

AIR QUALITY IMPACT ASSSESSMENT

PROPOSED MINOR MODIFICATION TO HOLCIM REGIONAL DISTRIBUTION CENTRE (RDC) ROOTY HILL

Umwelt (Australia) Pty Limited

Job No: 3869

1 September 2010

PROJECT TITLE:	PROPOSED MINOR MODIFICATION TO HOLCIM REGIONAL DISTRIBUTION CENTRE (RDC) ROOTY HILL
JOB NUMBER:	3869
PREPARED FOR:	Emma Lodge
	UMWELT (AUSTRALIA) PTY LIMITED
PREPARED BY:	Philip Henschke
QA PROCEDURES CHECKED BY:	Aleks Todoroski
APPROVED FOR RELEASE BY:	Aleks Todoroski
DISCLAIMER & COPYRIGHT:	This report is subject to the copyright statement located at <u>www.paeholmes.com</u> © Queensland Environment Pty Ltd trading as PAEHolmes ABN 86 127 101 642

DOCUMENT CONTROL								
VERSION	DATE	PREPARED BY	REVIEWED BY					
DRAFT V1	29/06/2010	Philip Henschke	Aleks Todoroski					
DRAFT V2	27/07/2010	Philip Henschke						
FINAL	01/09/2010	Philip Henschke	Aleks Todoroski					

Queensland Environment Pty Ltd trading as **PAEHolmes** ABN 86 127 101 642

SYDNEY:

Suite 2B, 14 Glen Street Eastwood NSW 2122 Ph: +61 2 9874 8644 Fax: +61 2 9874 8904

BRISBANE:

Level 1, La Melba, 59 Melbourne Street South Brisbane Qld 4101 PO Box 3306 South Brisbane Qld 4101 Ph: +61 7 3004 6400 Fax: +61 7 3844 5858

Email: info@paeholmes.com

Website: www.paeholmes.com

DISCLAIMER

PAEHolmes acts in all professional matters as a faithful advisor to the Client and exercises all reasonable skill and care in the provision of its professional services.

Reports are commissioned by and prepared for the exclusive use of the Client. They are subject to and issued in accordance with the agreement between the Client and PAEHolmes. PAEHolmes is not responsible for any liability and accepts no responsibility whatsoever arising from the misapplication or misinterpretation by third parties of the contents of its reports.

Except where expressly stated, PAEHolmes does not attempt to verify the accuracy, validity or comprehensiveness of any information supplied to PAEHolmes for its reports.

Reports cannot be copied or reproduced in whole or part for any purpose without the prior written agreement of PAEHolmes.

TABLE OF CONTENTS

1 INTRODUCTION	1
2 OVERVIEW OF THE APPROVED RDC	1
3 LOCAL SETTING AND DESCRIPTION OF THE PROPOSED MODIFICATIONS	2
4 AIR QUALITY ASSESSMENT CRITERIA	5
5 EXISTING ENVIRONMENT	5
5.1 Dispersion Meteorology	5
5.2 Local Climatic Conditions	11
5.3 Existing air quality	12
6 ESTIMATED DUST EMISSIONS	14
7 APPROACH TO ASSESSMENT	16
8 ASSESSMENT OF IMPACTS	18
8.1 Preamble	18
8.2 PM ₁₀ Concentrations	18
8.3 TSP Concentrations	26
8.4 Dust Deposition	28
8.5 Construction Issues	30
9 CONCLUSIONS	30
10 REFERENCES	31
APPENDIX A	A-1
APPENDIX B	B-1
APPENDIX C	C-1

LIST OF TABLES

Table 1:	Air quality assessment criteria for particulate matter concentrations	.5
Table 2:	NSW DECCW criteria for dust fallout	.5
Table 3:	Frequency of occurrence of stability classes in the area	L1
Table 4:	Temperature, Humidity and Rainfall from Prospect Reservoir	12
Table 5:	DECCW monitoring data for the area	L3
Table 6:	Estimated dust emissions due to the proposed modified RDC	۱5
Table 7:	Cumulative 24-hour average PM ₁₀ Analysis Receptor 1	23
Table 8:	Cumulative 24-hour average PM ₁₀ Analysis Receptor 2	23
Table 9:	Cumulative 24-hour average PM ₁₀ Analysis Receptor 3	23

LIST OF FIGURES

1 INTRODUCTION

This report has been prepared by PAEHolmes for Umwelt (Australia) Pty Limited who is in turn acting on behalf of Holcim (Australia) Pty Limited (Holcim).

Project Approval was granted under Part 3A of the *Environmental Planning and Assessment Act 1979* (EP&A Act) in April 2006 (Approval No. 05_0051) to construct and operate the RDC. Since the approval was granted and building on the recent change in ownership Holcim conducted a review of the approved RDC project for which construction has not yet commenced. During the review process Holcim identified some potential design improvements and efficiencies and is now seeking to modify the 2006 Project Approval to allow these minor design modifications.

The purpose of this study is to assess the likely air quality impacts due to the proposed modifications, it follows the methodology used in the previous Air Quality Assessment of the RDC, completed by Holmes Air Sciences in 2005 (**Holmes Air Sciences, 2005**).

The assessment is based on a conventional approach following the procedures outlined by the NSW Department of Environment, Climate Change and Water (NSW DECCW) in its document titled "Approved Methods for the Modelling and Assessment of Air Pollutants in NSW" (**DEC**, **2005**).

In summary, the report provides information on the following:

- A description of the proposed modifications and the local setting;
- Relevant air quality goals;
- Meteorological conditions in the area;
- A discussion as to the likely existing air quality conditions in the area;
- The methods used to estimate dust emissions from on-site activities; and
- The expected dust impacts due to emissions from the modified RDC.

2 OVERVIEW OF THE APPROVED RDC

Holcim currently supplies the Sydney market with quarry products from the company's Penrith Lakes Development Corporation (PLDC) operations. However, this resource is nearly depleted and the facility is approaching closure. Consequently Holcim has had to locate alternative sources of quarry products to meet the needs of its Sydney market. These quarry materials will come from quarries outside the Sydney basin, including the new Lynwood Quarry near Marulan in the Southern Tablelands region of NSW. The approved RDC will allow Holcim to receive, store and distribute construction materials to meet customer requirements in the Sydney region.

The RDC is approved to handle up to 4 Mt of quarry product per annum. Construction materials such as sand and aggregate will be transported by rail to the RDC from quarries. These materials will be blended by equipment at the RDC as required and distributed by road to the Sydney market.

The approved RDC includes the following:

- A regional office building and materials testing laboratory;
- A rail siding and rail unloading facility;

- Elevated steel storage bins and truck load out facilities;
- Ground storage and reclaim facilities;
- Blending Plant/Pug Mill;
- A conveyor system linking the unloading station to the storage and truck load out facilities;
- Workshop, stores, site offices and amenities facilities, truck washdown facilities, truck refuelling, weighbridges, truck and car parking;
- Concrete Batching Plant (CBP);
- Bridges at two locations over Angus Creek; and
- Realignment of the existing North Parade and creation of New North Parade.

The approved RDC will operate 24 hours per day, seven days a week. The RDC will take approximately two years to build and will employ approximately 220 people during construction. During operation of the approved RDC, approximately 250 people will be employed on-site. At 4 Mtpa the approved RDC will dispatch approximately 400 heavy vehicles from the site on an average day. All traffic to the RDC will access the site via Kellogg Road, with the exception of some minor laboratory traffic. Those vehicles accessing Kellogg road to/from the south will do so via Woodstock Avenue direct from the M7. Heavy vehicles accessing Kellogg Road to/from the north would do so via Glendenning Road and Power Street direct from the M7.

3 LOCAL SETTING AND DESCRIPTION OF THE PROPOSED MODIFICATIONS

Landuse in the vicinity of the RDC site is a mixture of industrial premises, reserves, recreational and residential areas. The site is bound by Humes and Woodstock Avenue to the north, the Nurragingy Reserve to the east, the Main Western Railway line to the south and the OneSteel Mini Mill to the west.

The RDC site is situated in the centre of the Cumberland Plain and is surrounded by low-lying gently undulating terrain. Angus Creek, a tributary of Eastern Creek flows through the southern portion of the RDC site into the Nurrangingy Reserve.

Figure 1 shows the proposed modified layout of the RDC. The proposed modifications include:

- Changing from elevated steel storage bins to on-ground concrete storage bays, reducing the height of the storage facilities by about 10 metres;
- Changing the configuration and location of the rail unloader and rail sidings to accommodate shorter trains, for the initial phase of the development;
- Reducing the payload capacity of trains, for the initial phase of development;
- The removal of ground storage bins that were originally sited west of the steel storage bins;
- Closure of North parade by Blacktown City Council rather than relocation of the road;
- An increased ground storage area at the radial stacker; and
- Minor changes to the locations of the office, workshop and other internal facilities to improve operating efficiencies and in response to the layout changes outlined above.

No modifications are being sought to the current RDC approvals concerning the:

- Number or size of vehicles accessing the RDC site;
- Traffic arrangements and volumes;
- Approved maximum capacity of 4 million tonnes per annum
- Concrete batching plant; or
- Regional Office Building and Materials Testing Laboratory.

Figure 1: Proposed site layout

4 AIR QUALITY ASSESSMENT CRITERIA

Table 1 and **Table 2** summarise the air quality assessment criteria that are relevant to this study. The air quality goals relate to the total dust levels in the air and not just the dust from the Project. In other words, some consideration of background levels needs to be made when using these goals to assess impacts, as discussed in **Section 5.3**.

