ -Sep-16 $0$ $S180$ 6 $12.50$ $13.00$ $13$ -Sep-16 $0$ $S181$ 6 $13.50$ $14.00$ $13$ -Sep-16 $0$ $S183$ 6 $14.00$ $14.50$ $13$ -Sep-16 $0$ $S184$ 6 $14.50$ $15.00$ $13$ -Sep-16 $0$ <                                                                                                                                                                                                                                                                                                                  | S162   | 6              | 3.50  | 4.00  | 13-Sep-16    | 36          |
| \$1646 $4.50$ $5.00$ $13$ -Sep-16 $26$ $$165$ 6 $5.00$ $5.50$ $13$ -Sep-16 $24$ $$166$ 6 $5.50$ $6.00$ $13$ -Sep-16 $41$ $$167$ 6 $6.00$ $6.50$ $13$ -Sep-16 $28$ $$168$ 6 $6.50$ $7.00$ $13$ -Sep-16 $28$ $$169$ 6 $7.00$ $7.50$ $13$ -Sep-16 $0$ $$170$ 6 $7.50$ $8.00$ $13$ -Sep-16 $0$ $$171$ 6 $8.00$ $8.50$ $13$ -Sep-16 $0$ $$172$ 6 $8.50$ $9.00$ $13$ -Sep-16 $0$ $$173$ 6 $9.00$ $9.50$ $13$ -Sep-16 $0$ $$174$ 6 $9.50$ $10.00$ $13$ -Sep-16 $0$ $$175$ 6 $10.00$ $10.50$ $13$ -Sep-16 $0$ $$176$ 6 $10.50$ $11.00$ $13$ -Sep-16 $0$ $$177$ 6 $11.00$ $11.50$ $13$ -Sep-16 $0$ $$177$ 6 $11.00$ $11.50$ $13$ -Sep-16 $0$ $$178$ 6 $11.50$ $12.00$ $13$ -Sep-16 $0$ $$180$ 6 $12.50$ $13.00$ $13$ -Sep-16 $0$ $$181$ 6 $13.00$ $13.50$ $13$ -Sep-16 $0$ $$183$ 6 $14.00$ $14.50$ $13$ -Sep-16 $0$ $$183$ 6 $14.00$ $14.50$ $13$ -Sep-16 $0$ $$184$ 6 $14.50$ $15.00$ $13$ -Sep-16 $0$                                                                                                                                                                                                                                                                                                                  | S163   | 6              | 4.00  | 4.50  | 13-Sep-16    | 28          |
| \$165 6 5.00 5.50 13-Sep-16 24   \$166 6 5.50 6.00 13-Sep-16 41   \$167 6 6.00 6.50 13-Sep-16 28   \$168 6 6.50 7.00 13-Sep-16 31   \$169 6 7.00 7.50 13-Sep-16 0   \$170 6 7.50 8.00 13-Sep-16 0   \$171 6 8.00 8.50 13-Sep-16 0   \$172 6 8.50 9.00 13-Sep-16 0   \$173 6 9.00 9.50 13-Sep-16 0   \$174 6 9.50 10.00 13-Sep-16 0   \$175 6 10.00 10.50 13-Sep-16 0   \$175 6 10.00 10.50 13-Sep-16 0   \$176 6 10.00 10.50 13-Sep-16 0   \$177 6 11.00 <t< td=""><td>S164</td><td>6</td><td>4.50</td><td>5.00</td><td>13-Sep-16</td><td>26</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S164   | 6              | 4.50  | 5.00  | 13-Sep-16    | 26          |
| S16665.506.00 $13$ -Sep-1641S16766.006.50 $13$ -Sep-1628S16866.50 $7.00$ $13$ -Sep-1631S1696 $7.00$ $7.50$ $13$ -Sep-160S1706 $7.50$ $8.00$ $13$ -Sep-160S1716 $8.00$ $8.50$ $13$ -Sep-160S1726 $8.50$ $9.00$ $13$ -Sep-160S1736 $9.00$ $9.50$ $13$ -Sep-160S1746 $9.50$ $10.00$ $13$ -Sep-160S1756 $10.00$ $10.50$ $13$ -Sep-160S1766 $10.50$ $11.00$ $13$ -Sep-160S1776 $11.00$ $11.50$ $13$ -Sep-160S1786 $12.00$ $12.50$ $13$ -Sep-160S1806 $12.50$ $13.00$ $13$ -Sep-160S1816 $13.00$ $13.50$ $13$ -Sep-160S1826 $13.50$ $14.00$ $13$ -Sep-160S1836 $14.00$ $14.50$ $13$ -Sep-160S1846 $14.50$ $15.00$ $13$ -Sep-160S1856 $15.00$ $15.50$ $13$ -Sep-160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S165   | 6              | 5.00  | 5.50  | 13-Sep-16    | 24          |