POLLUTANT	STANDARD / GOAL	AVERAGING PERIOD	AGENCY									
Total suspended	90 μg/m³	Annual mean	National Health and									
particulate matter (TSP)			Medical Research									
			Council (NHMRC)									
Particulate matter < 10	50 μg/m³	24-hour maximum	NSW DECCW									
μm (PM ₁₀)	30 μg/m ³	Annual mean	NSW DECCW									
	50 μg/m³	(24-hour average, 5	National Environment									
		exceedances permitted per	Protection Measurement									
		year)	(NEPM)									

Table 1: Air quality assessment criteria for particulate matter concentrations

In addition to health impacts, airborne dust also has the potential to cause nuisance impacts by depositing on surfaces. **Table 2** shows the maximum acceptable increase in dust deposition over the existing dust levels. The criteria for dust fallout levels are set to protect against nuisance impacts (**DEC**, **2005**).

Table 2: NSW DECCW criteria for dust fallout

Pollutant	Averaging period	Maximum increase in deposited dust level	Maximum total deposited dust level
Deposited dust	Annual	2 g/m ² /month	4 g/m²/month

5 EXISTING ENVIRONMENT

This section describes the dispersion meteorology, local climatic conditions and existing dust levels in the area.

5.1 Dispersion Meteorology

The Gaussian dispersion model used for this assessment, AUSPLUME, requires information about the dispersion characteristics of the area. In particular, wind speed, wind direction, atmospheric stability class^a and mixing height^b data is required. Meteorological data collected in the study area is discussed below.

^a In dispersion modelling stability class is used to categorise the rate at which a plume will disperse. In the Pasquill-Gifford stability class assignment scheme, as used in this study, there are six stability classes A through to F. Class A relates to unstable conditions such as might be found on a sunny day with light winds. In such conditions plumes will spread rapidly. Class F relates to stable conditions, such as occur when the sky is clear, the winds are light and an inversion is present. Plume spreading is slow in these circumstances. The intermediate classes B, C, D and E relate to intermediate dispersion conditions.

^b The term mixing height refers to the height of the turbulent layer of air near the earth's surface into which ground-level emissions will be rapidly mixed. A plume emitted above the mixed-layer will remain isolated from the ground until such time as the mixed-layer reaches the height of the plume. The height of the mixed-layer is controlled mainly by convection (resulting from solar heating of the ground) and by mechanically generated turbulence as the wind blows over the rough ground.

The DECCW has collected meteorological information at St Marys, approximately 8 km to the west-southwest of the site. This data consists of hourly records of wind speed, wind direction and temperature and is suitable for dispersion modelling.

Windroses generated from meteorological data collected at this site have been reviewed for this assessment. Windroses from 2003, 2005, 2007 and 2009 are shown in **Figure 2, Figure 3, Figure 4** and **Figure 5** respectively.

It can be seen from the windroses that there is little variation in the wind pattern distribution for these years. On an annual basis, the most common winds were from the SSW, S and N. This pattern is evident in all seasons to various degrees. In the summer months strong winds from the ESE were also common.

The dispersion modelling for the approved RDC utilised the 2003 meteorological data to assess the air quality impacts. Comparison of the 2003 with 2005, 2007 and 2009 windroses shows very little variation, indicating that the 2003 meteorological data set collected at this site is representative of the local wind pattern distribution. Therefore to allow easy comparison of the impacts between the approved and the proposed modified RDC the 2003 data set has been used in the dispersion modelling to assess the impacts of the Project.

To use the wind data to assess dispersion it is necessary to also have data on atmospheric stability. A stability class was calculated for each hour of the meteorological data using sigmatheta according to the method recommended by the US EPA (**US EPA, 1986**). **Table 3** shows the frequency of occurrence of the stability categories expected in the area. The most common stability occurrences at the St Marys site in 2003 were calculated to be F class stabilities (29%) which suggest that dust emissions will disperse slowly for a significant proportion of the time.

Stability Class	St Marys, 2003 data					
A	18.9					
В	6.6					
С	10.5					
D	24.0					
E	11.3					
F	28.7					
Total	100					

Table 3: Frequency of occurrence of stability classes in the area

Mixing height was determined using a scheme defined by **Powell** (**1976**) for day-time conditions and an approach described by **Venkatram** (**1980**) for night-time conditions. These two methods provide a good estimate of mixing height in the absence of upper air data.

Joint wind speed, wind direction and stability class frequency tables for the St Marys data are presented in **Appendix A**.

5.2 Local Climatic Conditions

The Bureau of Meteorology (BoM) collects climatic information from Prospect Reservoir, located approximately 8 km southeast of the site. Meteorological data from this station is averaged over approximately a 123 year period and is presented in **Table 4** (**Bureau of Meteorology, 2010**). This station provides information on the long-term average values of climatic elements such as temperature, humidity and rainfall.

The meteorological information collected at this BoM station does not include all the required parameters suitable for dispersion modelling. Meteorological data collected at the DECCW St Marys site was used for the dispersion modelling, as discussed in **Section 5.1**.

Temperature data shows that January is typically the warmest month with a mean daily maximum of 28.3 °C. July is the coldest month with a mean daily minimum of 6.1 °C. Rainfall data collected at Prospect Reservoir shows that February is the wettest month with a mean rainfall of 96.6 mm over 8.2 rain days. Annually the area experiences, on average, 868.9 mm of rain per year.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Daily maximum temperature (°C)													
Mean	28.3	27.9	26.3	23.7	20.3	17.3	16.8	18.7	21.3	23.7	25.3	27.4	23.1
Daily minimum temperature (°C)													
Mean	17.6	17.7	16.1	13.0	10.0	7.4	6.1	6.8	9.4	12.1	14.2	16.3	12.2
Rainfall (n	nm)												
Monthly	93.9	96.6	95.7	74.0	72.1	75.1	57.2	50.5	47.2	59.2	72.1	75.0	868.9
Mean													
No. Days	8.0	8.2	8.3	7.0	6.5	6.9	5.6	5.8	6.2	6.8	7.2	7.5	84.0
9am Temp	eratur	e (°C)											
Mean	21.3	21.0	19.6	16.9	13.5	10.7	9.6	11.1	14.5	17.4	18.4	20.6	16.2
9am Relat	ive Hu	midity	(%)										
Mean	75	79	79	77	80	79	76	70	65	65	70	70	74
3pm Temperature (°C)													
Mean	26.8	26.3	24.8	22.4	19.2	16.5	15.9	17.4	19.6	22.1	23.4	25.9	21.7
3pm Relat	ive Hu	midity	(%)										
Mean	52	54	55	52	57	55	50	45	45	46	50	49	51

Table 4: Temperature, Humidity and Rainfall from Prospect Reservoir

Station No. 067019 Commenced 1887; Last Record 2010; Elevation: 61m; Latitude: -33.82; Longitude: 150.91

Source: Bureau of Meteorology (2010)

5.3 Existing air quality

Air quality standards and goals refer to cumulative pollutant levels which include the Project and existing sources. To fully assess impacts against all the relevant air quality standards and goals (see **Section 4**) it is necessary to have information or estimates on existing dust concentration and deposition levels in the area in which the project is likely to contribute to these levels.

The DECCW operates air quality monitoring stations at St Marys and at Prospect Reservoir. Concentrations of PM_{10} are measured continuously at these sites using a Tapered Element Oscillating Microbalance (TEOM) and these data are available from the DECCW website. Monitoring data from the DECCW's St Marys and Prospect sites from 2003 to 2009 are shown below in **Table 5** (**DECCW, 2010**). The Prospect site was commissioned in February 2007.

PM ₁₀ cor	ncentrations by	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
	(µ9/11)					S	Marve							
2003	Average	30	20	23	19	13	14	13	*	19	15	19	20	19
	Maximum	70	32	212	56	30	28	32	*	43	22	34	42	212
2004	Average	24	25	20	19	*	16	14	11	10	10	17	*	17
	Maximum	51	45	37	38	*	26	27	19	19	*	29	*	51
2005	Average	20	*	13	20	17	20	15	21	15	20	17	30	19
	Maximum	47	*	26	31	31	46	28	54	33	49	26	51	54
2006	Average	22	23	20	19	18	11	11	15	18	25	29	23	20
	Maximum	51	35	34	36	32	21	*	23	63	38	73	58	73
2007	Average	25	19	17	19	18	10	12	13	16	26	15	*	17
	Maximum	45	27	28	38	41	20	28	27	32	47	36	*	47
2008	Average	19	14	16	11	16	10	12	12	18	17	16	18	15
	Maximum	*	38	27	20	26	18	33	30	41	34	27	34	41
2009	Average	22	20	19	20	15	10	11	18	80	16	29	20	23
	Maximum	33	41	*	187	26	17	29	40	1661	40	122	31	1661
						P	rospect							
2007	Average	*	*	18	21	21	14	14	15	18	26	16	17	18
	Maximum	*	*	28	42	46	27	26	31	34	46	34	27	46
2008	Average	21	16	*	14	20	14	17	13	23	19	18	21	18
	Maximum	35	34	*	23	26	33	40	24	42	36	34	42	42
2009	Average	20	23	22	25	22	15	14	19	82	17	31	19	26
	Maximum	32	50	40	222	50	29	*	41	1680	43	134	31	1680

Table 5: DECCW monitoring data for the area

Source: DECCW (2010)

One of the main reasons for analysing monitoring data is to determine existing air quality so that the assessment criteria can be determined in accordance with the DECCW's modelling guidelines (**DEC**, **2005**).

The annual average PM_{10} concentration recorded for the years 2003 to 2009 at the St Marys site by TEOM was 19, 17, 19, 20, 17, 15 and 23 µg/m³ respectively. This is below the DECCW air quality goal of 30 µg/m³. The annual average PM_{10} concentration recorded for the years 2007 to 2009 at the Prospect site by TEOM was 18, 18 and 26 µg/m³ respectively.

Maximum 24-hour concentrations were above the DECCW 50 μ g/m³ goal on several occasions at both the St Marys and Prospect sites. The highest 24-hour average PM₁₀ concentrations were generally measured in the warmer months of the year. It is noted that during September 2009 a widespread dust storm was experienced in Sydney causing the abnormally high reading. As a result of the dust storm occurring in September 2009, it is noted that the annual average PM₁₀ concentrations for 2009 were higher that the preceding years.

For estimating the background concentrations at sensitive receptors, the conservative 2009 annual average PM_{10} value recorded at the DECCW's St Marys site has been considered for this assessment.

Annual average TSP concentrations can be estimated from measured PM_{10} concentrations by assuming that 40% of the TSP is PM_{10} . This relationship was obtained from data collected by co-located TSP and PM_{10} monitors operated for reasonably long periods of time in the Hunter Valley (**NSW Minerals Council, 2000**). Use of this relationship indicates that annual average TSP concentrations are of the order of 58 µg/m³, which is less than the DECCW assessment criterion of 90 µg/m³.

Annual average dust deposition levels can be estimated in a similar process to the method used to estimate TSP concentrations by assuming a TSP concentration of 90 μ g/m³ will have a corresponding dust deposition value of 4 g/m²/month. The use of this relationship indicates an annual average dust deposition of 2.6 g/m²/month for the surrounding area.

From the monitoring data available it has been assumed that the following background concentrations apply at the nearest residences.

- Annual average TSP of 58 μg/m³
- Annual average PM₁₀ of 23 μg/m³ (average of St Marys 2003 to 2009 data)
- Annual average dust deposition of 2.6 g/m²/month

In addition, the DECCW guidelines require an assessment against 24-hour PM_{10} concentrations. This assessment adopts the goal that the predicted 24-hour average PM_{10} concentration from the development should be less than 50 $\mu g/m^3$ at the nearest residences.

6 ESTIMATED DUST EMISSIONS

Dust emissions will arise from a range of activities associated with the RDC. Total dust emissions due to the project have been estimated by analysing the activities taking place at the site when operating at full capacity.

The activities have been combined with emission factors developed, both locally and by the US EPA, to estimate the amount of dust produced. There have been significant revisions to the US EPA emission factors for dust generating activities since 2003. The emission factors applied are considered to be the most up to date methods for determining dust generation rates. The fraction of fine, inhalable and coarse particles for each activity has been taken into account for the dispersion modelling.

The operational description for the Project and site plan has been used to determine equipment movement distances and routes, stockpile locations and areas, infrastructure, activity operating hours, equipment sizes and other details that are necessary to estimate dust emissions.

The assessment has taken a conservative approach to estimating the dust emissions. The estimated emissions are based on the maximum capacity of the facility and are representative of the worst-case operations. The emission estimation has also assumed that 10% of the total material unloaded from trains will be diverted to the radial stacker. This material is then rehandled by front end loader for transfer to trucks. As the radial stacker has been proposed as a contingency measure this method of transfer would be minimal in each year.

Operations at the approved CBP have assumed that annual production would be 200,000 m^3/y . Modelling inputs for the approved CBP have been taken from a previous air quality assessment for the site, conducted by **Holmes Air Sciences** in **2003**. For the purposes of this assessment these values have not been adjusted as no changes are proposed to this aspect of the project.

Also, it is recognised that a street sweeper will be employed to minimise dust emissions from vehicles travelling on-site. The calculated dust emissions for this assessment have not taken into account any reduction in dust emissions with the operation of a street sweeper due to the scientific uncertainty of likely reductions. The estimated dust emissions from vehicles travelling on-site are therefore considered to be conservative.

The Projects most significant dust generating activities have been identified, with corresponding dust emission estimates presented in **Table 6**. Details of the calculations of the dust emissions are presented in **Appendix B**.

Activity	TSP emission rate (kg/y)
RDC: Trains unloading to unloading station	1,097
RDC: Transfer conveyors unloading to storage bins*	987
RDC: Transfer conveyors unloading to radial stacker	183
RDC: FEL transferring from radial stacker to trucks	366
RDC: Total truck movements on-site (sealed road)	13,636
RDC: Dispatch/loadout of materials to trucks	3,656
RDC: Wind erosion from stockpiles and exposed areas	3,504
RDC: Vehicles on CBP site	5,486
RDC: Vehicle exhausts at CBP	1,295
RDC: Dumping to ground bins at CBP	366
RDC: FEL loading to hoppers at CBP	366
RDC: Unloading to storage bins at CBP	110
RDC: Residual dust from loading cement/ash to silos at CBP**	658
RDC: Unloading from bins to trucks at CBP	366
RDC: Wind erosion from exposed areas at CBP	1,051
TOTAL	33,126

Table 6: Estimated dust emissions due to the proposed modified RDC

* Assumes that 10% of materials are diverted directly to the radial stacker before being transferred to trucks or the main storage bins.

** The closed system design feeds residual dust back into the silos. Inclusion of this dust emission is therefore a conservative approach to the assessment.

The calculations have assumed some reduction to dust emissions from enclosing transfer points and use of water sprays. It can be seen from **Table 6** that vehicle movements on-site are calculated to generate the most dust on an annual basis.

7 APPROACH TO ASSESSMENT

Off-site dust concentration and dust deposition levels due to the modified RDC have been predicted using AUSPLUME. AUSPLUME (Version 6.0) is an advanced Gaussian dispersion model developed on behalf of the Victorian EPA (**VEPA**, **1986**) and is based on the United States Environmental Protection Agency's Industrial Source Complex (ISC) model. It is widely used throughout Australia and is regarded as a "state-of-the-art" model. AUSPLUME is the model required for use by the NSW DECCW unless project characteristics dictate otherwise (**DEC**, **2005**).

This section is provided so that technical reviewers can appreciate how the modelling of different particle size categories was carried out. The modelling has been based on the use of three particle-size categories 0 to 2.5 μ m - referred to as PM_{2.5} or fine particles (FP), 2.5 to 10 μ m - referred to as CM (coarse matter) and 10 to 30 μ m - referred to as the Rest). Mass emission rates in each of these size ranges have been determined using the factors derived from the **SPCC (1986)** study and TSP emission rates calculated using emission factors derived from **US EPA (1985)** and **NERDDC (1988)** work (see **Appendix B**).

The distribution of particles in each particle size range is as follows:

- PM_{2.5} (FP) is 4.7% of the TSP
- PM_{2.5-10} (CM) is 34.4% of TSP
- PM₁₀₋₃₀ (Rest) is 60.9% of TSP.

Modelling was done using three AUSPLUME source groups. Each group corresponded to a particle size category. Each source in the group was assumed to emit at the full TSP emission rate and to deposit from the plume in accordance with the deposition rate appropriate for particles with an aerodynamic diameter equal to the geometric mean of the limits of the particle size range, except for the $PM_{2.5}$ group, which was assumed to have a particle size of 1 μ m. The predicted concentration in the three plot output files for each group were then combined according to the weightings above to determine the concentration of PM_{10} and TSP.

The AUSPLUME model also has the capacity to take into account dust emissions that vary in time, or with meteorological conditions. This has proved particularly useful for simulating emissions on dust generating industries where wind speed is an important factor in determining the rate at which dust is generated.

For the current study the operations were represented by a series of volume sources located according to the site layout. **Figure 6** shows the location of the modelled sources. Estimates of emissions for each source were developed on an hourly time step taking into account the activities that would take place at that location. Thus, for each source, for each hour, an emission rate was determined which depended upon the level of activity and the wind speed. It is important to do this in the AUSPLUME model to ensure that long-term average emission rates are not combined with worst-case dispersion conditions which are associated with light winds. Light winds at the RDC site would correspond with periods of low dust generation (because wind erosion and other wind dependent emissions rates will be low) and also correspond with periods of poor dispersion. If these measures are not taken then the model has the potential to significantly overstate impacts.

Dust concentrations and deposition rates have been predicted in the vicinity of the RDC. Local terrain has been assumed to be flat for modelling purposes.

The modelling has been performed using the meteorological data discussed in **Section 5.1** and the dust emission estimates from **Section 5**. All dust sources have been modelled assuming 24-hour per day operations. As an example the AUSPLUME model output file is provided in **Appendix C**.

Figure 6: Source locations

8 ASSESSMENT OF IMPACTS

8.1 Preamble

This section provides an interpretation of the predicted dust concentrations and deposition levels.

Dust concentrations and deposition rates due to the Project have been presented as isopleth diagrams showing the following:

- 1. Predicted maximum 24-hour average PM₁₀ concentration
- 2. Predicted annual average PM_{10} concentration
- 3. Predicted annual average TSP concentration, and
- 4. Predicted annual average dust deposition

The maximum 24-hour average contour plots do not represent the dispersion pattern for any particular day, but show the highest predicted 24-hour average concentration that occurred at each location for the worst day in the year. The maxima are used to show concentrations which can possibly be reached under the modelled conditions.

It is important to note that the isopleth figures are presented to provide a visual representation of the predicted impacts. To produce the isopleths it is necessary to make interpolations, and as a result the isopleths will not always match exactly with predicted impacts at any specific location.