| S167 6 6.00 6.50 13-Sep-16 28   S168 6 6.50 7.00 13-Sep-16 31   S169 6 7.00 7.50 13-Sep-16 0   S170 6 7.50 8.00 13-Sep-16 0   S170 6 7.50 8.00 13-Sep-16 0   S171 6 8.00 8.50 13-Sep-16 0   S172 6 8.50 9.00 13-Sep-16 0   S173 6 9.00 9.50 13-Sep-16 0   S174 6 9.50 10.00 13-Sep-16 0   S175 6 10.00 10.50 13-Sep-16 0   S175 6 10.00 10.50 13-Sep-16 0   S176 6 10.50 11.00 13-Sep-16 0   S177 6 11.00 11.50 13-Sep-16 0   S177 6 11.50 <t< td=""><td>S166</td><td>6</td><td>5.50</td><td>6.00</td><td>13-Sep-16</td><td>41</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S166   | 6              | 5.50  | 6.00  | 13-Sep-16    | 41          |
| S168 6 6.50 7.00 13-Sep-16 31   S168 6 7.00 7.50 13-Sep-16 0   S170 6 7.50 8.00 13-Sep-16 0   S171 6 8.00 8.50 13-Sep-16 0   S171 6 8.00 8.50 13-Sep-16 0   S172 6 8.50 9.00 13-Sep-16 0   S173 6 9.00 9.50 13-Sep-16 0   S174 6 9.50 10.00 13-Sep-16 0   S175 6 10.00 10.50 13-Sep-16 0   S175 6 10.00 10.50 13-Sep-16 0   S176 6 10.00 10.50 13-Sep-16 0   S177 6 11.00 13-Sep-16 0   S178 6 11.50 13.00 13-Sep-16 0   S180 6 12.50 13.00 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S167   | 6              | 6.00  | 6.50  | 13-Sep-16    | 28          |
| S169 6 7.00 7.50 13-Sep-16 0   S170 6 7.50 8.00 13-Sep-16 0   S171 6 8.00 8.50 13-Sep-16 0   S172 6 8.50 9.00 13-Sep-16 0   S173 6 9.00 9.50 13-Sep-16 0   S174 6 9.50 13-Sep-16 0   S175 6 10.00 13-Sep-16 0   S176 6 10.00 13-Sep-16 0   S177 6 11.00 13-Sep-16 0   S176 6 10.00 10.50 13-Sep-16 0   S177 6 11.00 11.50 13-Sep-16 0   S177 6 11.00 11.50 13-Sep-16 0   S178 6 11.50 12.00 13-Sep-16 0   S180 6 12.50 13.00 13-Sep-16 0 <t< td=""><td>S168</td><td>6</td><td>6.50</td><td>7.00</td><td>13-Sep-16</td><td>31</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S168   | 6              | 6.50  | 7.00  | 13-Sep-16    | 31          |
| S170 6 7.50 8.00 13-Sep-16 0   S170 6 7.50 8.00 13-Sep-16 0   S171 6 8.00 8.50 13-Sep-16 0   S172 6 8.50 9.00 13-Sep-16 0   S173 6 9.00 9.50 13-Sep-16 0   S174 6 9.50 10.00 13-Sep-16 0   S175 6 10.00 10.50 13-Sep-16 0   S176 6 10.00 10.50 13-Sep-16 0   S176 6 10.00 10.50 13-Sep-16 0   S177 6 11.00 13-Sep-16 0   S177 6 11.00 13-Sep-16 0   S178 6 11.50 12.00 13-Sep-16 0   S180 6 12.00 12.50 13-Sep-16 0   S180 6 12.50 13.00 13-Sep-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S169   | 6              | 7.00  | 7.50  | 13-Sep-16    | 0           |
| S171 6 8.00 8.50 13-Sep-16 0   S172 6 8.50 9.00 13-Sep-16 0   S173 6 9.00 9.50 13-Sep-16 0   S174 6 9.50 13-Sep-16 0   S175 6 10.00 13-Sep-16 0   S175 6 10.00 10.50 13-Sep-16 0   S176 6 10.00 10.50 13-Sep-16 0   S176 6 10.00 10.50 13-Sep-16 0   S177 6 11.00 13-Sep-16 0 0   S177 6 11.00 13-Sep-16 0 0   S178 6 11.50 12.00 13-Sep-16 0   S179 6 12.00 13-Sep-16 0   S180 6 12.50 13.00 13-Sep-16 0   S181 6 13.00 13-Sep-16 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S170   | 6              | 7.50  | 8.00  | 13-Sep-16    | 0           |