8.2 PM₁₀ Concentrations

Figure 7 shows the predicted maximum 24-hour average PM_{10} concentrations due to proposed operations. At the residential areas to the west and east of the site the predicted concentrations are less than 10 μ g/m³. At the Blacktown Olympic Centre directly to the south of the site the predicted maximum 24-hour average concentrations are of the order of 20 μ g/m³. The predicted air quality impacts at the adjacent Nurragingy Reserve show the 50 μ g/m³ contour level encroaches into a small area to the northeast of the site, as shown in **Figure 7**.

Figure 7: Predicted 24-hour average PM_{10} concentrations ($\mu g/m^2$)

A comparison of the 24-hour average PM_{10} impacts from the Approved RDC to the Modified RDC is presented in **Figure 8**. The predicted impacts from the Approved RDC are shown as the blue contour lines. The predicted impacts from the Modified RDC are shown as the yellow contour lines. The proposed modifications to the RDC site would lead to a minor reduction in the 24-hour average PM_{10} impacts for the site.

Figure 8: Comparison of predicted 24-hour average PM₁₀ concentrations (µg/m³)

As per the 2003 assessment, further investigation was conducted on the predicted 24-hour average PM_{10} impacts. Nurragingy Reserve can see up to 2,000 visitors in one day and the critical assessment criteria will be short-term (24-hour) dust concentrations. Visitors to the reserves could spend up to about 12 hours in the area (the reserve is closed at night); however there is no air quality goal for PM_{10} in NSW for averaging times less than 24-hours. The dispersion model has been re-run to predict maximum 12-hour average PM_{10} concentrations and the results are shown in **Figure 9**. The purpose of these results is to show the likely concentrations during daytime hours when there would be visitors at the reserves. Although there is no 12-hour average PM_{10} goal the results from **Figure 9** show that concentrations are below 50 µg/m³ during daytime hours. This level of impact is considered to be acceptable.

It is also important to note that the air quality modelling has not taken into account the screening impact of the vegetation that exists between the site and open public areas of the reserve; as such the predicted PM_{10} concentrations represent a conservative impact.

Figure 9: Predicted 12-hour average PM₁₀ concentrations (µg/m²)

Contemporaneous analysis for the cumulative 24-hour average PM_{10} concentrations has also been considered at nearby residences surrounding the site. Locations of these residences are shown in **Figure 10**. The maximum 24-hour average concentrations at these receptors are presented in **Tables 7** to **9**. The left side of the tables present the highest measured 24-hour average PM_{10} concentrations with the associated predicted incremental impact at these locations due to operations occurring at the RDC. The right side shows the total predicted concentration on days with the highest predicted incremental ground-level concentrations. Measured exceedences of the 50 µg/m³ criterion at the St Marys site were excluded from this analysis.

Figure 10: Cumulative 24-hour average PM₁₀ locations

The cumulative analysis in **Tables 7** to **9**, show that at the sensitive receptor locations; there are no predicted cumulative 24-hour average exceedences due to the operation of the project.

Table 7. Cumulative 24-nour average PM10 Analysis Receptor 1											
	PM ₁₀ 24-hou	ır average (µ		PM ₁₀ 24-hour average (µg/n							
Date	Background	Predicted Increment	Total	Date	Highest Predicted Increment	Background	Total				
25/02/2009	40.5	0.6	41.1	9/09/2009	5.4	5.0	10.4				
2/10/2009	40.4	0.1	40.5	3/12/2009	4.8	14.8	19.7				
25/08/2009	40.0	0.0	40.0	1/04/2009	4.3	15.6	19.9				
7/02/2009	38.8	0.0	38.9	14/07/2009	4.1	6.9	11.1				
6/02/2009	38.2	0.3	38.4	31/01/2009	4.0	21.5	25.4				
15/09/2009	37.6	0.0	37.6	7/08/2009	3.7	11.0	14.7				
14/09/2009	35.4	0.0	35.4	12/03/2009	3.7	8.2	11.8				
16/11/2009	34.8	0.4	35.1	3/07/2009	3.6	5.6	9.2				
19/11/2009	34.7	1.4	36.1	23/02/2009	3.5	20.5	24.0				
23/08/2009	34.6	0.0	34.6	12/12/2009	3.4	21.5	24.8				

Table 7: Cumulative 24-hour average PM₁₀ Analysis Receptor 1

Table 8: Cumulative 24-hour average PM_{10} Analysis Receptor 2

	PM10 24-hou	ır average (µ	g/m³)		PM ₁₀ 24-hour average (µg/m³)				
Date	Background	Predicted Increment	Total	Date	Highest Predicted Increment	Background	Total		
25/02/2009	40.5	2.5	43.0	21/02/2009	5.1	19.8	24.9		
2/10/2009	40.4	1.3	41.7	12/04/2009	4.6	12.8	17.4		
25/08/2009	40.0	0.0	40.0	14/03/2009	4.5	8.4	13.0		
7/02/2009	38.8	1.2	40.1	29/01/2009	4.3	19.7	24.0		
6/02/2009	38.2	3.7	41.9	31/01/2009	4.2	21.5	25.7		
15/09/2009	37.6	0.0	37.6	3/02/2009	3.7	26.1	29.9		
14/09/2009	35.4	0.0	35.4	6/02/2009	3.7	38.2	41.9		
16/11/2009	34.8	0.0	34.8	1/04/2009	3.7	15.6	19.3		
19/11/2009	34.7	1.2	36.0	18/02/2009	3.7	8.1	11.7		
23/08/2009	34.6	0.0	34.6	14/06/2009	3.5	16.5	20.0		

Table 9: Cumulative 24-hour average PM₁₀ Analysis Receptor 3

	PM ₁₀ 24-hou	ır average (µ	g/m³)		PM ₁₀ 24-hour average (µg/m ³)				
Date	Background	Predicted Increment	Total	Date	Highest Predicted Increment	Background	Total		
25/02/2009	40.5	0.0	40.5	21/07/2009	5.8	15.2	21.0		
2/10/2009	40.4	0.2	40.6	29/06/2009	3.8	10.9	14.7		
25/08/2009	40.0	1.7	41.7	26/08/2009	3.8	11.6	15.3		
7/02/2009	38.8	0.5	39.3	8/05/2009	3.7	25.8	29.6		
6/02/2009	38.2	0.0	38.2	27/03/2009	3.5	32.0	35.5		
15/09/2009	37.6	0.9	38.4	12/08/2009	3.4	10.1	13.5		
14/09/2009	35.4	0.3	35.6	2/08/2009	3.3	11.7	15.0		
16/11/2009	34.8	0.0	34.8	7/06/2009	3.3	10.9	14.2		
19/11/2009	34.7	0.2	35.0	31/03/2009	3.1	14.8	17.9		
23/08/2009	34.6	1.8	36.4	15/06/2009	3.0	13.0	15.9		

Figure 11 shows the predicted annual average PM_{10} concentrations due to the RDC operations. Assuming a background concentration of 23 µg/m³ it can be seen that the dust emissions from the project would not cause exceedances of the air quality goal (30 µg/m³) at any neighbouring residential areas. The predicted PM_{10} contribution from the RDC is less than 2 µg/m³ at the nearest residential areas. The impact at the Blacktown Olympic Centre and Nurragingy reserve is predicted to be below the relevant criterion.

Figure 11: Predicted annual average PM_{10} concentrations ($\mu g/m^2$)

A comparison of the annual average PM_{10} impacts from the Approved RDC to the Modified RDC is presented in **Figure 12**. The predicted impacts from the Approved RDC are shown as the blue contour lines. The predicted impacts from the Modified RDC are shown as the yellow contour lines. The proposed modifications to the RDC site would lead to a minor reduction in the annual average PM_{10} impacts for the site.

Figure 12: Comparison of predicted annual average PM₁₀ concentrations (µg/m³)

8.3 **TSP Concentrations**

Predicted annual average TSP concentrations are shown in **Figure 13**. The model predictions show that the nearest residential area would experience annual average TSP concentrations less than 2 μ g/m³ due to the operations of the RDC. Compliance with the annual average 90 μ g/m³ TSP would be anticipated even when considering typical background levels of around 58 μ g/m³. The impact at the Blacktown Olympic Centre and Nurragingy reserve is predicted to be below the relevant criterion.

Figure 13: Predicted annual average TSP concentrations (µg/m²)

A comparison of the annual average TSP impacts from the Approved RDC to the Modified RDC is presented in **Figure 14**. The predicted impacts from the Approved RDC are shown as the blue contour lines. The predicted impacts from the Modified RDC are shown as the yellow contour lines. The proposed modifications to the RDC site would lead to a minor reduction in the annual average TSP impacts for the site.

Figure 14: Comparison of predicted annual average TSP concentrations (µg/m³)

8.4 Dust Deposition

Figure 15 shows the predicted annual average dust deposition. The contribution of dust emissions to existing dust deposition levels is predicted to be low at less than $0.1 \text{ g/m}^2/\text{month}$ at the nearest residential area. Assuming a background deposition level of 2.6 g/m²/month, it is unlikely that the operation of the RDC would cause of exceedances of the 4 g/m²/month air quality criterion at these residential areas. The impact at the Blacktown Olympic Centre and Nurragingy reserve is predicted to be below the relevant criterion.

Figure 15: Predicted dust deposition levels (g/m²/month)

A comparison of the annual dust deposition impacts from the Approved RDC to the Modified RDC is presented in **Figure 16**. The predicted impacts from the Approved RDC are shown as the blue contour lines. The predicted impacts from the Modified RDC are shown as the yellow contour lines. The proposed modifications to the RDC site would lead to a minor reduction in the annual dust deposition impacts for the site.

Figure 16: Comparison of predicted dust deposition levels (g/m²/month)

8.5 Construction Issues

Air quality impacts during construction would largely result from dust generated during earthworks and other engineering activities associated with the facilities construction. The total amount of dust generated would depend on the silt and moisture content of the soil, the types of operations being carried out, exposed area, frequency of water spraying and speed of machinery.

As construction is likely to continue for up to two years, it is important that exposed areas be stabilised as quickly as possible and that appropriate dust suppression methods be used to keep dust impacts to a minimum. To ensure dust generation is controlled, the site would implement a construction dust management plan (as part of the overall construction environmental management plan) which will be utilised to help reduce any off-site impacts from these activities.

Mitigation measures to control dust include:

- Maintaining active road surfaces including wetting down;
- Limit vehicle speeds; and
- Rehabilitate completed sections of the site.

The dust emissions can be effectively managed through routine construction management techniques, such that their impact is expected to be negligible.

9 CONCLUSIONS

This report has assessed the air quality impacts associated with the operation of the Proposed Modified Regional Distribution Centre off Kellogg Road, Rooty Hill. Dispersion modelling has been used to assess the impact that dust emissions from the operation of the plant would have on the local air quality.

It is concluded that air quality impacts due to activities occurring at the Modified RDC would be at levels lower than the predicted impacts occurring from the Approved RDC with operations of the plant at a full capacity of 4 Mtpa. The proposal would generate less dust in total due to these proposed modifications.

The implementation of proposed dust control measures; including enclosures over transfer points, use of water sprays and street sweeper, should ensure that air quality impacts are lower than those predicted in this study.

Air quality monitoring data have indicated that existing short-term dust concentrations are above air quality goals on occasions. Particulate matter concentrations arising from non-Project related sources, such as bushfires and dust storms, may continue to result in elevated levels on occasions.

10 REFERENCES

Bureau of Meteorology (2010)

Climatic Averages Australia, Bureau of Meteorology website, www.bom.gov.au

DEC, 2005

"Approved Methods for the Modelling and Assessment of Air Pollutants in NSW", NSW EPA, August 2005, www.epa.nsw.gov.au

DECCW, 2010

Air Quality, Department of Environment, Climate Change and Water website, <u>www.environment.nsw.gov.au</u>

Holmes Air Sciences (2003)

"Air Quality Impact Assessment: Proposed Concrete Batching Plant at Kellogg Road, Rooty Hill", Prepared by Holmes Air Sciences for National Environmental Consulting Services, August 2003.

Holmes Air Sciences (2005)

"Air Quality Impact Assessment: Readymix Regional Distribution Centre at Rooty Hill", Prepared by Holmes Air Sciences for National Environmental Consulting Services, May 2005.

NERDDC (1988)

"Air pollution from surface coal mining: Volume 2 Emission factors and model refinement", National Energy Research and Demonstration Council, Project 921.

NPI (2001)

"Emission Estimation Technique Manual for Mining – Version 2.3", National Pollutant Inventory.

NSW Minerals Council (2000)

"Technical Paper – Particulate Matter and Mining Interim Report".

Powell D C (1976)

"A Formulation of Time-varying Depths of Daytime Mixed Layer and Night-time Stable Layer for use in Air Pollution Assessment Models", Annual Report for 1976 Part 3, Battelle PNL Atmospheric Sciences, 185-189.

SPCC (1983)

"Air Pollution from Coal Mining and Related Developments", Published by NSW State Pollution Control Commission (now EPA)

SPCC (1986)

"Particle size distributions in dust from open cut coal mines in the Hunter Valley", Report Number 10636-002-71, Prepared for the State Pollution Control Commission of NSW (now EPA) by Dames & Moore, 41 McLaren Street, North Sydney, NSW 2060.

US EPA (1985 and updates)

"Compilation of Air Pollutant Emission Factors", AP-42, Fourth Edition United States Environmental Protection Agency, Office of Air and Radiation Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina 27711. Note this reference is now a web-based document.

US EPA (1986)

"Guideline on air quality models (revised)", Prepared by the United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, EPA-450/2-78-027R.

Venkatram (1980)

"Estimating the Monin-Obukhov Length in the Stable Boundary Layer for Dispersion Calculations", Boundary-Layer Meteorology, Volume 19, 481-485.

VEPA (1986)

"The Ausplume Gaussian Plume Dispersion Model", Environment Protection Authority, Olderfleet Buildings, 477 Collins Street, Melbourne Victoria 3000, Publication Number 264.

APPENDIX A

Joint Wind Speed, Wind Direction and Stability Class Frequency Tables

St Marys 2003

STATISTICS FOR FILE: C:\Jobs\RHillRDC\metdata\StMarys\StMarys2003.aus

PASQUILL STABILITY CLASS 'A'

Wind Speed Class (m/s)

	0.50	1.50	3.00	4.50	6.00	7.50	9.00	GREATER	
WIND	то	TO	TO	TO	то	TO	TO	THAN	
SECTOR	1.50	3.00	4.50	6.00	7.50	9.00	10.50	10.50	TOTAL
NNE	0.010046	0.006050	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.016096
NE	0.005822	0.004566	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.010388
ENE	0.004566	0.002626	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.007192
E	0.003995	0.002511	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.006621
ESE	0.002968	0.002740	0.000799	0.000000	0.000000	0.000000	0.000000	0.000000	0.006507
SE	0.001941	0.002397	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.004452
SSE	0.005936	0.001370	0.000457	0.000000	0.000000	0.000000	0.000000	0.000000	0.007763
S	0.006050	0.002169	0.000571	0.000000	0.000000	0.000000	0.000000	0.000000	0.008790
SSW	0.008219	0.001941	0.000000	0.000114	0.000000	0.000000	0.000000	0.000000	0.010274
SW	0.004795	0.002169	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.006963
WSW	0.002283	0.000685	0.000228	0.000000	0.000000	0.000000	0.000000	0.000000	0.003196
W	0.002397	0.000913	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.003311
WNW	0.002740	0.001142	0.000342	0.000000	0.000000	0.000000	0.000000	0.000000	0.004224
NW	0.003995	0.000913	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.005023
NNW	0.012443	0.001826	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.014269
N	0.014954	0.007420	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.022374
CALM									0.051826

TOTAL 0.093151 0.041438 0.002740 0.000114 0.000000 0.000000 0.000000 0.189269

MEAN WIND SPEED (m/s) = 1.12 NUMBER OF OBSERVATIONS = 1658

PASQUILL STABILITY CLASS 'B'

Wind Speed Class (m/s)

WIND SECTOR	0.50 TO 1.50	1.50 TO 3.00	3.00 TO 4.50	4.50 TO 6.00	6.00 TO 7.50	7.50 TO 9.00	9.00 TO 10.50	GREATER THAN 10.50	TOTAL
NNE	0.001826	0.002055	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.003995
NE	0.000457	0.001941	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.002511
ENE	0.000913	0.003311	0.001256	0.000000	0.000000	0.000000	0.000000	0.000000	0.005479
E	0.000342	0.002397	0.001370	0.000000	0.000000	0.000000	0.000000	0.000000	0.004110
ESE	0.000571	0.003082	0.001370	0.000000	0.000000	0.000000	0.000000	0.000000	0.005023
SE	0.000913	0.002626	0.000571	0.000000	0.000000	0.000000	0.000000	0.000000	0.004110
SSE	0.000342	0.001484	0.000457	0.000114	0.000000	0.000000	0.000000	0.000000	0.002397
S	0.001826	0.002740	0.000342	0.000114	0.000000	0.000000	0.000000	0.000000	0.005023
SSW	0.002511	0.002968	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.005594
SW	0.001256	0.001256	0.000342	0.000114	0.000000	0.000000	0.000000	0.000000	0.002968
WSW	0.000457	0.001142	0.000228	0.000114	0.000000	0.000000	0.000000	0.000000	0.001941
W	0.000457	0.000913	0.001370	0.000228	0.000000	0.000000	0.000000	0.000000	0.002968
WNW	0.000228	0.000685	0.001142	0.000799	0.000000	0.000000	0.000000	0.000000	0.002854
NW	0.000571	0.000457	0.000228	0.000000	0.000000	0.000000	0.000000	0.000000	0.001256
NNW	0.002169	0.002626	0.000228	0.000000	0.000000	0.000000	0.000000	0.000000	0.005023
N	0.002397	0.005936	0.000228	0.000000	0.000000	0.000000	0.000000	0.000000	0.008562
CALM									0.001941
TOTAL	0.017237	0.035616	0.009475	0.001484	0.000000	0.000000	0.000000	0.000000	0.065753

MEAN WIND SPEED (m/s) = 2.19 NUMBER OF OBSERVATIONS = 576

PASQUILL STABILITY CLASS 'C'

Wind Speed Class (m/s)