| S172 6 8.50 9.00 13-Sep-16 0   S173 6 9.00 9.50 13-Sep-16 0   S174 6 9.50 10.00 13-Sep-16 0   S175 6 10.00 10.50 13-Sep-16 0   S175 6 10.00 10.50 13-Sep-16 0   S176 6 10.00 10.50 13-Sep-16 0   S177 6 11.00 13-Sep-16 0   S177 6 11.00 13-Sep-16 0   S178 6 11.00 13-Sep-16 0   S178 6 11.50 12.00 13-Sep-16 0   S179 6 12.00 12.50 13.00 13-Sep-16 0   S180 6 12.50 13.00 13-Sep-16 0 0   S181 6 13.00 13.50 13-Sep-16 0 0   S182 6 13.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S171   | 6              | 8.00  | 8.50  | 13-Sep-16    | 0           |
| S173 6 9.00 9.50 13-Sep-16 0   S173 6 9.00 9.50 13-Sep-16 0   S174 6 9.50 10.00 13-Sep-16 0   S175 6 10.00 10.50 13-Sep-16 0   S176 6 10.00 10.50 13-Sep-16 0   S176 6 10.50 11.00 13-Sep-16 0   S177 6 11.00 11.50 13-Sep-16 0   S178 6 11.50 12.00 13-Sep-16 0   S179 6 12.00 12.50 13-Sep-16 0   S180 6 12.50 13.00 13-Sep-16 0   S181 6 13.00 13-Sep-16 0 0   S182 6 13.50 14.00 13-Sep-16 0   S183 6 14.00 14.50 13-Sep-16 0   S184 6 14.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S172   | 6              | 8.50  | 9.00  | 13-Sep-16    | 0           |
| S174 6 9.50 10.00 13-Sep-16 0   S175 6 10.00 10.50 13-Sep-16 0   S175 6 10.00 10.50 13-Sep-16 0   S176 6 10.50 11.00 13-Sep-16 0   S177 6 11.00 11.50 13-Sep-16 0   S177 6 11.00 11.50 13-Sep-16 0   S178 6 11.50 12.00 13-Sep-16 0   S179 6 12.00 12.50 13-Sep-16 0   S180 6 12.50 13.00 13-Sep-16 0   S181 6 13.00 13-Sep-16 0   S182 6 13.50 13-Sep-16 0   S183 6 14.00 14.50 13-Sep-16 0   S183 6 14.00 14.50 13-Sep-16 0   S184 6 14.50 15.00 13-Sep-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S173   | 6              | 9.00  | 9.50  | 13-Sep-16    | 0           |
| S175 6 10.00 10.50 13-Sep-16 0   S176 6 10.50 11.00 13-Sep-16 0   S176 6 10.50 11.00 13-Sep-16 0   S177 6 11.00 11.50 13-Sep-16 0   S178 6 11.50 12.00 13-Sep-16 0   S178 6 11.50 12.00 13-Sep-16 0   S179 6 12.00 12.50 13-Sep-16 0   S180 6 12.50 13.00 13-Sep-16 0   S181 6 13.00 13-Sep-16 0   S182 6 13.50 13-Sep-16 0   S182 6 13.50 14.00 13-Sep-16 0   S183 6 14.00 14.50 13-Sep-16 0   S184 6 14.50 15.00 13-Sep-16 0   S185 6 15.00 13-Sep-16 0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S174   | 6              | 9.50  | 10.00 | 13-Sep-16    | 0           |
| S176 6 10.50 11.00 13-Sep-16 0   S176 6 10.50 11.00 13-Sep-16 0   S177 6 11.00 11.50 13-Sep-16 0   S178 6 11.50 12.00 13-Sep-16 0   S179 6 12.00 12.50 13-Sep-16 0   S180 6 12.50 13.00 13-Sep-16 0   S180 6 12.50 13.00 13-Sep-16 0   S181 6 13.00 13-Sep-16 0   S182 6 13.50 14.00 13-Sep-16 0   S183 6 14.00 14.50 13-Sep-16 0   S183 6 14.00 14.50 13-Sep-16 0   S184 6 14.50 15.00 13-Sep-16 0   S185 6 15.00 13-Sep-16 0 359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S175   | 6              | 10.00 | 10.50 | 13-Sep-16    | 0           |
| S170 G 11.00 11.50 13-Sep-16 0   S177 6 11.00 11.50 13-Sep-16 0   S178 6 11.50 12.00 13-Sep-16 0   S179 6 12.00 12.50 13-Sep-16 0   S180 6 12.50 13.00 13-Sep-16 0   S180 6 12.50 13.00 13-Sep-16 0   S181 6 13.00 13.50 13-Sep-16 0   S182 6 13.50 14.00 13-Sep-16 0   S183 6 14.00 14.50 13-Sep-16 0   S184 6 14.50 13-Sep-16 0   S185 6 15.00 13-Sep-16 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S176   | 6              | 10.50 | 11.00 | 13-Sep-16    | 0           |