WIND SECTOR	0.50 TO 1.50	1.50 TO 3.00	3.00 TO 4.50	4.50 TO 6.00	6.00 TO 7.50	7.50 TO 9.00	9.00 TO 10.50	GREATER THAN 10.50	TOTAL
NNE	0.000000	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000114
NE	0.000000	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000114
ENE	0.000114	0.001142	0.000685	0.000000	0.000000	0.000000	0.000000	0.000000	0.001941
E	0.000114	0.002511	0.004224	0.000342	0.000000	0.000000	0.000000	0.000000	0.007192
ESE	0.000000	0.002511	0.007648	0.002854	0.000000	0.000000	0.000000	0.000000	0.013014
SE	0.000228	0.002169	0.005822	0.002626	0.000000	0.000000	0.000000	0.000000	0.010845
SSE	0.000457	0.002968	0.003995	0.001484	0.000000	0.000000	0.000000	0.000000	0.008904
S	0.002740	0.005822	0.004566	0.000799	0.000000	0.000000	0.000000	0.000000	0.013927
SSW	0.002740	0.003425	0.003425	0.000685	0.000000	0.000000	0.000000	0.000000	0.010274
SW	0.000799	0.002968	0.001941	0.000913	0.000000	0.000000	0.000000	0.000000	0.006621
WSW	0.000571	0.000799	0.001941	0.000799	0.000000	0.000000	0.000000	0.000000	0.004110
W	0.000000	0.000571	0.002397	0.002055	0.000000	0.000000	0.000000	0.000000	0.005023
WNW	0.000114	0.000571	0.003767	0.004338	0.000000	0.000000	0.000000	0.000000	0.008790
NW	0.000000	0.000571	0.001826	0.001027	0.000000	0.000000	0.000000	0.000000	0.003425
NNW	0.001256	0.001370	0.000913	0.000571	0.000000	0.000000	0.000000	0.000000	0.004110
N	0.001142	0.003881	0.000685	0.000457	0.00000	0.000000	0.000000	0.000000	0.006164
CALM									0.000457

TOTAL 0.010274 0.031507 0.043836 0.018950 0.000000 0.000000 0.000000 0.105023

MEAN WIND SPEED (m/s) = 3.33 NUMBER OF OBSERVATIONS = 920

PASQUILL STABILITY CLASS 'D'

Wind Speed Class (m/s)

WIND	0.50 TO	1.50 TO	3.00 TO	4.50 TO	6.00 TO	7.50 TO	9.00 TO	GREATER THAN	
SECTOR	1.50	3.00	4.50	6.00	7.50	9.00	10.50	10.50	TOTAL
NNE	0 000571	0 000457	0 000000	0 000000	0 000000	0 000000	0 000000	0 000000	0 001027
ININE	0.0003/1	0.000437	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.001027
NE	0.000000	0.000685	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000685
ENE	0.000457	0.001256	0.000457	0.000000	0.000000	0.000000	0.000000	0.000000	0.002169
E	0.000571	0.002626	0.001712	0.000000	0.000000	0.000000	0.000000	0.000000	0.004909
ESE	0.000913	0.005365	0.007306	0.002968	0.000342	0.000000	0.000000	0.000000	0.016895
SE	0.001142	0.004795	0.005137	0.001712	0.000799	0.000000	0.000000	0.000000	0.013584
SSE	0.003881	0.004224	0.004566	0.001027	0.000114	0.000114	0.000000	0.000000	0.013927
S	0.020205	0.010731	0.006050	0.002169	0.000114	0.000000	0.000000	0.000000	0.039269
SSW	0 022945	0 026142	0 008219	0 000913	0 000114	0 000000	0 000000	0 000000	0 058333
SW	0 011187	0 010046	0 003311	0 001598	0 000228	0 000000	0 000000	0 000000	0.026370
WCW	0.001712	0.002740	0.001926	0.001256	0.001027	0.000342	0.000000	0.000000	0.020070
WSW	0.001/12	0.002740	0.001520	0.001230	0.001027	0.000342	0.000000	0.000000	0.000304
VV	0.000000	0.000571	0.002511	0.001142	0.00085	0.000000	0.000000	0.000000	0.004909
WNW	0.000228	0.003653	0.003311	0.001826	0.002740	0.000114	0.000000	0.000000	0.011872
NW	0.000228	0.002397	0.002968	0.001826	0.000913	0.000571	0.000342	0.000000	0.009247
NNW	0.001712	0.005137	0.002169	0.000685	0.000685	0.000228	0.000228	0.000000	0.010845
N	0.004795	0.006507	0.001826	0.000114	0.000114	0.000000	0.000000	0.000000	0.013356
CALM									0.003881
TOTAL	0.070548	0.087329	0.051370	0.017237	0.007877	0.001370	0.000571	0.000000	0.240183

MEAN WIND SPEED (m/s) = 2.58 NUMBER OF OBSERVATIONS = 2104

PASQUILL STABILITY CLASS 'E'

Wind Speed Class (m/s)

WIND SECTOR	0.50 TO 1.50	1.50 TO 3.00	3.00 TO 4.50	4.50 TO 6.00	6.00 TO 7.50	7.50 TO 9.00	9.00 TO 10.50	GREATER THAN 10.50	TOTAL
NNE NE ENE SSE SSE SSW WSW WSW WSW WNW NWW NWW NWW	0.002055 0.002397 0.003425 0.001484 0.001256 0.000571 0.004338 0.019292 0.018265 0.007763 0.001484 0.000342 0.000685 0.000913 0.001142 0.005822	0.000228 0.001712 0.003767 0.002740 0.00283 0.001598 0.001142 0.001370 0.001826 0.001256 0.000571 0.000799 0.001484 0.001142 0.002055 0.002968	0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000114 0.000000 0.000114 0.000000 0.000114 0.000000 0.000114 0.000011 0.000011 0.000011	0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.000000 0.00000 0.00000 0.00000 0.000000	0.002283 0.004110 0.007192 0.004224 0.003539 0.002169 0.020776 0.020091 0.009132 0.002055 0.001142 0.002283 0.002397 0.003767 0.008790
CALM									0.013470

TOTAL 0.071233 0.026941 0.001256 0.000000 0.000000 0.000000 0.000000 0.112900

MEAN WIND SPEED (m/s) = 1.19 NUMBER OF OBSERVATIONS = 989

PASQUILL STABILITY CLASS 'F'

Wind Speed Class (m/s)

WIND SECTOR	0.50 TO 1.50	1.50 TO 3.00	3.00 TO 4.50	4.50 TO 6.00	6.00 TO 7.50	7.50 TO 9.00	9.00 TO 10.50	GREATER THAN 10.50	TOTAL
NNE	0.008333	0.000571	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.008904
NE	0.007420	0.001598	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.009018
ENE	0.005365	0.001941	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.007306
E	0.002169	0.001027	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.003196
ESE	0.001484	0.000799	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.002283
SE	0.002397	0.000457	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.002854
SSE	0.004566	0.000228	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.004795
S	0.013014	0.000913	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.013927
SSW	0.013356	0.000685	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.014041
SW	0.010388	0.000571	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.010959
WSW	0.005137	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.005251
W	0.002740	0.000571	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.003311
WNW	0.001712	0.000228	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.001941
NW	0.002055	0.000571	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.002626
NNW	0.004110	0.000799	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.004909
N	0.011986	0.001142	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.013128
CALM									0.178425
TOTAL	0.096233	0.012215	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.286872

MEAN WIND SPEED (m/s) = 0.69 NUMBER OF OBSERVATIONS = 2513

ALL PASQUILL STABILITY CLASSES

Wind Speed Class (m/s)

WIND SECTOR	0.50 TO 1.50	1.50 TO 3.00	3.00 TO 4.50	4.50 TO 6.00	6.00 TO 7.50	7.50 TO 9.00	9.00 TO 10.50	GREATER THAN 10.50	TOTAL
NNE	0.022831	0.009475	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.032420
NE	0.016096	0.010616	0.000114	0.000000	0.000000	0.000000	0.000000	0.000000	0.026826
ENE	0.014840	0.014041	0.002397	0.000000	0.000000	0.000000	0.000000	0.000000	0.031279
E	0.008676	0.013813	0.007420	0.000342	0.000000	0.000000	0.000000	0.000000	0.030251
ESE	0.007192	0.016781	0.017123	0.005822	0.000342	0.000000	0.000000	0.000000	0.047260
SE	0.007192	0.014041	0.011644	0.004338	0.000799	0.000000	0.000000	0.000000	0.038014
SSE	0.019521	0.011416	0.009475	0.002626	0.000114	0.000114	0.000000	0.000000	0.043265
S	0.063128	0.023744	0.011644	0.003082	0.000114	0.000000	0.000000	0.000000	0.101712
SSW	0.068037	0.036986	0.011758	0.001712	0.000114	0.000000	0.000000	0.000000	0.118607
SW	0.036187	0.018265	0.005708	0.002626	0.000228	0.000000	0.000000	0.000000	0.063014
WSW	0.011644	0.006050	0.004224	0.002169	0.001027	0.000342	0.000000	0.000000	0.025457
W	0.005936	0.004338	0.006279	0.003425	0.000685	0.000000	0.000000	0.000000	0.020662
WNW	0.005708	0.007763	0.008676	0.006963	0.002740	0.000114	0.000000	0.000000	0.031963
NW	0.007763	0.006050	0.005479	0.002854	0.000913	0.000571	0.000342	0.000000	0.023973
NNW	0.022831	0.013813	0.003881	0.001256	0.000685	0.000228	0.000228	0.000000	0.042922
N	0.041096	0.027854	0.002740	0.000571	0.000114	0.000000	0.000000	0.000000	0.072374
CALM									0.250000
TOTAL	0.358676	0.235046	0.108676	0.037785	0.007877	0.001370	0.000571	0.000000	1.000000

MEAN WIND SPEED (m/s) = 1.66 NUMBER OF OBSERVATIONS = 8760

FREQUENCY OF OCCURENCE OF STABILITY CLASSES

A : 18.9% B : 6.6% C : 10.5% D : 24.0% E : 11.3% F : 28.7%

3869_Holcim_RootyHillRDC_AQFinal.docx PROPOSED MINOR MODIFICATION TO HOLCIM REGIONAL DISTRIBUTION CENTRE (RDC) ROOTY HILL Umwelt (Australia) Pty Limited | PAEHolmes Job 3869

APPENDIX B

Estimated Dust Emissions

ESTIMATED DUST EMISSIONS: ROOTY HILL RDC

The dust emission inventories have been formulated from the operational description provided by Umwelt. Estimated emissions are presented for all significant dust generating activities associated with the operations. The relevant emission factors used for the study are described below.

Loading, unloading and transferring material

The dust emission from this activity will depend on wind speed according to the **US EPA (1985)** emission factor equation. This means that the emissions will vary with wind speed. The actual emission is given by Equation 1.

Equation 1

$$E_{TSP} = k \times 0.0016 \times \left(\frac{\left(\frac{U}{2.2} \right)^{1.3}}{\left(\frac{M}{2} \right)^{1.4}} \right) \qquad kg/t$$
 where,

 $E_{TSP} = TSP \text{ emissions}$ k = 0.74 U = wind speed (m/s) M = moisture content (%) $[\text{where } 0.25 \le M \le 4.8]$

In cases where transfer points include some form of enclosure a reduction to emissions of 70% (Table 3 of **NPI, 2001**) has been used.

Vehicle movements on sealed road surfaces

The emission factor used for vehicles movements on the sealed surfaces of the site was 0.15 kg per vehicle kilometre travelled (kg/VKT). No reductions in emissions from the use of water sprays or street sweepers have been considered.

Vehicle exhausts

Emissions from heavy diesel vehicle exhausts can be estimated using the **US EPA (1985)** emission factor of 0.7 g/brake-horsepower hour (g/hp-h). Assume that the average power level of each truck on site 100 hp. This includes slowly manoeuvring on site and idling. Also assume that each truck spends 10 minutes on site.

Residual dust from loading cement/ash to silos

Estimated dust emissions due to loading fly-ash and cement to the silo can be made by assuming the concentration of dust in the air discharged after de-dusting the conveying air and dry dust collection system when dry concrete mix is loaded to trucks is 50 mg/Nm³ (the EPA licence limit). The volume of air handled is approximately 108 Nm³/minute. It has been assumed that it will take one minute per tonne to load.

Wind erosion from exposed areas and stockpiles

The emissions factor for wind erosion dust is 0.4 kg/ha/hour (**SPCC, 1983**). The emissions will also depend on the state of cleanliness of the area. This also varies with wind speed in the model.

Emission Inventory - RDC

ACTIVITY	TSP (kg/y)	Intensity	Units	Emission factor	Units	Variable 1	Units	Variable 2	Units	Variable 3	Units
RDC: Trains unloading to unloading station	1,097	4,000,000	t/y	0.00027	kg/t	0.772	average	2	moisture content (%)	-	bcm
RDC: Transfer conveyors unloading to storage bins	987	3,600,000	t/y	0.00027	kg/t	0.772	average	2	moisture content (%)	-	bcm
RDC: Transfer conveyors unloading to radial stacker	183	400,000	t/y	0.00046	kg/t	0.772	average	2	moisture content (%)	-	bcm
RDC: FEL transferring from radial stacker to storage bins	366	400,000	t/y	0.00091	kg/t	0.772	average	2	moisture content (%)	-	bcm
RDC: Trucks movements on site (sealed road)	13,636	4,000,000	t/y	0.00341	kg/t	33	t/truck lo	0.75	km/return trip	0.15	kg/VKT
RDC: Dispatch/loadout of materials to trucks	3,656	4,000,000	t/y	0.00091	kg/t	0.772	average	2	moisture content (%)	-	bcm
RDC: Wind erosion from stockpiles and exposed areas	3,504	1	ha	3504	kg/ha/y	0.4	kg/ha/h	8760	h/y		
CBP: Vehicles on site		trips per year	return km	factor (kg/VKT)	Emissio	n (kg/y)	BUSY	200000	m3/y		
	Delivery - cement	3000	0.4	0.2	240			667	m3/d		
	Delivery - ash	1500	0.4	0.2	120			111	m3/h		
	Delivery - aggregat	11100	0.5	0.2	1110						
	Dispatch - concret	39900	0.5	0.2	3990						
	Staff	12900	0.1	0.02	26	5486					
CBP: Vehicle exhausts	hp	hours/truck	trucks/year	kg/hp-h	Emissio	n (kg/y)					
	100	0.33	55500	0.0007		1295					
CBP: Dumping to ground bins	(U/2.2)^1.3	moisture(%)	factor(kg/t)	tonne per year (t/	Emissio	n (kg/y)					
	0.772	2	0.000914048	400000		366					
CBP: FEL loading to hoppers	(U/2.2)^1.3	moisture(%)	factor(kg/t)	tonne per year (t/	Emissio	n (kg/y)					
	0.772	2	0.000914048	400000		366					
CBP: Unloading to storage bins	(U/2.2)^1.3	moisture(%)	factor(kg/t)	tonne per year (t/	Emissio	n (kg/y)					
	0.772	2	0.000274214	400000		110					
CBP: Residual dust from loading cement/ash to silos	Conc limit (mg/Nm	Air volume (Nm3/minute)	Time (min/t)	t/y	Emissio	n (kg/y)					
	50	108	1	121500		658					
CBP: Unloading from bins to trucks	(U/2.2)^1.3	moisture(%)	factor(kg/t)	tonne per year (t/	Emissio	n (kg/y)					
	0.772	2	0.000914048	400000		366					
CBP: Wind erosion from exposed areas		Exposed area (ha)	factor(kg/ha/hour)	Hours/year	Emissio	n (kg/y)					
		0.3	0.4	8760		1051					

APPENDIX C

AUSPLUME Model Output File

AUSPLUME Input File : Dust concentration

1

Concentration o Emission rate un Concentration un Units conversion Constant backgro Terrain effects Plume depletion Smooth stability Other stability Other stability Decay coefficien Anemometer heigh Roughness heigh Use the convect	r deposit nits n factor ound cond due to c class ac vake eff nt (unles ht t at the ive PDF a	tion centrat dry rem changes djustme fects? ss over wind v algorit	ion ? nts ("u ridden H ane site hm?	chanism: rban moo by met. e	s includ des") file)	Conce grams micro 1.00E Egan ded. No None Yes 0.000 10 m 0.500 No	ntratio /second gram/m3 +06 0.00 method method	n 0E+00	
Horizontal disp Vertical dispe Horizontal dispe Enhance horizon Enhance vertica Adjust horizont Adjust vertica Roughness heigh Adjustment for	DISPE ersion cu rsion cu rsion cu rsion cu tal plume al plume al P-G fo l P-G fo t wind dire	ERSION urves f urves f urves f urves f e sprea ormulae ormulae ectiona	CURVES or sourd or sourd or sourd ds for l for rou for rou for rou	ces <100 ces <100 ces >100 ces >100 buoyancy buoyancy ughness ughness	Om high Om high Om high Om high y? height: height:	Pasqu Pasqu Brigg Brigg Yes Yes Yes Yes 0.500 None	ill-Gif ill-Gif s Rural s Rural m	ford ford	
Gradual plume r Stack-tip downw. Building downwa Entrainment coe Partial penetra Disregard temp.	PLUM ise? ash inclu sh algori ff. for r tion of e gradient	ME RISE uded? ithm: neutral elevate ts in t	OPTION & stab d inver he hour	S le lapse sions? ly met.	e rates file?	Yes Yes Schulm 0.60,0 No No	an-scir .60	e metho	od.
and in the absen given by the ho (in K/m) is usen	nce of bo urly met d:	oundary file,	-layer a value	potentia e from t	al tempe the fol	erature lowing	gradie table	nts	
Wind Speed Category	А	S B	tability C	y Class D	E	F			
1 2 3 4 5 6	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.035 0.035 0.035 0.035 0.035 0.035			
WIND SPEED CATE Boundaries betw	GORIES een categ	gories	(in m/s)) are:	1.54,	3.09,	5.14,	8.23,	10.80
WIND PROFILE EX	PONENTS:	"Irwin	Urban"	values	(unless	s overr	idden b	y met.	file)
AVERAGING TIMES 24 hours average over a	11 hours								

AUSPLUME Input File : Dust concentration

SOURCE GROUPS

Group	NO.	Membe	ers						
	1	1 8	2 9	3 10	4 11	5 12	6 13	7 14	
		15	16	17	18	19	20	21	

3869_Holcim_RootyHillRDC_AQFinal.docx

PROPOSED MINOR MODIFICATION TO HOLCIM REGIONAL DISTRIBUTION CENTRE (RDC) ROOTY HILL Umwelt (Australia) Pty Limited | PAEHolmes Job 3869

	22	23	24	25	26	27	28
2	29 31 38	30 32 39	33 40	34 41	35 42	36 43	37 44
	45	46	47	48	49	50	51
	52	53	54	55	56	57	58
3	59 61 68	60 62 69	63 70	64 71	65 72	66 73	67 74
	75	76	77	78	79	80	81
	82	83	84	85	86	87	88
	89	90					

1

AUSPLUME Input File : Dust concentration

SOURCE CHARACTERISTICS

VOLUME SOURCE: 1

X(m) 301104	Y(m) 6261968	Ground Eleva 1m	tion	Height 2m	Hor.	spread 20m	Vert.	spread 2m
	(Consta	nt) emission	rate =	1.00E+00	grams	s/second		

Hourly multiplicative factors will be used with this emission factor.