| S178 6 11.50 12.00 13-Sep-16 0   S178 6 11.50 12.00 13-Sep-16 0   S179 6 12.00 12.50 13-Sep-16 0   S180 6 12.50 13.00 13-Sep-16 0   S181 6 12.50 13.00 13-Sep-16 0   S181 6 13.00 13.50 13-Sep-16 0   S182 6 13.50 14.00 13-Sep-16 0   S183 6 14.00 14.50 13-Sep-16 0   S184 6 14.50 15.00 13-Sep-16 0   S185 6 15.00 13-Sep-16 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S177   | 6              | 11.00 | 11.50 | 13-Sep-16    | 0           |
| S170 G 11.00 12.00 10 Step 10 0   S179 6 12.00 12.50 13-Sep-16 0   S180 6 12.50 13.00 13-Sep-16 0   S181 6 13.00 13-Sep-16 0   S182 6 13.50 13-Sep-16 0   S183 6 14.00 14.50 13-Sep-16 0   S183 6 14.00 14.50 13-Sep-16 0   S184 6 14.50 15.00 13-Sep-16 0   S185 6 15.00 13-Sep-16 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S178   | 6              | 11.50 | 12 00 | 13-Sep-16    | 0           |
| S180 6 12.50 13.00 13-Sep-16 0   S180 6 12.50 13.00 13-Sep-16 0   S181 6 13.00 13.50 13-Sep-16 0   S182 6 13.50 14.00 13-Sep-16 0   S183 6 14.00 14.50 13-Sep-16 0   S183 6 14.00 14.50 13-Sep-16 0   S184 6 14.50 15.00 13-Sep-16 0   S185 6 15.00 13-Sep-16 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S179   | 6              | 12.00 | 12.50 | 13-Sep-16    | 0           |
| S181 6 13.00 13.50 13-Sep-16 0   S181 6 13.00 13.50 13-Sep-16 0   S182 6 13.50 14.00 13-Sep-16 0   S183 6 14.00 14.50 13-Sep-16 0   S184 6 14.50 15.00 13-Sep-16 0   S185 6 15.00 13-Sep-16 359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S180   | 6              | 12.50 | 13.00 | 13-Sep-16    | 0           |
| S182 6 13.50 14.00 13-Sep-16 0   S183 6 14.00 14.50 13-Sep-16 0   S184 6 14.50 15.00 13-Sep-16 0   S185 6 14.50 15.00 13-Sep-16 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S181   | 6              | 13.00 | 13,50 | 13-Sep-16    | 0           |
| S183 6 14.00 14.50 13-Sep-16 0   S184 6 14.50 15.00 13-Sep-16 0   S185 6 15.00 15.50 13-Sep-16 359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S182   | 6              | 13 50 | 14 00 | 13-Sep-16    | 0           |
| S184 6 14.50 15.00 13-Sep-16 0   S185 6 15.00 15.50 13-Sep-16 359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S183   | 6              | 14.00 | 14.50 | 13-Sep-16    | 0           |
| S185 6 15.00 15.50 13-Sep-16 359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S184   | 6              | 14.50 | 15.00 | 13-Sep-16    | 0           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S185   | 6              | 15.00 | 15.50 | 13-Sep-16    | 359         |

Aggregates



Holcim (Australia) Pty Ltd 799 Pacific Hwy Chatswood NSW 2067 Australia

ABN 87 099 732 297 Phone +61 2 9412 6600 www.holcim.com.au

| Sample |           | Net Acidity |       |              |             |
|--------|-----------|-------------|-------|--------------|-------------|
| Number | Borehole/ | From        | То    | Date Sampled | (mol. H+/t) |
|        | Testpit   | (m)         |       | 7            |             |
| S186   | 6         | 15.50       | 16.00 | 13-Sep-16    | 953         |
| S187   | 6         | 16.00       | 16.50 | 13-Sep-16    | 1720        |
| S188   | 6         | 16.50       | 17.00 | 13-Sep-16    | 1596        |
| S189   | 6         | 17.00       | 17.50 | 13-Sep-16    | 1140        |
| S190   | 6         | 17.50       | 18.00 | 13-Sep-16    | 1605        |

Source: Soil Surveys, Geotechnical Investigation – Holcim Dunloe Sands Quarry, Pottsville, dated 24 November 2016.