Particle	Particle	Particle
Mass	Size	Density
fraction	(micron)	(g/cm3)
1.0000	1.0	2.50

VOLUME SOURCE: 31

X(m)	Y(m)	Ground Elevation	Height	Hor. spread	Vert. spread
301104	6261968	1m	2m	20m	2m

(Constant) emission rate = 1.00E+00 grams/second

Hourly multiplicative factors will be used with this emission factor.

Particle	Particle	Particle
Mass	Size	Density
fraction	(micron)	(g/cm3)
1.0000	5.0	2.50

VOLUME SOURCE: 61

X(m) Y(m) Ground Elevation Height Hor. spread Vert. spread 301104 6261968 . 20m 2m 1m 2m (Constant) emission rate = 1.00E+00 grams/second Hourly multiplicative factors will be used with this emission factor. Particle Particle Particle Size Density Mass

Mass Size Density fraction (micron) (g/cm3)

1.0000 17.3 2.50

AUSPLUME Input File : Dust concentration

RECEPTOR LOCATIONS

The Cartesian receptor grid has the following x-values (or eastings): 299105.m 299605.m 300105.m 300605.m 301105.m 301605.m 302105.m 302605.m

and these y-values (or northings): 6260190.m 6260690.m 6261190.m 6261690.m 6262190.m 6262690.m 6263190.m 6263690.m 6264190.m

DISCRETE RECEPTOR LOCATIONS (in metres)

1

NO.	Х	Y	ELEVN	HEIGHT	NO.	Х	Y	ELEVN	HEIGHT
1	301012	6261826	1.0	0.0	49	301472	6261263	1.0	0.0
2	301092	6261848	1.0	0.0	50	301187	6261124	1.0	0.0
3	301158	6261818	1.0	0.0	51	300990	6261094	1.0	0.0
4	301180	6261774	1.0	0.0	52	300778	6261116	1.0	0.0
5	301158	6261716	1.0	0.0	53	300617	6261306	1.0	0.0
6	301121	6261643	1.0	0.0	54	300442	6261489	1.0	0.0
7	301063	6261614	1.0	0.0	55	300478	6261760	1.0	0.0
8	300983	6261635	1.0	0.0	56	300515	6261972	1.0	0.0
9	300997	6261723	1.0	0.0	57	300508	6261621	1.0	0.0
10	300946	6261826	1.0	0.0	58	300559	6262294	1.0	0.0
11	301034	6261899	1.0	0.0	59	300720	6262279	1.0	0.0
12	301143	6261891	1.0	0.0	60	300895	6262433	1.0	0.0
13	301231	6261848	1.0	0.0	61	301224	6262498	1.0	0.0
14	301238	6261738	1.0	0.0	62	301443	6262396	1.0	0.0
15	301194	6261628	1.0	0.0	63	301750	6262374	1.0	0.0
16	301078	6261548	1.0	0.0	64	301903	6261994	1.0	0.0
17	300983	6261555	1.0	0.0	65	301867	6261438	1.0	0.0
18	300880	6261672	1.0	0.0	66	301889	6261687	1.0	0.0
19	300844	6261789	1.0	0.0	67	301852	6261175	1.0	0.0
20	300924	6261921	1.0	0.0	68	301757	6260955	1.0	0.0
21	301019	6262045	1.0	0.0	69	301399	6260926	1.0	0.0
22	301180	6261994	1.0	0.0	70	300880	6260897	1.0	0.0
23	301282	6261921	1.0	0.0	71	300427	6261021	1.0	0.0
24	301355	6261782	1.0	0.0	72	300288	6261467	1.0	0.0
25	301319	6261650	1.0	0.0	73	300332	6261928	1.0	0.0
26	301216	6261511	1.0	0.0	74	300391	6262425	1.0	0.0
27	301063	6261438	1.0	0.0	75	300793	6262645	1.0	0.0
28	300880	6261489	1.0	0.0	76	301231	6262813	1.0	0.0
29	300771	6261606	1.0	0.0	77	301764	6262593	1.0	0.0
30	300749	6261869	1.0	0.0	78	302079	6262462	1.0	0.0
31	300851	6262038	1.0	0.0	79	302363	6262411	1.0	0.0
32	301026	6262140	1.0	0.0	80	302355	6262177	1.0	0.0
33	301224	6262125	1.0	0.0	81	302349	6261943	1.0	0.0
34	301355	6262038	1.0	0.0	82	302327	6261511	1.0	0.0
35	301443	6261862	1.0	0.0	83	302108	6261899	1.0	0.0
36	301428	6261621	1.0	0.0	84	302305	6260941	1.0	0.0
37	301370	6261453	1.0	0.0	85	301319	6260502	1.0	0.0
38	301180	6261328	1.0	0.0	86	300778	6260517	1.0	0.0
39	300961	6261306	1.0	0.0	87	299894	6261431	1.0	0.0
40	300778	6261409	1.0	0.0	88	299887	6261869	1.0	0.0
41	300683	6261570	1.0	0.0	89	299945	6262396	1.0	0.0
42	300617	6261796	1.0	0.0	90	300340	6263727	1.0	0.0
43	300668	6262045	1.0	0.0	91	300347	6262966	1.0	0.0
44	300858	6262242	1.0	0.0	92	300844	6263025	1.0	0.0
45	301216	6262308	1.0	0.0	93	301341	6263420	1.0	0.0
46	301494	6262177	1.0	0.0	94	301836	6262944	1.0	0.0
47	301640	6261869	1.0	0.0	95	302224	6262922	1.0	0.0
48	301633	6261540	1.0	0.0	96	302311	6263427	1.0	0.0
					20			2.0	

METEOROLOGICAL DATA : EPA St Marys AUSPLUME Modelling File (Met MANAGER)

HOURLY VARIABLE EMISSION FACTOR INFORMATION

The input emission rates specfied above will be multiplied by hourly varying factors entered via the input file: C:\Jobs\RhDC\CHECK3\emiss.src

For each stack source, hourly values within this file will be added to each declared exit velocity (m/sec) and temperature (K).

Title of input hourly emission factor file is: AUSPLUME Variable emissions file (Met MANAGER)

HOURLY EMISSION FACTOR SOURCE TYPE ALLOCATION

Prefix	1	allocated:	1
Prefix	2	allocated:	2
Prefix	3	allocated:	3
Prefix	4	allocated:	4
Prefix	5	allocated:	5
Prefix	6	allocated:	6
Prefix	7	allocated:	7
Prefix	8	allocated:	8
Prefix	9	allocated:	9
Prefix	10	allocated:	10
Prefix	11	allocated:	11
Prefix	12	allocated:	12
Prefix	13	allocated:	13
Prefix	14	allocated:	14
Drofiv	15	allocated:	15
Drofiv	16	allocated:	16
Drofiv	17	allocated.	17
Prefix	10	allocated.	10
Prefix	10	allocated.	10
Pretix	19	allocated:	19
Pretix	20	allocated:	20
Pretix	21	allocated:	21
Pretix	22	allocated:	22
Pretix	23	allocated:	23
Pretix	24	allocated:	24
Prefix	25	allocated:	25
Prefix	26	allocated:	26
Prefix	27	allocated:	27
Prefix	28	allocated:	28
Prefix	29	allocated:	29
Prefix	30	allocated:	30
Prefix	31	allocated:	31
Prefix	32	allocated:	32
Prefix	33	allocated:	33
Prefix	34	allocated:	34
Prefix	35	allocated:	35
Prefix	36	allocated:	36
Prefix	37	allocated:	37
Prefix	38	allocated:	38
Prefix	39	allocated:	39
Prefix	40	allocated:	40
Prefix	41	allocated:	41
Prefix	42	allocated:	42
Prefix	43	allocated:	43
Prefix	44	allocated:	44
Prefix	45	allocated:	45
Prefix	46	allocated:	46
Prefix	47	allocated:	47
Prefix	48	allocated:	48
Prefix	49	allocated:	49
Prefix	50	allocated:	50
Profix	51	allocated:	51
Profix	52	allocated:	52
Drofiv	52	allocated:	52
Drofiv	54	allocated.	5/
Drofiv	55	allocated.	55
Drofiy	56	allocated.	55
profix	50	allocated:	50
Profix	50	allocated:	57
Pretix	20	allocated:	20 50
Pretix	22	allocated:	23
Pret1X	00	allocated:	0U 61
Pretix	67 10	allocated:	σT
Pretix	02	allocated:	62
Pretix	63	allocated:	63

Prefix	64	allocated:	64
Prefix	65	allocated:	65
Prefix	66	allocated:	66
Prefix	67	allocated:	67
Prefix	68	allocated:	68
Prefix	69	allocated:	69
Prefix	70	allocated:	70
Prefix	71	allocated:	71
Prefix	72	allocated:	72
Prefix	73	allocated:	73
Prefix	74	allocated:	74
Prefix	75	allocated:	75
Prefix	76	allocated:	76
Prefix	77	allocated:	77
Prefix	78	allocated:	78
Prefix	79	allocated:	79
Prefix	80	allocated:	80
Prefix	81	allocated:	81
Prefix	82	allocated:	82
Prefix	83	allocated:	83
Prefix	84	allocated:	84
Prefix	85	allocated:	85
Prefix	86	allocated:	86
Prefix	87	allocated:	87
Prefix	88	allocated:	88
Prefix	89	allocated:	89
Prefix	90	allocated:	90